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Abstract—This paper considers the optimal control problem
of linear switched systems with LQ cost or multiple LQ cost.
By adopting an embedding transformation, the switching design
problem is relaxed and transformed into a traditional optimal
control problem. The bang-bang-type solutions of the embedded
optimal control problems are obtained for both the positive
definite LQ cost case and the multiple LQ cost case, which
are the optimal solution to the original problems. The switching
sequence of modes and the switching instants can be calculated by
solving a closed-form optimal switching condition. The optimal
state feedback control law is determined simultaneously. Finally,
numerical results are provided to illustrate the effectiveness of
the proposed method.

Index Terms—Switched system, optimal control, bang-bang-
type solution, quadratic programming, switching condition.

I. INTRODUCTION

HYBRID systems arise from the interaction between
continuous variable systems and discrete event systems.

Characterized by a group of subsystems with different dy-
namics, a hybrid system switches from one subsystem to
another due to the occurrence of discrete events. Switched
systems are a particular class of hybrid systems that consist
of a set of subsystems, one of which is active at each instant,
and a switching policy for activating a specified subsystem.
Optimal control of a switched system involves finding a mode
sequence, switching times between the modes and an input for
each mode, which are strongly coupled.

Previous efforts in this field mainly focused on the neces-
sary conditions for optimality, and on the approximations of
the optimal switching law or suboptimal solutions. Applying
the Maximum Principle, [1] got necessary conditions for a
general switched optimal control problem. In context of a
linear quadratic criteria, the hybrid control was determined
by solving a sequence of differential Riccati equations. [2]
presented the hybrid minimum principle(HMP) necessary con-
ditions and proposed a HMP algorithm for the solution of
a class of switched optimal control problems. [3] proposed
an approximate dynamic programming-based algorithm for
learning the optimal cost-to-go function and proved the con-
vergence of the algorithm. [4] proposed a hybrid adaptive
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dynamic programming approach to solve the Bellman’s equa-
tion iteratively over time, thereby adapting and optimizing
the continuous and discrete control laws subject to actual
system dynamics. Approximation methods usually have high
computational complexity and require iterative computation.
Since the computation of optimal strategy is demanding,
[5] employed a sub-optimal cost function for discrete-time
switched linear systems. Relaxed dynamic programming was
used to reduce the solution space and optimality was relaxed
within prespecified bounds. In [6], a relaxation framework was
developed to simplify the computation of the value iterations
of the infinite-horizon discrete-time switched linear quadratic
regulator(LQR) problem with guaranteed closed-loop stability
and suboptimal performance.

A fundamental issue of the optimal control of a switched
system is to find the optimal switching instants with a
fixed predefined mode sequence. Nonlinear-programming al-
gorithms computing the gradient and second-order derivatives
of the cost function were developed for solving the optimal
switching instants of nonlinear systems. [7] first proposed a
two-stage optimization method and put forward its solving
algorithm. At the first stage, this method assumed there is a
fixed order of active subsystems to minimize the cost function
with respect to the switching instants. At the second stage,
it varied the order and the number of switchings to find the
optimal switching sequence. [8] obtained the derivatives of
the optimal cost function based on the solution of a two point
boundary value differential algebraic equation and applied it to
the general switched LQ problem. To reduce the computational
complexity, [9] used efficiently computable expressions for the
cost function and used the gradient to solve the switching time
optimization problem. [10] presented a method for computing
the derivative of the optimal value for nonlinear switched
systems, which resulted in a simple expression for the desired
derivative.

Despite of all these existing methods, how to obtain a
closed-form optimal solution of the switching sequence and
the control input is still open. Even when the control input
is absent, finding an optimal switching law is still challenging
[11]. Up to now, the exact solution of a switched LQR problem
is not available. The embedding transformation method is
promising for the reason that it converts the switched LQR
problem to a classical continuous optimal control problem by
embedding the sequence of modes as a control variable. [12]
formulated sufficient and necessary conditions for optimality
of the embedded optimal control problem of a two-switched
system. When necessary conditions indicated a bang-bang
type of solution, one obtained a solution to the switched
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optimal control problem. [13] expressed the switching signal
as polynomials and transformed a nonlinear and non-convex
optimal control problem into an equivalent problem with linear
and convex structure solved by high performance numerical
computing.

For open-loop switched systems, a closed-form optimal
switching condition with LQ cost was dealt as a 0-1 integer
programming in [14] and a two point boundary value problem
formed by the state and co-state was solved. [15] gave optimal
necessary conditions and a switching law of the open-loop
switched LQ problem. The obtained switching conditions were
optimal in some generic cases when the optimal control was
constant. In this technical note, we extend the results in [14]
and [15] by solving the switched LQR problem of closed-
loop systems with cost function defined on the state trajectory
and the control input. Applying the embedding transformation
method, we investigate two closed-form switching conditions
involved by the switching law for LQ cost and multiple LQ
cost when the mode sequence and the switching instants are
unspecified. The switching dependent state feedback control
law can be determined simultaneously. The main contributions
of this paper are summarized as follows:

1) For the switched LQR problem, we show that comput-
ing the optimal switch input leads to a quadratic programming
problem. The minimization of a concave function is solved
and a bang-bang type solution is obtained. Therefore, a
closed-form optimal switching condition of subsystems can
be developed. The mode sequence and the switching instants
are determined afterwards.

2) For the multiple switched LQR problem, we prove the
Hessian matrix of the Hamilton function is negative semi-
definite when the weighting matrix corresponding to the input
is a diagonal matrix with positive diagonal entries. Therefore,
the optimal solution of the embedded optimal problem is of
bang-bang type.

The paper organization is as follows. In section 2, we formu-
late and solve the switched LQR problem with positive definite
cost. We formulate the multiple switched LQR problem and
derive an optimal switching condition in section 3. In section
4, two numerical examples are given to show results of the
methods. Section 5 concludes this paper.

II. SWITCHED LQ REGULATOR

Consider a switched system comprising a collection of
N subsystems described by linear equations together with a
switching rule.

ẋ (t) = Aσ(t)x (t) +Bσ(t)u (t) (1)

where x(t) is a n-dimensional state, u(t) is a m-dimensional
control input. Aσ and Bσ are matrices with appropriate
dimensions. Moreover, switching function σ (t) returns the
index of active subsystem at time t ∈ [t0, tf ], where σ (t) ∈
{1, 2, . . . , N}, t0 is a fixed initial time and tf is a fixed final
time.

We investigate the situation where each subsystem (Ai, Bi)
is controllable. We do not make any assumptions and con-

straints about the number of switches nor about the mode
sequence. For simplicity,

N∑
i=1

wi(t)
∆
=
∑
i

wi

N∑
i=1

N∑
j=1

wi(t)wj(t)
∆
=
∑
i,j

wiwj

The switched system can be represented by a combination
of N subsystems.

ẋ (t) =
∑
i

wi(t) [Aix (t) +Biu (t)] (2)

where wi (t) ∈ {0, 1}. The switch input vector w (t) =
[w1 (t) , . . . , wN (t)]

T can be given by a switching sequence
as:

ξ = [(t0, σ (t0), u0) , . . . , (tK , σ (tK), uK)] (3)

where t0 ≤ t1 ≤ . . . ≤ tK ≤ tf and t1, . . . , tK are the
switching instants and K is the number of switching.

The problem of switched linear quadratic regulator (SLQR)
can be defined as determining a switch input w(t) and a control
input u(t) associated with a general LQ cost function for
evaluating the system’s performance quantitatively in a finite
horizon [t0, tf ].

minJ =
1

2

∫ tf

t0

(
xTQx+ 2uTSx+ uTRu

)
dt (4)

where Q is a n×n positive semi-definite matrix, R is a m×m
positive definite matrix.

Define
B̄ij = BiR

−1Bj
T (5)

where Bi =
[
bi1, · · · , bin

]T and bij(j = 1, · · ·n) is a m-
dimensional row vector. The elements of B̄ij can be obtained

B̄ij (s, t) = bisR
−1bjt

T
(6)

where s, t = 1, · · · , n.
By adopting the embedding transformation method, we

embed the switched system into a larger family of systems
by allowing wi(t) to vary continuously in the range [0, 1].
The SLQR problem can be transformed into the embedded
switched LQR problem(ESLQR) as follows.

ESLQR : min J =
1

2

∫ tf

t0

(
xTQx+ 2uTSx+ uTRu

)
dt

s.t. ẋ (t) =
∑
i

wi(t) [Aix (t) +Biu (t)]

(7)

The time-varying vector w(t) belongs to a convex set W .

W =

{
w ∈ RN :

∑
i

wi = 1, wi ≥ 0

}
(8)

The set of trajectories of the embedded system (7) contains the
trajectories of the switched system [12]. If a bang-bang-type
solution of ESLQR is optimal, that is wi (t) ∈ {0, 1}, then this
type of solution is the solution of SLQR. This is discussed in
the proof of the following theorem.
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Theorem 1. The switching condition of system (1) that mini-
mize the cost functional (4) is

i(t) = argmin
i=1,···N

λT (t)

[
(Ai −BiR

−1S)x (t)− 1

2
B̄iiλ (t)

]
(9)

and the optimal control input is

u (t) = −R−1
[
Sx (t) +Bi(t)

Tλ (t)
]

(10)

where λ (t) = [λ1, . . . , λn]
T is the solution of

λ̇(t) = −
[
Qx(t) + STu(t) +AT

i(t)λ(t)
]

(11)

with the boundary condition λ (tf ) = 0.

Proof. The Hamilton function is defined as

H [x, u, w, λ]

=
1

2

[
x(t)

T
Qx(t) + 2u(t)

T
Sx(t) + u(t)TRu(t)

]
+ λT (t)

∑
i

wi(t) [Aix (t) +Biu (t)]

(12)

From (11), it is clear

λ̇(t) = −

[
Qx(t) + STu(t) +

∑
i

wiA
T
i λ(t)

]
(13)

By the coupled equation, it can be obtained

u (t) = −R−1

[
Sx (t) +

∑
i

wiBi
Tλ (t)

]
(14)

Substituting (14) into (12) yields

H [x,w, λ]

=
1

2
xT (t) (Q− STR−1S)x (t) + λT (t)

∑
i

wiAix (t)

− 1

2
λT (t)

∑
i,j

wiwjBiR
−1Bj

Tλ (t)

− λT (t)
∑
i

wiBiR
−1Sx (t)

(15)

Minimizing H with respect to w(t) can be simplified to
minimize

H̄ [x,w, λ] = −1

2
λT (t)

∑
i,j

wiwjBiR
−1Bj

Tλ (t)

+ λT (t)
∑
i

wi(Ai −BiR
−1S)x (t)

(16)

Minimizing H̄ with respect to w(t) can be viewed as a
quadratic programming problem.

min − 1

2
w(t)TG(t)w(t) + q(t)Tw(t)

s.t. w (t) ∈ W
(17)

where q(t) = [q1, · · · , qN ]
T and

G(i, j) = λ(t)
T
B̄ijλ (t) (18)

qi = λ (t)
T
(Ai −BiR

−1S)x (t) (19)

Due to
B̄ji = BjR

−1Bi
T = B̄T

ij (20)

G (j, i) = λ(t)
T
B̄jiλ (t) = G (i, j) (21)

matrix G(t) is symmetric.
To clearly express G(t), we construct a new matrix Mst.

The s-th row and t-th column element of B̄ij are used as the
i-th row and j-th column element of matrix Mst, i.e.,

Mst(i, j) = B̄ij(s, t) = bisR
−1bjt

T
(22)

Therefore,

Mst =


b1sR

−1b1t
T · · · b1sR

−1bNt
T

...
...

bNs R−1b1t
T · · · bNs R−1bNt

T

 = NsR
−1Nt

T

(23)

where i, j = 1, · · ·N and s, t = 1, · · ·n.

Ns =

 b1s
...
bNs

 (24)

Owing to

G(i, j) =
n∑

s=1

n∑
t=1

λsλtB̄ij(s, t)

=
n∑

s=1

n∑
t=1

λsλtMst(i, j)

(25)

matrix G(t) can be expressed as a linear combination of Mst.

G(t) =

n∑
s=1

n∑
t=1

λsλtMst

=

n∑
s=1

n∑
t=1

λsλtNsR
−1Nt

T

= TR−1TT

(26)

where matrix T is a linear combination of Ns.

T =

n∑
s=1

λsNs (27)

As R is positive definite, it is clear −G(t) ≤ 0. Therefore,
problem (17) is considered as a minimization of a concave
function. In this case, the global minimum point of H̄ is always
attained at the extreme point of the convex set W , i.e., the
optimal solution of the ESLQR problem is of bang-bang type.
Therefore,

H̄m = min H̄

= min
i=1,···N

λT (t)

[
(Ai −BiR

−1S)x (t)− 1

2
B̄iiλ (t)

]
= λT (t)

[
(Ak −BkR

−1S)x (t)− 1

2
B̄kkλ (t)

]
(28)

where wk = 1 and wi = 0, ∀i ̸= k. This completes the proof.



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2018.2872204, IEEE
Transactions on Automatic Control

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 14, NO. 8, AUGUST 2015 4

Remark 1. A singular case is such that there exist at least
two indices i, j for which

λT (t)

[
(Ai −BiR

−1S)x (t)− 1

2
B̄iiλ (t)

]
=λT (t)

[
(Aj −BjR

−1S)x (t)− 1

2
B̄jjλ (t)

] (29)

on a non zero measure time interval [16]. The second order
necessary conditions are given in the literature [17]. In this
article, we only consider the nonsingular case.

Remark 2. For the infinite horizon case,

λ(t) = Pi(t)x(t) (30)

and the algebra Riccati equation

PiAi+AT
i Pi−

(
PiBi + ST

)
R−1

(
BT

i Pi + S
)
+Q = 0 (31)

The optimal control law is

u (t) = −R−1
(
S +Bi

TPi

)
x(t) (32)

and the closed-loop system becomes

ẋ (t) =
(
Ai −BiR

−1S − B̄iiPi

)
x (t) (33)

Remark 3. For the indefinite cost case that matrix R is
indefinite, matrix G(t) is also indefinite. Therefore. problem
(17) becomes a linearly constrained indefinite quadratic pro-
gramming problem, which is a fundamental problem in global
optimization. Since the exact global optimum is difficult to
obtain, a number of approaches have been proposed to find the
global approximate solutions such as [18] and [19]. Since the
approximations may not be bang-bang type, only suboptimal
solutions of the SLQR problem can be constructed according
to [12].

III. MULTIPLE SWITCHED LQ REGULATOR

For the multi-objective LQR problem, the tradeoffs among
different performance indices vary in accordance with different
system status [20]. We formulate the multiple switched LQR
problem, using different tradeoff with respect to each subsys-
tem. The overall objective function J is a sum of multiple
quadratic performance indices Ji when the system switches
from one subsystem to another.

J =
∑
i

wi(t)Ji(t) (34)

Ji =
1

2

∫ tf

t0

(
xTQix+ 2uTSix+ uTRiu

)
dt (35)

where wi (t) ∈ {0, 1}. In this section, we deal with the case
that the weighting matrix Ri is a diagonal matrix with positive
diagonal entries, i.e.,

Ri = diag(γ1
i , · · · , γm

i ), γk
i > 0 (36)

where k = 1, · · · ,m. The optimal solution of the multi-
objective LQR problem can be obtained by solving its em-
bedded problem described as follows.

min J

s.t. ẋ (t) =
∑
i

wi(t) [Aix (t) +Biu (t)]

w(t) ∈ W

(37)

Theorem 2. The switching condition of system (1) that mini-
mize the multiple LQ cost functional (34) is

i(t) = argmin
i∈{1,2,···N}

−1

2

m∑
k=1

(fk
i )

2

γik
+ qi (38)

with the optimal input

u (t) = −R−1
i(t)

[
Si(t)x (t) +Bi(t)

Tλ (t)
]

(39)

where λ (t) is the solution of

λ̇(t) = −
[
Qi(t)x(t) + Si(t)

Tu(t) +AT
i(t)λ(t)

]
(40)

with the boundary condition λ (tf ) = 0.

Proof. The Hamilton function is chosen as

H [x, u, w, λ]

=
1

2

∑
i

wi

[
x(t)

T
Qix(t) + 2u(t)

T
Six(t) + u(t)TRiu(t)

]
+
∑
i

wiλ
T (t) [Aix (t) +Biu (t)]

(41)

From (40), it is clear

λ̇(t) = −
∑
i

wi

[
Qix(t) + Si

Tu(t) +AT
i λ(t)

]
(42)

By the coupled equation, one can obtain

u (t) = −

(∑
i

wiRi

)−1∑
i

wi

[
Six (t) +Bi

Tλ (t)
]

(43)

Substituting (43) into (41) yields

H [x,w, λ]

=
1

2

∑
i

wix
T (t)Qix (t) +

∑
i

wiλ
T (t)Aix (t)

− 1

2

∑
i,j

wiwjx
T (t)Si

T

(∑
i

wiRi

)−1

Sjx (t)

− 1

2

∑
i,j

wiwjλ
T (t)Bi

(∑
i

wiRi

)−1

Bj
Tλ (t)

−
∑
i,j

wiwjλ
T (t)Bi

(∑
i

wiRi

)−1

Sjx (t)

(44)

Simplifying the Hamilton function, we have

H̄ [x,w, λ] =− 1

2

∑
i,j

wiwjG(i, j) +
∑
i

wiqi (45)

where

G(i, j) = fi(t)
T

(∑
i

wiRi

)−1

fj(t) (46)

fi(t) = Six(t) +Bi
Tλ(t) (47)

qi =
1

2
xT (t)Qix (t) + λT (t)Aix (t) (48)

Define
fi =

[
f1
i , · · · , fm

i

]
(49)
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H̄ can be rewritten as

H̄ =− 1

2

m∑
k=1

∑
i,j

wiwjf
k
i f

k
j∑

i

wiγik
+
∑
i

wiqi

=− 1

2

m∑
k=1

(∑
i

wif
k
i

)2

∑
i

wiγik
+
∑
i

wiqi

(50)

The second-order derivative of H̄ with respect to wi is

∂2H̄

∂w2
i

= −
m∑

k=1

[
hfk

i − gγk
i

]2
h3

≤ 0 (51)

The second-order partial derivative of H̄ with respect to wi

and wj is

∂H̄

∂wi∂wj
= −

m∑
k=1

[
hfk

i − gγk
i

] [
hfk

j − gγk
j

]
h3

(52)

where γk =
[
γk
1 , . . . , γ

k
N

]T
and

g =
∑
i

wjf
k
j (53)

h = wT γk (54)

Thus, the Hessian matrix of H̄ is

∂2H̄

∂w2
= − 1

h3

m∑
k=1


e21 e1e2 · · · e1eN
e2e1 e22 · · · e2eN

...
...

. . .
...

eNe1 eNe2 · · · e2N



= − 1

h3

m∑
k=1


e1
e2
...
eN

 [ e1 e2 · · · eN
]
≤ 0

(55)

where
ei = hfk

i − gγk
i (56)

It indicates that the Hamilton function is a concave function.
Similar to problem (17), the global minimum of the concave
function is at one of the extreme points of the convex set W .
Therefore, a closed-form optimal switching condition for the
nonsingular case is obtained as

min H̄ = min
i=1,···N

−1

2

m∑
k=1

(fk
i )

2

γik
+ qi (57)

This completes the proof.

When the control input is absent, an algebraic switching
condition can be obtained for autonomous systems.

Corollary 1. The switching condition of the open-loop system

ẋ (t) = Aσ(t)x (t) (58)

that minimize the performance index

J =
1

2

∫ tf

t0

x(t)
T
Qσ(t)x(t)dt (59)

0 0.5 1 1.5 2

1

2

3

time /s

sw
itc

hi
ng

 m
od

e

Fig. 1. Optimal switching time.

is
i(t) = argmin

i=1,···N

[
1

2
x(t)

T
Qi + λT (t)Ai

]
x (t) (60)

where λ (t) is the solution of

λ̇(t) = −
[
Qi(t)x(t) +AT

i(t)λ(t)
]

(61)

with the boundary condition λ (tf ) = 0.

Remark 4. It should be noted that the switching condition
(60) is the same as the algebraic condition in [15].

IV. ILLUSTRATIVE EXAMPLES

A. Optimal Switched Control with positive definite LQ cost
Consider a switched system built with three controlled-

systems

ẋ =

 A1x+B1u1, w = [1, 0, 0]
A2x+B2u2, w = [0, 1, 0]
A3x+B3u3, w = [0, 0, 1]

with
A1 =

[
−1 1
−1 1

]
, B1 =

[
1 1
2 1

]
A2 =

[
−1 2
−1 2

]
, B2 =

[
2 0
1 2

]
A3 =

[
−1 3
−1 3

]
, B3 =

[
1 0
2 2

]
Choosing Q = R = 2I and S = I (I is an identity matrix),
we obtain three positive definite solutions of (31) for three
subsystems.

P1 =

[
2.37 −1.55
−1.55 1.68

]
, P2 =

[
0.48 −0.28
−0.28 1.11

]
P3 =

[
0.74 −0.22
−0.22 1.15

]
The initial state is x0 = [2, 1]T and the co-state vector is
λ (t0) = P1x0 = [3.19,−1.42]T . Using the optimal switching
condition (9), we figure out the optimal switching time, which
is shown in Fig. 1. Note that the system stays in mode 2 for
0.14s ≤ t < 1.31s, in mode 3 for t = 1.32s, and switches
frequently between modes 1 and 2 for 0.01s ≤ t < 0.14s
and 1.33s < t ≤ 2. The state trajectories under switched
LQR are shown in Fig. 2. The switched feedback control input
trajectories are shown in Fig. 3. The optimal value is J = 2.01.
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B. Application to a Power Converter

To illustrate the multiple switched LQ regulator, we take
a buck-boost converter as an example [21]. The converter is
described as a switched system that consists of two modes

(A1, B1) =

(
−R/L 0

0 −1/R0C0

)
,

(
1/L
0

)
(A2, B2) =

(
−R/L −1/L
1/C0 −1/R0C0

)
,

(
0
0

)
The state x = [x1, x2]

T are the inductor current and the capac-
itor voltage respectively. Simulation parameters: R = 0.08Ω,
L = 500µH , C0 = 500µF , R0 = 2Ω. Two performance
indexes are

J1 =
1

2

∫ tf

t0

[
(x− xref )

T
Q1(x− xref ) + uTR1u

]
dt (62)

J2 =
1

2

∫ tf

t0

(x− xref )
T
Q2(x− xref )dt (63)

where the weighting matrices are

Q1 = 400I, Q2 = 200I, R1 = 2

A switching strategy and its corresponding feedback control
law are designed to reach the equilibrium point, while min-
imizing the overall performance index (34). Fig. 4 and Fig.
5 show the startup from the initial condition x0 = (0, 0)
to the reference xref = (16, 16). The overall performance
index under optimal switching was computed to be 43.88. The
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control input trajectory of mode 1 u1 is shown in Fig. 6. Using
the switching condition

i(t) = argmin
i=1,···N

1

2
x̃(t)

T
Qix̃(t) + λT (t)

[
Aix (t)−

1

2
B̄iiλ (t)

]
(64)

where
x̃(t) = x(t)− xref

λ̇(t) = −Qix̃(t)−AT
i λ(t)

(65)

we obtain the optimal switching time in Fig. 7.

V. CONCLUSION

This paper has dealt with LQ regulator of switched systems,
where the controlled variable is comprised of the switch
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signal as well as the control input. We have investigated two
optimization problems with different performance indexes and
solved them by the embedding transformation method. The
Hessian matrices of the Hamilton functions have been proven
to be negative semi-definite, which leads to bang-bang type
solutions of the optimization problems. As a result, two closed-
form switching conditions are derived to obtain the optimal
switching instants and optimal mode selection. Numerical
examples have illustrated the efficacy of the proposed method.
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