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Adaptive Linear Quadratic Regulator for
Continuous-Time Systems with Uncertain Dynamics
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Abstract—In this paper, adaptive linear quadratic regulator
(LQR) is proposed for continuous-time systems with uncertain
dynamics. The dynamic state-feedback controller uses input-
output data along the system trajectory to continuously adapt
and converge to the optimal controller. The result differs from
previous results in that the adaptive optimal controller is designed
without the knowledge of the system dynamics and an initial
stabilizing policy. Further, the controller is updated continu-
ously using input-output data, as opposed to the commonly
used switched/intermittent updates which can potentially lead
to stability issues. An online state derivative estimator facilitates
the design of a model-free controller. Gradient-based update laws
are developed for online estimation of the optimal gain. Uniform
exponential stability of the closed-loop system is established
using the Lyapunov-based analysis, and a simulation example
is provided to validate the theoretical contribution.

Index Terms—Linear quadratic regulator, Adaptive optimal
control, Continuous policy update, Uncertain system dynamics.

I. INTRODUCTION

THE development of the infinite-horizon linear quadratic
regulator (LQR) [1] has been one of the most important

contributions in linear optimal control theory. The optimal con-
trol law for the LQR problem is expressed in state-feedback
form, where the optimal gain is obtained from the solution of
the nonlinear matrix equation - the Algebraic Riccati Equation
(ARE). The solution of the ARE requires exact knowledge of
the system matrices and is typically found offline, a major
impediment to online real-time control.

Recent research has focused on solving the optimal control
problem using iterative, data-driven algorithms which can
be implemented online and require minimal knowledge of
the system dynamics [2]−[15]. In [2], Kleinman proposed
a computationally efficient procedure for solving the ARE
by iterating on the solution of the linear Lyapunov equation,
with proven convergence to the optimal policy for any ini-
tial condition. The Newton-Kleinman algorithm [2], although
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offline and model-based, paved the way for a class of rein-
forcement learning (RL)/approximate dynamic programming
(ADP)-based algorithms which utilize data along the system
trajectory to learn the optimal policy [4], [7], [10], [16]−[18].
Strong connections between RL/ADP and optimal control
have been established [19]−[23] and several RL algorithms
including policy iteration (PI), value iteration (VI) and Q-
learning have been adapted for optimal control problems
[4], [7]−[9], [13], [22], [24]. Initial research on adaptive
optimal control was mostly concentrated in the discrete-time
domain due to the recursive nature of RL/ADP algorithms. An
important contribution in [4] is the development of a model-
free PI algorithm using Q-functions for discrete-time adaptive
linear quadratic control. The iterative RL/ADP algorithms have
since been applied to various discrete-time optimal control
problems [25]−[27].

Extension to continuous-time systems entails challenges in
controller development and convergence/stability proofs. One
of the first adaptive optimal controllers for continuous-time
systems is proposed in [17], where a model-based algorithm is
designed using a continuous-time version of the temporal dif-
ference (TD) error. Model-free RL algorithms for continuous-
time systems are proposed in [22], which require measurement
of the state derivatives. In chapter 7 of [3], an indirect adaptive
optimal linear quadratic (ALQ) controller is proposed, where
the unknown system parameters are identified using an online
adaptive update law, and the ARE is solved at every time
instant using the current parameter estimates. However, the
algorithm may become computationally prohibitive for higher
dimensional systems, owing to the need for solving the ARE
at every time instant. More recently, partially model-free PI
algorithms are developed in [7], [24] for linear systems with
unknown internal dynamics. In [9], [10], the idea in [7]
is extended to adaptive optimal control of linear systems
with completely unknown dynamics. In another significant
contribution [6], the connections between Q-learning and the
Pontryagin’s minimum principle are established, based on
which an off policy control algorithm is proposed.

A common feature of RL algorithms adapted for
continuous-time systems is the requirement of an initial stabi-
lizing policy [7], [9], [10], [18], [24], and a batch least square
estimation algorithm leading to intermittent updates of the
control policy [7], [9]. Finding an initial stabilizing policy for
systems with unknown dynamics may not always possible.
Further, the intermittent control policy updates in [7], [9],
[18] render the control law discontinuous, potentially leading
to challenges in proving stability. Moreover, many adaptive
optimal control algorithms require to implement delayed-
window integrals to construct the regressor/design update laws
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[5], [7], [9], [14], and “intelligent” data storage mechanism
(procedure for populating independent set of data) [5], [7],
[9], [10] to satisfy an underlying full-rank condition. The
computation of delayed-window integrals of functions of states
requires past data storage for the time interval [t − T, t],
∀t > 0, where t and T are the current time instant and
the window length, respectively, which demands significant
memory consumption, especially for large scale systems.

Recent works in [8], [11], [13] have cast the continuous-
time RL problem in an adaptive control framework with
continuous policy updates, without the need for an initial
stabilizing policy. However, for continuous-time RL, it is not
straightforward to develop a fixed-point equation for parameter
update, which is independent of the knowledge of system
dynamics and state derivatives. A synchronous PI algorithm
for known system dynamics is developed in [8], which is
extended to a partially model-free method using a novel
actor-critic-identifier architecture [11]. For input-constrained
systems with completely unknown dynamics, a PI and neural
network (NN) based adaptive control algorithm is proposed in
[13]. However, the work in [13] utilizes past stored data along
with the current data for identifier design, while guaranteeing
bounded convergence of critic weight estimation error for
bounded NN reconstruction error.

The contribution of this paper is the design of a continuous-
time adaptive LQR with a time-varying state-feedback gain,
which is shown to exponentially converge to the optimal
gain. The novelty of the proposed result lies in the compu-
tational/memory efficient algorithm used to solve the optimal
control problem for uncertain dynamics, without requiring
an initial stabilizing control policy, unlike previous results
which either use an initial stabilizing control policy and a
switched policy update [5], [7], [9], [10] or past data storage
[5], [7], [9], [10], [28], [29] or memory-intensive delayed-
window integrals [5], [7], [9], [14]. The result in this paper
is facilitated by the development of a fixed point equation
which is independent of system matrices, and the design of
a state derivative estimator. A gradient-based update law is
devised for online adaptation of the state-feedback gain and
convergence to the optimal gain is shown, provided a uniform
persistence of excitation (u-PE) condition [30], [31] on the
state-dependent regressor is satisfied. The u-PE condition,
although restrictive in its verification and implementation,
establishes the theoretical requirements for convergence of
adaptive linear quadratic controller proposed in the paper.
The Lyapunov analysis is used to prove uniform exponential
stability of the overall system.

This paper is organized as follows. Section II discusses the
primary concepts of linear optimal control, problem formula-
tion, and subsequently the general methodology. The proposed
model-free adaptive optimal control design along with the state
derivative estimator is described in section III. Convergence
and exponential stability of the proposed result is shown in
section IV. Finally, an illustrative example is given in section
V.

Notations: Throughout this paper, R is used to denote the set
of real numbers. The operator || . || designates the Euclidean
norm for vectors and induced matrix norm for matrices.

The symbol ⊗ denotes the Kronecker product operator and
vec(Z) ∈ Rqr denotes the vectorization of the argument
matrix Z ∈ Rq×r and is obtained by stacking columns of the
argument matrix on top of one another. The operators λmin(.)
and λmax(.) denote the minimum and maximum eigenvalues
of the argument matrix, respectively. The symbol Bd denotes
the open ball Bd = {z ∈ Rn(n+m) : ||z|| < d}. The following
standard properties of vec and Kronecker product have been
used for the matrices D, E and F of appropriate dimension:

1) vec(DEF ) = (FT ⊗D)vec(E), where matrix multipli-
cation (DEF ) is defined.

2) vec(D + E + F ) = vec(D) + vec(E) + vec(F ), where
matrix summation (D + E + F ) is defined.

The partial derivative formula, ∂(aT Db)
∂D = abT , where a, b

are vectors, D is a matrix and the multiplication (aT Db) is
defined, has also been used.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a continuous-time deterministic LTI system given
as

ẋ(t) = Ax(t) + Bu(t), (1)

where x(t) ∈ Rn denotes the state and u(t) ∈ Rm denotes
the control input. A ∈ Rn×n and B ∈ Rn×m are constant
unknown matrices and (A,B) are assumed to be controllable.

The infinite horizon quadratic value function can be defined
as the total cost starting from state x(t) and following a fixed
control action u(t) from time t onwards as

V (x(t)) =
∫ ∞

t

(xT (τ)Qx(τ) + uT (τ)Ru(τ))dτ, (2)

where Q ∈ Rn×n is symmetric positive semi-definite with
(Q,A) being observable and R ∈ Rm×m is a positive definite
matrix.

When A and B are accurately known, the standard LQR
problem is to find the optimal policy by minimizing the value
function (2) with respect to the policy u.

u∗(t) = −K∗x(t), (3)

where K∗ = R−1BT P ∗ ∈ Rm×n is the optimal control gain
matrix and P ∗ ∈ Rn×n is the constant positive definite matrix
solution of ARE [32]

AT P ∗ + P ∗A + Q− P ∗BR−1BT P ∗ = 0. (4)

Remark 1: It is obvious that solving the ARE for P ∗ requires
knowledge of the system matrices A and B, however, in the
case where information about A and B is unavailable, it is
challenging to determine P ∗ and K∗ online.

The following assumptions are required to facilitate the
subsequent design.

Assumption 1: The optimal Riccati matrix P ∗ is upper
bounded as ‖P ∗‖ ≤ α1, where α1 is a known positive scalar
constant.

Assumption 2: The optimal gain matrix K∗ is upper
bounded as ‖K∗‖ ≤ α2, where α2 is a known positive scalar
constant.
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For the linear system in (1), the optimal value function can
be written as a quadratic function [33]

V ∗(x) = xT P ∗x. (5)

To facilitate the development of the model-free LQR, differ-
entiate (5) with respect to time and use system dynamics (1)
to obtain

V̇ ∗(x) = xT (P ∗A + AT P ∗)x + 2xT P ∗Bu. (6)

Using (4), the expression (6) reduces to

V̇ ∗(x) = xT (−Q + P ∗BR−1BT P ∗)x + 2xT P ∗Bu. (7)

The LHS of (7) can be written as V̇ ∗(x) = ∇V ∗(x)ẋ =
2xT P ∗ẋ by considering (5), which is then substituted in (7)
as

2xT P ∗ẋ = xT (−Q + K
∗T RK∗)x + 2xT K

∗T Ru. (8)

The expression in (8) acts as the fixed point equation used to
define D∈R as the difference between LHS and RHS of (8)

D , 2xT P ∗ẋ− xT (−Q + K
∗T RK∗)x− 2xT K

∗T Ru = 0.
(9)

Remark 2: The motivation behind the formulation of (9)
is to represent the fixed point equation in a model-free way
without using memory-intensive delayed window integrals and
subsequently design a parameter estimation algorithm to learn
P ∗ and K∗ without knowledge of system matrices A and B.

III. OPTIMAL CONTROL DESIGN FOR COMPLETELY
UNKNOWN LTI SYSTEMS

In (9), P ∗ and K∗ are unknown parameter matrices and the
objective is to estimate these parameters using gradient-based
update laws.

Let D̂ ∈ R denote the estimate of D as

D̂ = 2xT P̂ ˙̂x− xT (−Q + K̂T RK̂)x− 2xT K̂T Ru, (10)

where P̂ (t) ∈ Rn×n, K̂(t) ∈ Rm×n and ˙̂x ∈ Rn are the
subsequently defined estimates of P ∗, K∗ and ẋ, respectively.
The TD-like estimation error E ∈ R, from (9) and (10), can
be defined as

E , D̂ − D
= 2xT P̂ ˙̂x− xT (−Q + K̂T RK̂)x− 2xT K̂T Ru. (11)

The gradient-based update laws are developed which minimize
the squared error Ξ ∈ R defined as Ξ , 1

2E2. The update laws
for the parameters to be estimated are given by

˙̂
P = −ν

∂Ξ

∂P̂
˙̂

K = −νk
∂Ξ

∂K̂
,

where ν ∈ R+ and νk ∈ R+ are adaptation gains. Substituting
the values of gradients of Ξ with respect to P̂ (t) and K̂(t),
the normalized update laws are given as

˙̂
P = proj

(
−2νx ˙̂xT

)
E (12)

˙̂
K =

2νk(RK̂xxT + RuxT )E
1 + ηkωT

k ωk
, (13)

where 1
1+ηkωT

k
ωk

is the normalization term, ηk ∈ R+ is a

constant gain and ωk , x ⊗ Ru ∈ Rnm. Further, proj(.)
is a smooth projection operator which ensures boundedness
of the parameter estimate P̂ (t) within a compact region in
the parameter space [34], [35]. Refering to Definition 5 and
Lemma 6 of [35], and using Assumptions 1 and 2, the negative
semi-definite term in the proj(.) always keeps the parameter
estimates inside the bounded region whenever boundary con-
dition is reached. In (12), the convex and compact region for
parameter estimation is chosen as

∥∥∥P̂
∥∥∥ ≤ α1, which is in line

with Assumption 1.
The continuous policy update is given as

u = −K̂x. (14)

The design of the state derivative estimator ˙̂x(t), mentioned
in (11) and (12), is facilitated by expressing the system
dynamics (1) as linear-in-the-parameters (LIP)

ẋ = Y θ, (15)

where Y (x, u)∈ Rn×n(n+m) is the regressor matrix and θ ∈
Rn(n+m) is the unknown vector defined as

θ ,
[
vec(AT )
vec(BT )

]
, (16)

Assumption 3: The system parameter vector θ in (16) is
upper bounded as ‖θ‖ ≤ a1, where a1 is a known positive
constant.

The state derivative estimator is designed as

˙̂x = Y θ̂ + Lx̃, (17)

where θ̂(t) ∈ Rn(n+m) is the estimate of θ, x̃(t) , x−x̂ ∈ Rn

is the state estimation error and L ∈ Rn×n is the symmetric
positive definite high gain matrix. Using (15) and (17), the
state derivative estimation error is given as

˙̃x , ẋ− ˙̂x = Y θ̃ − Lx̃. (18)

where θ̃(t) , θ − θ̂ ∈ Rn(n+m) is the system parameter
estimation error.

The update law for θ̂(t), which minimizes the state deriva-
tive estimation error, is designed as

˙̂
θ = ΓY T x̃, (19)

where Γ ∈ Rn(n + m)× n(n + m) is the constant positive
definite gain matrix.

Lemma 2: The update laws in (17) and (19) ensure that
the state estimation and the system parameter estimation error
dynamics are Lyapunov stable ∀t ≥ 0.

Proof: Consider a positive-definite Lyapunov function can-
didate as

U(x̃, θ̃) =
1
2
x̃T x̃ +

1
2
θ̃T Γ−1θ̃ (20)

Taking time derivative of (20) and substituting the value of
˙̃x(t) from (18), the following expression is obtained

U̇(x̃, θ̃) = x̃T Y θ̃ − x̃T Lx̃− θ̃T Γ−1 ˙̂
θ
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Substituting ˙̂
θ(t) from (19), the following expression is ob-

tained

U̇(x̃, θ̃) = − x̃T Lx̃

≤− L ‖x̃‖2 ≤ 0 ∀t ≥ 0 (21)

where L = λmin(L).
Since U(x̃, θ̃) > 0 and U̇(x̃, θ̃) ≤ 0, U(x̃, θ̃) is bounded

which implies that x̃(t), θ̃(t), θ̂(t) ∈ L∞.
Remark 3: Assumptions 1 and 2 are standard assumptions

required for projection based adaptive algorithms, frequently
used in robust adaptive control literature (see [3], Chapter 11
of [36], Chapter 3 of [37], [38]) . In fact, in the context of
adaptive optimal control, analogous to Assumptions 1 and 2,
many existing results [8], [11], [13], [14], [29] assume a known
upper bound of the unknown parameters associated with the
value function, an essential requirement for proving stability of
the closed-loop system. Although the true system parameters
(A and B) are unknown, a range of operating values (a
compact set containing the true values of the elements of A and
B) may be known in many cases from the particular domain
knowledge of the plant. Performing a uniform sampling over
the known compact set and solving the ARE offline with those
samples, a set of Riccati matrices can be obtained, and hence,
the upper bounds (α1 and α2), assumed in Assumptions 1-
2, can be conservatively estimated using this set. Moreover,
the proposed algorithm serves as an effective approach for the
case where it is hard to obtain the initial stabilizing policy for
uncertain systems.

IV. CONVERGENCE AND STABILITY

A. Development of Controller Parameter Estimation Error
Dynamics

The controller parameter estimation error dynamics for
K̃(t) , K̂(t) − K∗ ∈ Rm×n can be obtained using (11)
and (13) as

˙̃K =
2νk(RK̂xxT + RuxT )

1 + ηkωT
k ωk

(
2xT P̂ ˙̂x−W − 2xT K̃Ru

− 2xT K∗Ru
)
, (22)

where W , xT (−Q + K̂T RK̂)x ∈ R.
Using the vec operator in (22), the following expression is

obtained

vec( ˙̃K) = − 4νkϕkϕT
k vec(K̃)− 4νkϕkϕT

k vec(K∗)

+
2νkϕk

γ

(
2( ˙̂x⊗ x)T vec(P̂ )− vec(W )

)

+
2νkvec(RK̂xxT )

γ2

(
2( ˙̂x⊗ x)T vec(P̂ )

− vec(W )
)
− 4νkvec(RK̂xxT )ϕT

k

γ

(
vec(K̃)

+ vec(K∗)
)

(23)

where ϕk(z, t) , ωk

γ ∈ Rnm is the normalized parameter
regressor vector, ωk(z, t) , x ⊗ Ru, where u is substituted

from (14) and γ(z, t) ,
√

1 + ηkωT
k (z, t)ωk(z, t) ∈ R is the

normalization term with z ∈ Rn(1+m) defined as

z , [xT (vec(K̃))T ]T (24)

and
‖ϕk‖ ≤ 1√

ηk
. (25)

Using (15) and (23), the system dynamics in terms of the error
state z(t) can be expressed as

ż(t) = F(z, t)

where F ∈ Rn(1+m) is a vector valued function containing
the right hand sides of (15) and (23).

Assumption 4: The pair (ϕk, F) is u-PE, i.e., PE uniformly
in the initial conditions (z0, t0), if for each d > 0, ∃ε, δ > 0
such that, ∀(z0, t0) ∈ Bd×[0,∞), all corresponding solutions
satisfy

∫ t+δ

t

ϕk(z(τ, t0, z0), τ)ϕk(z(τ, t0, z0), τ)T dτ ≥ εI (26)

∀t ≥ t0 [30].
Remark 4: Since the regressor ϕk(z, t) in (23) is state

dependent, the u-PE condition in (26), which is uniform in
initial condition, is used instead of the classical PE condition,
where the regressor is only function of time and not the states
e.g. where the objective is identification (section 2.5 of [39]).

Remark 5: In adaptive control, convergence of system and
control parameter error vectors are dependent on the excitation
of the system regressors. This excitation property, typically
known as persistence of excitation (PE), is necessary to
achieve perfect identification and adaptation. The PE condi-
tion, although restrictive in its verification and implementation,
is typically imposed by using a reference input with as many
spectral lines as the number of unknown parameters [40]. The
u-PE condition mentioned in Assumption 4 may be satisfied
by adding a probing exploratory signal to the control input
[4], [8], [11], [13], [41]. This signal can be removed once the
parameter estimate K̂(t) converges to optimal control policy
and subsequently, exact regulation of the system states will be
achieved. Exact regulation of the system states in presence of
persistently exciting signal can also be achieved by following
the method given in [42], in which the PE property is generated
in a finite time interval by an asymptotically decaying “rich”
feedback law.

The expression in (23) can be represented using a perturbed
system as

vec( ˙̃K) = Σnom + Σper, (27)

where Σnom(vec(K̃), t) = −4νkϕkϕT
k vec(K̃), represents the

nominal system, and the perturbation is represented by

Σper = − 4νkϕkϕT
k vec(K∗) +

2νkϕk

γ

(
2( ˙̂x⊗ x)T vec(P̂ )

− vec(W )
)

+
2νkvec(RK̂xxT )

γ2

(
2( ˙̂x⊗ x)T vec(P̂ )

− vec(W )
)
− 4νkvec(RK̂xxT )ϕT

k

γ

(
vec(K̃)

+ vec(K∗)
)
,
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For each d > 0, the dynamics of the nominal system

vec( ˙̃K) = −4νkϕkϕT
k vec(K̃) (28)

can be shown to be uniformly exponentially stable ∀(z0, t0) ∈
Bd × [0,∞) by using Assumption 4, (25) and Lemma 5 of
[31].

Since Σnom(vec(K̃), t) is continuously differentiable and
the Jacobian ∂Σnom

∂vec(K̃)
is bounded for the nominal system

(28), it can be shown, by referring to the converse Lyapunov
Theorem 4.14 in [43] and definitions and results in [31], [44],
that there exists a Lyapunov function Vc(vec(K̃), t), which
satisfies following inequalities.

d1

∥∥∥vec(K̃)
∥∥∥

2

≤ Vc(vec(K̃), t) ≤ d2

∥∥∥vec(K̃)
∥∥∥

2

∂Vc

∂t
+

∂Vc

∂vec(K̃)
Σnom ≤ −d3

∥∥∥vec(K̃)
∥∥∥

2

(29)

∥∥∥∥
∂Vc

∂vec(K̃)

∥∥∥∥ ≤ d4

∥∥∥vec(K̃)
∥∥∥

for some positive constants d1, d2, d3, d4 ∈ R.

B. Lyapunov Stability Analysis

Theorem 1: If Assumption 4 holds, the adaptive optimal
controller (14) along with the parameter update laws (12)
and (13) and the state derivative estimators (17) and (19)
guarantees that the system states and the controller param-
eter estimation errors z(t) are uniformly exponentially stable
∀t ≥ 0, provided z(0) ∈ %, where the set % is defined as 1

% =
{

z(t) ∈ Rn(1+m) | ‖z‖ < ρ−1(β)
}

, (30)

where β = min
(
Q, d3

2

) ∈ R+, Q = λmin(Q) and the known
function ρ(‖z‖) : R → R, defined subsequently, is positive,
globally invertible and non-decreasing.

Proof: A positive-definite, continuously differentiable Lya-
punov function candidate VL : Bd × [0,∞) → R is defined
for each d > 0 as

VL(z, t) , V ∗(x) + Vc(vec(K̃), t), (31)

where V ∗(x) is the optimal value function defined in (5)
which is positive definite and continuously differentiable and
Vc is defined in (29). Taking the time derivative of VL, along
the trajectories of (1) and (27), the following expression is
obtained

V̇L =
∂V ∗

∂x
ẋ +

∂Vc

∂t
+

∂Vc

∂vec(K̃)
Σnom +

∂Vc

∂vec(K̃)
Σper

Using (6), (29) and the Rayleigh-Ritz theorem, V̇L can be
upper bounded as

V̇L ≤ −Q ‖x‖2 − u∗T Ru∗ − 2xT K∗T R(u∗ − u)

− d3

∥∥∥vec(K̃)
∥∥∥

2

+ d4

∥∥∥vec(K̃)
∥∥∥Σper, (32)

where Q = λmin(Q).

1The initial condition region % can be increased by appropriately choosing
user defined matrices Q, R, and by tuning design parameters ν, νk and ηk .

Substituting the bounds on the term d4

∥∥∥vec(K̃)
∥∥∥Σper from

the Appendix and expressing d3 = d3
2 + d3

2 , (32) is written as

V̇L ≤ −Q ‖x‖2 − d3

2

∥∥∥vec(K̃)
∥∥∥

2

+
[
l ‖x‖2

∥∥∥vec(K̃)
∥∥∥

− d3

2

∥∥∥vec(K̃)
∥∥∥

2
]

+ νkρ1(‖z‖) ‖z‖2 , (33)

where bounds are applied on the third term of the RHS of (32)
as

∥∥∥−2xT K∗T RK̃x
∥∥∥ ≤ l ‖x‖2

∥∥∥vec(K̃
∥∥∥ using (3) and (14)

with l ∈ R as the positive constant and ρ1 is defined in (42).
By completing the square on the square bracketed terms, (33)
can be written as

V̇L ≤ −Q ‖x‖2 − d3

2

∥∥∥vec(K̃)
∥∥∥

2

+ ρ2(‖z‖) ‖z‖2

+
ρ1(‖z‖) ‖z‖2

ν̄
, (34)

where the known function ρ2(‖z‖) : R → R, defined as
ρ2(‖z‖) , 2l2‖x‖2

d3
, is positive, globally invertible and non-

decreasing and ν̄ , 1
νk
∈ R. By using (24), inequality in (34)

can be further expressed as

V̇L ≤ − (β − ρ(‖z‖)) ‖z‖2 , (35)

where β = min
(
Q, d3

2

) ∈ R+ and ρ(‖z‖) , ρ1(‖z‖)
ν̄ +

ρ2(‖z‖).
Using (5), (24) and (29), the Lyapunov function candidate

VL can be bounded as

σ1 ‖z‖2 ≤ VL(z, t) ≤ σ2 ‖z‖2 , (36)

where σ1 and σ2 are positive constants.
Using (36), (35) can be expressed as

V̇L ≤ − (β − ρ(‖z‖)) VL

σ2
(37)

The expression in (37) can be further upper bounded by

V̇L ≤ − β̄VL

σ2
, (38)

where β̄ ∈ R+ is given as

β̄ ≤ (β − ρ(‖z‖)) , ∀z(t) ∈ %,

where the set % is defined as

% =
{

z(t) ∈ Rn(2+2m+n) | ‖z‖ < ρ−1(β)
}

If z(0) ∈ %, then by looking at the solution of (38),

VL ≤ VL(0)e−
β̄

σ2
t, ∀t > 0,

it can be said that system states and the parameter estimation
errors uniformly exponentially converge to the origin, hence
Theorem 1 is proved. ¥

Remark 6: The positive constants d1, d2, d4 in (29) do
not appear in the design of the control law (14) or the
parameter update law (13) and are only utilized for the stability
analysis purpose. As a result, knowing the exact values of these
constants is not required in general. However, the quantity d3,
which appears in Theorem 1, can be determined by following
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the procedure given in [43] (for details see proof of Theorem
4.14 in [43]).

Remark 7: Traditionally, the parameter update laws in
adaptive control have user defined design parameters termed
as adaptation gains (in this paper ν and νk defined in equations
(12) and (13), respectively). Typically, these gains are respon-
sible for the convergence rate of the estimation of the unknown
parameters. Hence, a careful selection of gains govern the
performance of the designed estimators. However, a large
value of adaptation gain may result in an unstable adaptive
system, which can be overcome by introducing ‘normalization’
in the update laws [45]. The normalized estimator in the update
law (13) involves constant tunable gain ηk, which can be
chosen in such a way that maintains the system stability in
presence of high adaptation gain νk

Remark 8: The estimates of the system matrices A and B,
given by (19), are not guaranteed to converge to the optimal
parameters, since Lemma 1 only proves that the parameter
estimation error θ̃(t) is bounded. Therefore, solving ARE in
(4) using the estimates of A and B may not yield the optimal
parameter P ∗ and K∗. Moreover, solving P ∗ directly from the
ARE, which is nonlinear in P ∗, can be challenging, especially
for large scale systems. However, the proposed method utilizes
the estimates of A and B in the estimator design of the
controller parameters P ∗ and K∗. The adaptive update laws
for P̂ and K̂, in (12) and (13), include the identifier ˙̂x(t),
which is designed in (17), and uses θ̂(t) (estimates of A
and B). The proposed design is architecturally analogous
to [11], [13], [29], where a system identifier is utilized in
controller parameter estimation. Also, note that although the
system parameter estimates Â and B̂ are only guaranteed
to be bounded, the controller parameter estimates P̂ and K̂
are proved to be exponentially convergent to the optimal
parameters, as proved in Theorem 1.

C. Comparison with Existing Literature

One of the main contributions of the result is that the
initial stabilizing policy assumption is not required, unlike
the iterative algorithms in [5], [7], [9], [10], where an initial
stabilizing policy is assumed to ensure that the subsequent
policies remain stabilizing. On the other hand, an adaptive
control framework is considered in the proposed approach
where the control policies are continuously updated until
convergence to the optimal policy. The design of the controller,
the parameter update laws and the state derivative estimator
ensure exponential stability of the closed-loop system which
is proved using a rigorous Lyapunov-based stability analysis,
irrespective of the initial control policy (stabilizing or desta-
bilizing) chosen.

Moreover, other significant contributions of this paper with
respect to some of the existing literatures are highlighted as
follows.

The algorithms proposed in [5], [7], [9], [10] require com-
putation of delayed-window integrals to construct the regres-
sor, and/or “intelligent” data storage mechanism to satisfy
an underlying full-rank condition. Computation of delayed-
window integrals require past data storage for the time interval

[t − T, t], ∀t > 0, where t and T are the current time
instant and the window length, respectively, which demands
significant consumption of memory stacks, especially for large
scale systems. Unlike [5], [7], [9], [10], the proposed work
strategically obviates the requirement of memory intensive
delayed-window integrals and “intelligent” data storage, a def-
inite advantage in the case of large scale systems implemented
on embedded hardware.

Although the result in [14] designs an actor-critic archi-
tecture based adaptive optimal controller for uncertain LTI
systems, it uses memory-intensive delayed-window integral
based Bellman error (see the error expression for ‘e’ defined
below equation (17) in [14]) to tune the critic weight estimates
Ŵc. Unlike [14], the proposed algorithm uses an online state
derivative estimator to obviate the need of past data storage for
control parameter estimation by strategically formulating Bell-
man error ‘E’ (equation (11)) to be independent of delayed-
window integrals. Further, an exponential stability result is
obtained using the proposed algorithm as compared to the
asymptotic result achieved in [14].

Recent results in [28], [29] relax the PE condition by
concurrently applying past stored data along with the current
parameter estimates, however, unlike [28], [29], the proposed
result is established for completely uncertain systems without
requiring past data storage. Moreover, a stronger exponential
regulation result is obtained using the proposed controller,
while obviating the need of past data storage, as compared
to [28], [29].

The proposed result also differs from the ALQ algorithm [3]
in that it avoids the computational burden of solving the ARE
(with the estimates of A and B) at every iteration, thus also
avoiding the restrictive condition on stabilizability of estimates
of A and B, at every iteration.

V. SIMULATION

To verify the effectiveness of the proposed result, the
problem of controlling the angular position of the shaft in a
DC motor is considered [12]. The plant is modeled as a third
order continuous-time LTI system and its system matrices are
given as

A =




0 1 0
0 0 4.438
0 −12 −24


 , B =




0
0
20


 .

The objective is to find the optimal control policy for the
infinite horizon value function (2), where the state and input
penalties are taken as Q = I3 and R = 1, respectively. Solving
ARE (4) for the given system dynamics, the optimal control
gain K∗ is obtained as K∗ = [1.0 0.8549 0.4791]. The
gains for parameter update laws (12) and (13) are chosen
as ν = 35, νk = 55 and ηk = 5. The gain matrix of
the state derivative estimator is selected as L = I3. An
exploration signal, comprising of a sum of sinusoids with
irrational frequencies, is added to the control input in (14)
which subsequently leads to the convergence of control gain
to its optimal values (depicted by I) as shown in Fig. 1.

The proposed method is compared with the recently
published work in [14]. The Q-learning algorithm proposed in
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[14] solves adaptive optimal control problem for completely
uncertain linear time invariant (LTI) systems. The norms of the
control gain estimation error ||K̃(t)|| (used in the proposed
work) and the actor weight estimation error ||W̃a(t)|| (as
discussed in [14] and analogous to the ||K̃(t)||) are depicted
in Fig. 4.

Fig. 1. The evolution of parameter estimate K̂(t) for the proposed method.

Fig. 2. System state trajectories for the proposed method.

Fig. 3. System state trajectories for [14].

The initial conditions are chosen as ŴT
a (0) = K̂(0) =

[0 0 0] and x(0) = [−0.2 0.2 − 0.2]T , and the gains for the

update laws of the approach in [14] are chosen as αa = 6 and
αc = 50. To ensure sufficient excitation, an exploration noise
is added to the control input up to t = 4s in both cases.

From the Fig. 5, it can be observed that for similar control
inputs, the convergence rates for both the methods (as shown
in Fig. 4) are comparable. However, as opposed to the memory
intensive delayed-window integration for the calculation of
the regressor in [14], the proposed result does not use past
storage data and hence is more memory efficient. Further,
an exponential stability result is obtained using the proposed
controller as compared to the asymptotic result obtained in
[14]. As seen from Figs. 2 and 3, the state trajectories for both
the methods initially have bounded perturbation around origin
due to the presence of the exploration signal. However, once
this signal is removed after t = 4s, the trajectories converge
to the origin.

Fig. 4. Comparison of the parameter estimation error norms between [14]
and the proposed method.

Fig. 5. Comparison of the control inputs between [14] nd the proposed
method.

VI. CONCLUSION

An adaptive LQR is developed for continuous-time LTI
systems with uncertain dynamics. Unlike previous results
on adaptive optimal control which use RL/ADP methods,
the proposed adaptive controller is memory/computationally
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efficient and does not require an initial stabilizing policy. The
result hinges on a u-PE condition on the regressor vector,
which is shown to be critical for proving convergence to the
optimal controller. Future work will be focused on relaxing the
restrictive u-PE condition without compromising the merits of
the proposed result. The Lyapunov analysis is used to prove
uniform exponential stability of the tracking error and param-
eter estimation error dynamics. Simulation results validate the
efficacy of the proposed algorithm.

APPENDIX
EVALUATION OF BOUND FOR d4

∥∥∥vec(K̃)
∥∥∥Σper

This section presents bounds on different terms encountered
at different stages of the proof for Theorem 1. These bounds,
comprising of norms of the elements of the vector z(t) defined
in (24), are developed by using (13), (15), (18), (19), Lemma 1
and considering standard vec operator and Kronecker product
properties.
Substituting for Σper in d4

∥∥∥vec(K̃)
∥∥∥Σper from (27), the

simplified expression is given as

d4

∥∥∥vec(K̃)
∥∥∥Σper = d4

∥∥∥vec(K̃)
∥∥∥

[
−4νkϕkϕT

k vec(K∗)

+
2νkϕk

γ

{
2( ˙̂x⊗ x)T vec(P̂ )− vec(W )

}

+
2νkvec(RK̂xxT )

γ2

{
2( ˙̂x⊗ x)T vec(P̂ )

− vec(W )
}
− 4νkvec(RK̂xxT )ϕT

k

γ

×
{

vec(K̃) + vec(K∗)
}]

. (39)

The following inequality results from the use of projection
operator in (12) (for details refer to [35]).

∥∥∥P̂ (t)
∥∥∥ ≤ 2α1, ∀t ≥ 0 (40)

The expression in (39) is upper bounded, by using Assump-
tions 1 and 2, Lemma 1, (40) and the following supporting
bounds

‖Y ‖ ≤ ‖x‖
(
1 + h1

∥∥∥vec(K̃)
∥∥∥
)

(41a)

‖ϕk‖ ≤ ‖ωk‖ =
∥∥∥vec(RK̂xxT )

∥∥∥ (41b)

∥∥∥vec(RK̂xxT )
∥∥∥ ≤ ‖x‖2

(
h2 + h3

∥∥∥vec(K̃)
∥∥∥
)

(41c)

∥∥∥2( ˙̂x⊗ x)T
∥∥∥ ≤ h4 ‖x‖2

∥∥∥vec(K̃)
∥∥∥ + h5 ‖x‖2

+ h6 ‖x‖+ h7 ‖x‖2

+ h8 ‖x‖2
∥∥∥vec(K̃)

∥∥∥ , (41d)

‖vec(W )‖ ≤ ‖x‖2
(

h9 + h10

∥∥∥vec(K̃)
∥∥∥

2

+h11

∥∥∥vec(K̃)
∥∥∥
)

(41e)

where hi ∈ R for i = 1, 2...., 11 are positive constants and in
(41b), equality expression ωk = x ⊗ Ru = vec(RK̂xxT ) is
used , as

d4

∥∥∥vec(K̃)
∥∥∥Σper ≤ νkρ1(‖z‖) ‖z‖2 , (42)

where the known function ρ1(‖z‖) : R → R is a positive,
globally invertible and non decreasing and z ∈ Rn(n+m) is
defined in (24).
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