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ABSTRACT
In this paper, we address the event-triggered and self-triggered H∞ output tracking problem of
discrete LPV systems with network-induced delay. Considering the time delay and external distur-
bance, we formulate the closed-loop event-triggered output tracking problem into a time-delayed
discrete polytopic linear parameter-varying systemwith relative event-triggeringmechanism. Then,
by constructing the parameter-dependent Lyapunov–Krasovskii functional, we derive a sufficient
condition such that the closed-loop system is global asymptotic stable and satisfies the H∞ output
tracking performance. Further, we develop an approach to design the event-triggering mechanism
and H∞ output tracking controller. The parameters of event-triggering mechanism and the gains of
output trackingcontroller areobtainedby solving linearmatrix inequalities.Moreover,weextend the
results of the event-triggered control to the self-triggered H∞ output tracking control. This not only
mitigates the usage of network bandwidth but also avoids the use of additional hardware. Finally,
the numerical simulation is included to illustrate the usefulness and effectiveness of the proposed
approach.
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1. Introduction

Networked control systems (NCSs) refer to a class
of systems that connect sensors, controllers and
actuators through a shared communication channel
to transmit data and exchange information, so as
to execute real-time feedback control on controlled
objects (Ge et al., 2017). NCSs have become one of
the future development trends in the control field
due to their potential advantages such as flexible
structure, distributed control, resource sharing and
intelligent nodes (Antsaklis & Baillieul, 2007; Jiang
et al., 2011; F. Li et al., 2015; S. B. Li et al., 2015;
Park & Park, 2011; Ulusoy et al., 2011). However, there
are some intractable problems with NCSs. One stub-
born issue, for instance, is the network-induced delay.
Depending on the networked environment,multi-user
shares the communication channel so as to make the
information flux changes become irregular. Common
data networks not only transmit the control informa-
tion in the closed-loop control systems, but also the
other data, which are irrespective with the control
tasks. Resources competition and network congestion
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inevitably produce the network-induced delays. From
the control point of view, network-induced delays may
deteriorate the control system performance, and even
make the systems become unstable. From the schedul-
ing point of view, network-induced delays make the
information unable to arrive the destinations on time,
lose the deadline, and even produce the domino effect.
The network-induced delay are sums of several small
delays, for example the sensor-controller delay, the
controller-actuator delay and the computation delay.
Furthermore, the computation delay is usually time-
varying, but its size and changes are small compared
with the sensor-controller delay and the controller-
actuator delay. During the design of NCSs, we may
select appropriate hardware and high efficiency soft-
ware coding and make the influence of the com-
putation delay decrease the least extent. So, exten-
sive researches concerning the network-induced delay
have progressed in the past years. As to uncertain
time-delay, Q. Zhang and Guo (2010) have modelled
the NCS to an uncertain discrete-time linear system
with delay, and designed the H∞ dynamic output
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feedback controller. As to the delay and the packet loss
exist simultaneously, a new continuous-time switch
linear system model (W. A. Zhang & Li, 2008) and
the discrete-time switch linear system model (J. Wang
& Yang, 2011) were constructed to study the dynamic
performance of the network system. However, the
delay was assumed to be less than one sampling period
in the aforementioned researches. Since the delays are
random in most cases, the delay constraint increases
the conservatism of the system. To reduce conser-
vatism, on the basis of the discrete-time switched sys-
tem model, Bai et al. (2012) relaxed the delay con-
straints and obtained the stabilisation criterion by
using the average dwell time technique. Jia (2013)
adopted another approach to deal with time-delay, i.e.
modelling random delay to the homogeneous Markov
chains, and proposed DR Model based NCS to analy-
sis stability of the system. Furthermore, to tackle the
case that the delay varies within one sampling period,
Peng et al. (2008) have modelled NCSs using delayed
differential equation.

With the development ofNCSs, network-based out-
put tracking control has gradually attracted a signif-
icant interest recently (Y. B. Gao et al., 2015; Hua
et al., 2007; C. Li et al., 2017; Z. Li & Ma, 2017;
D. Zhang et al., 2018). Different from traditional
output tracking control, network-based output track-
ing control shares information through the network,
so that the control system tracks the output of the
given reference model as much as possible. There-
fore, tracking performance depends not only on the
designed controller, but also on network communi-
cation resources, which brings great challenges to the
network tracking control. In order to reduce the influ-
ence of external disturbances and parameters-varying,
the H∞ output tracking method was proposed
(H. J. Gao & Chen, 2008). Moreover, in the networked
control systems, processing time and network band-
width are scarce resources, while the traditional net-
worked control system sampling relies on the time-
triggering mechanism (called periodic trigger). In the
time-triggering mechanism, the sampling period is
selected based on the worst case, and control task
is executed at the same frequency. The communica-
tion resources will be used even if it is not necessary
from the stability/performance perspectives (Hajshir-
mohamadi et al., 2016). This is a waste. Therefore, a
reduction of the data transmission rate is meaningful
in wireless sensor systems so as to avoid the network

traffic congestion and decrease the energy consump-
tion of the sensor units (H. Liu & Yu, 2017). To tackle
this issue, the event-triggering mechanism (ETM) is
introduced into the H∞ output tracking control as
an alternative time-triggered control. ETM not only
saves the system’s effective bandwidth and computing
resources, but also ensures the internal execution time
strictly greater than zero (Donkers & Heemels, 2012).
For example, in D. W. Zhang et al. (2015), a state-
dependent ETM was introduced to reduce the trans-
mission of data packets for the network-based out-
put tracking control through a T-S fuzzy model, and
the controller was jointly designed together with the
event-triggering mechanism. In R. J. Liu et al. (2019),
another event-triggering mechanism based on the
form of delta sampling was proposed in synthesise a
full-state feedback tracking controller. Furthermore,
an observer-based event-triggered control mechanism
was proposed for leader-follower systems with time
delay to make all followers track leaders asymptot-
ically in W. Liu et al. (2016). In addition, a novel
hybrid-triggered reliable dissipative controller design
is developed for the SNCCSs with randomly occur-
ring cyber-attacks, actuator saturation and actuator
faults in Sathishkumar and Liu (2020). Although event
triggering can reduce the amount of data transmis-
sions effectively, it requires some special hardwares or
even a large amount of special hardware equipment
in some extreme conditions to detect trigger condi-
tions in real time, whichwill lead tomore resources are
used. To avoid this disadvantage of event-triggering
control, a software realisation of the event-triggering
technique called self-triggering scheme has come into
use recently. Under the self-triggering mechanism, the
next task release time is predicted by the processing
computer based on the previous dynamic information
of the system. In C. Li et al. (2017) and Z. LiMa (2017),
NCS with the network-induced short delay and packet
loss is modelled as a switching system. Then, based
on the switching system model, the switching rules
and the conditions are obtained to complete the event-
triggering mechanism and discrete-time switching
controller jointly, in which self-triggering conditions
are provided to guarantee the exponentially stability of
the system. In Shao et al. (2013), for the event-triggered
tracking control problem and self-triggered tracking
control problem of linear systems, event-triggering
conditions based on state errors are proposed to guar-
antee that the control system asymptotically tracks
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the output of the given reference system. Many sig-
nificant results concerning event-triggered and self-
triggered control design are reported in the literature
(Almeida et al., 2014; Garcia & Antsaklis, 2013; Peng
et al., 2016; Tallapragada & Chopra, 2014; X. Wang
et al., 2019; Z. Wang & Chen, 2015), however, most of
them are developed for linear time-invariant systems.
In fact, the ETC in the frame of discrete-time system
has its inherent benefits, for instance, the non-zero
minimum inter-event time could always be guaran-
teed. As a consequence, a discrete-time plant model
is important. On the other hand, linear parameter-
varying (LPV) systems represent a very special class
of linear systems whose dynamics depends on a pri-
ori unknown, but online measurable time-varying
parameters. Due to their effectiveness on modelling
and control of nonlinear systems, LPV systems have
been extensively studied in the literature. For exam-
ple, in F. Li et al. (2015) and S. B. Li et al. (2015),
for the LPV system, a parameter-dependent sufficient
condition is proposed such that the networked con-
trol system with mixed event-triggering mechanism
is global uniform ultimate bounded. Based on the lit-
erature (F. Li et al., 2015; S. B. Li et al., 2015), the
closed-loop event-triggered control system was mod-
elled as a time-delayed LPV system with mixed event-
triggering mechanism and parameter uncertainty, and
then, scholars continue to study the optimisation prob-
lem between robustness and resource utilisation of
networked control systems (Xie et al., 2018). Nev-
ertheless, to the best of our knowledge, the event-
triggering mechanism has not yet gained adequate
attention in the H∞ output tracking control prob-
lem for discrete-time linear parameter-varying sys-
tems with network-induced delays despite its clear
practical insight, and there are not related research
on self-triggered H∞ output tracking control based
on network-induced delays. In this paper, we use a
time-delayed discrete polytopic LPVmodel to describe
the networked control system, and address the event-
triggered and self-triggered H∞ output tracking con-
trol problem under the influence of network-induced
delay and external disturbance. The contribution is
that a design algorithm of output tracking controller
based on event-triggered and self-triggered scheme
is developed for discrete polytopic LPV system in a
network environment, which ensures that the closed-
loop system is global asymptotic stable and satisfies
the H∞ output tracking performance. Finally, several

Figure 1. Considered networked tracking control system under
ETM.

numerical examples show that the proposed event-
triggered and self-triggered H∞ output tracking con-
trol strategy is effective.

Notation: Let R
n stands for n-dimensional

Euclidean space, and the European norm of x ∈ R
n

is denoted by ‖x‖ =
√
xTx; N is the set of non-

negative integer numbers. The superscript ‘T’ stands
for matrix transposition; P > 0(� 0) means that P is
real symmetric and positive definite (semidefinite);
diag{·} is used to denoted a block-diagonal matrix and
an asterisk (∗) to represent a term induced by sym-
metric matrix in symmetric matrices; sym{A} is used
to denote the expression A + AT ; the maximum and
minimum eigenvalue of a symmetric real matrix A
are denoted by λmax(A) and λmin(A), respectively. A
function α : R+ → R+ belongs to class K if it is con-
tinuous, strictly increasing and α(0) = 0. The linear
space of square-integrable vector function over [0,∞)

is denoted by L2[0,∞).

2. Systemmodelling

2.1. Problem statement

The configuration of considered networked tracking
control system is shown in Figure 1 with signal trans-
mission delay and event-triggering mechanism.

The plant considered here is a discrete polytopic
LPV system whose dynamics is given as:

x(k + 1) = A(θk)x(k) + B(θk)u(k) + Ew(k),

y(k) = C(θk)x(k) + Dw(k),
(1)
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where x(k) ∈ R
n, u(k) ∈ R

r and y(k) ∈ R
p are the

state vector, the control input and the output vec-
tor, respectively. w(k) ∈ R

q is the disturbance input
that satisfies w(k) ∈ L2[0,∞), time-varying parame-
ter θk ∈ R

k, k ∈ N lies in some set � ⊂ R
k. Assume

that � is measurable set in real-time and the system
matrix is a function of the time-varying parameter θk.
The above LPV system (1) can be cast into the follow-
ing polytopic LPV model as in Baranyi and Varkonyi-
Koczy (2005) and Sathishkumar et al. (2017):[

A(θk) B(θk) E
C(θk) 0 D

]
∈ 	

:=
{ N∑

i=1
αi(θk)

[
Ai Bi E
Ci 0 D

]
,αi(θk)

> 0,
N∑
i=1

αi(θk) = 1

}

For system (1), 	 is a given convex bounded polyhe-
dral domain described by N vertices. (Ai,Bi,E,Ci,D)

is the representation of the system (1) at the ith (i =
1, 2, . . . ,N) vertex. Assuming that the output y(k) of
system (1) tracks the output signal yr(k) of the given
reference system (2) through the network.

xr(k + 1) = G(θk)xr(k) + r(k),

yr(k) = H(θk)xr(k),
(2)

where xr(k) ∈ R
m is the reference state, r(k) ∈ R

m is
the energy bounded reference input, yr(k) ∈ R

p is the
output signal of reference system, G(θk) andH(θk) are
appropriate dimensional parameter-dependent matri-
ces with G(θk) Hurwitz. It is assumed that both x(k)
and xr(k) are online measurable.

Defining augmented matrix vector ξ(k) =
[

x(k)
xr(k)

]
track error ē(k) = y(k) − yr(k). Considering sys-
tem (1) and system (2), we get the following aug-
mented discrete LPV system (3):

ξ(k + 1) = Ā(θk)ξ(k) + B̄(θk)u(k) + Ēw̄(k),

ē(k) = C̄(θk)ξ(k) + D̄w̄(k),
(3)

where

Ā(θk) =
[
A(θk) 0
0 G(θk)

]
, B̄(θk) =

[
B(θk)

0

]
,

Ē =
[
E 0
0 I

]
, w̄(k) =

[
w(k)
r(k)

]

C̄(θk) = [C(θk) −H(θk)], D̄ = [D 0]

For the sake of actual situations and calculation sim-
plicity, the following assumptions are given for sys-
tem (3):

Assumption 2.1: Sensors are time-triggered with a
constant sampled period h, h ∈ N.

Assumption 2.2: The sampled data is transmitted in
a single packet, and neither packet losses and nor
disorder occurs in transmission.

In order to reduce the frequency of data transmis-
sion, the task release time ki ∈ N (i = 0, 1, 2 . . .) is
determined by event-triggering equipment. When the
event detected, the state sequence ξki is transmitted
to the controller through the network channel, then
the control law is updated, and a new setpoint is sent
to the zero-order holder (ZOH) via network again.
ZOH keeps the current value as the control input at
the actuator until the next transmitting datum come.

For ease of presentation, the sensor sampling
sequence is described by the set S1 = {0, h, 2h, . . . , kh,
. . .}, (k ∈ N), the transmission sequence at the sensors
is described by the set S2 = {0, k1h, k2h, . . . , kih, . . .},
(ki ∈ N).

The ETM is implemented as the violation of the
following inequality condition:

eT(k)M1(θk)e(k)

< δξT(k)M2(θk)ξ(k), k ∈ [ki, ki+1), (4)

where e(k) = ξ(ki) − ξ(k),M1(θk) = ∑N
i=1 αi(θk)M1i,

M2(θk) =∑N
i=1 αi(θk)M2i. M1(θk) and M2(θk) are

quadratic positive weightingmatrices on e(k) and ξ(k)
to be determined, respectively. M1i,M2i are the value
matrices at the ith vertex, and δ > 0 is scalar. Hence
the next event-triggering time instant ki+1 is defined:

ki+1 = inf
{
k � ki + h

∣∣∣eT(k)M1(θk)e(k)

� δξT(k)M2(θk)ξ(k), k ∈ N

}
(5)

Remark 2.1: According to (4), the sampling data is
not sent to the controller unless satisfying the trigger
condition. Thismay cost a bit of computing time of (4),
but can considerably relieve the transmission pressure
and save the bandwidth use of the network. In net-
worked control systems, the bandwidth resources are
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usually limited, and communication consumes more
energy than information processing does. Therefore, it
is significant to improve the bandwidth utilisation by
the event-triggering mechanism.

Remark 2.2: As defined in (5), the lower bound
of the triggering interval is the sampling period h,
(h>0), which basically avoids Zeno phenomenon
(Dashkovskiy & Feketa, 2017).

Remark 2.3: Up to now, various event-triggering
mechanisms have been proposed in the literature,
for example, hybrid-triggered scheme is executed by
making use of random switch connecting time- and
event-trigger scheme. And it is more suitable when
the system state fluctuates wildly at the sampled
instant; Another triggering mechanisms called mem-
ory event-triggered scheme is proposed when historic
released signals are needed. And it is more suitable
when the difference between two adjacent samplings
is very small near the vertex of the response curve.
However, the proposed event-triggering mechanisms
eT(k)M1(θk)e(k) < δξT(k)M2(θk)ξ(k), k ∈ [ki, ki+1)

is more suitable for discrete polytopic LPV sys-
tem in this paper. It adopts parameter-dependent
quadratic positive weighting matrices M1(θk) and
M2(θk). The conservativeness is reduced and the
resource utilisation is improved compared with the
other two cases including M1(θk)=M2(θk)=M(θk)

andM1(θk) = M1,M2(θk) = M2. Furthermore, based
on general event-triggered scheme, an additional
internal dynamic variable is introduced to formu-
late the dynamic event-triggered strategy. Due to the
influence of time-varying parameter θk, the event-
triggering mechanism is also dynamic in this paper.
In addition, event triggering requires some spe-
cial hardwares or even a large amount of special
hardware equipment in some extreme conditions to
detect trigger conditions in real time, which will lead
to more resources are used. Further, self-triggering
scheme proposed can avoid this disadvantage of event-
triggering control in this paper.

2.2. Closed-loop systemmodelling

Due to the influence of the network-induced delay,
the state sequence ξki is sent at time ki by the event-
triggering mechanism and arrives at the actuator at
the moment kih + τki , afterwards, the control input

will remain a constant through ZOH until the next
states sequence ξki+1 arrives. Denote τki = τ scki + τ caki ∈
[τm, τM], τm, τM ∈ N, where τ scki is the transport delay
from sensors to the controllers, and τ caki is the transport
delay from controllers to actuators. The state feedback
control law is chosen as follows:

u(k) = K̄(θk)ξ(ki)

= K1(θk)x(ki) + K2(θk)xr(ki)

k ∈ [ki + τki , ki+1 + τki+1), (6)

where K̄(θk) = [K1(θk) K2(θk)],K1(θk) andK2(θk) are
parameter-dependent state feedback gains.

The time intervals Ia partitioned as Ia =⋃ki+1−1
m=ki

Im, with Im = [m + τm,m + 1 + τm+1), ki ∈ N and
τm � 1 + τm+1, which ensures that the sequencem +
τm is strictly increasing.

For ∀k ∈ Im, we denote its overall time delay
η including both the network-induced delays and
packet-losses caused by the ETM. Given that η is
bounded by η and η̄, respectively. Then, according
to (6), the feedback control law is given by u(k) =
K̄(θk)(e(k − ηk) + ξ(k − ηk)).

Applying to system (3), we get the following aug-
mented closed-loop time-delayed LPV system (7):

ξ(k + 1) = Ā(θk)ξ(k) + B̄(θk)K̄(θk)ξ(k − ηk)

+ B̄(θk)K̄(θk)e(k − ηk) + Ēw̄(k),

ē(k) = C̄(θk)ξ(k) + D̄w̄(k)k ∈ Im,

(7)

where K̄(θk) = [K1(θk) K2(θk)].
Our study is the H∞ output tracking control of

the closed-loop system (7) with the event-triggering
mechanism (4). This is, design a state feedback con-
troller (6) such that when the parameter θ varying
within all its range, the augmented closed-loop sys-
tem (7) satisfies:

(1) When the disturbance signal w̄(k) = 0, the closed-
loop system (7) is global asymptotically stable.

(2) Otherwise, given a scalar γ > 0, the output track-
ing error ē(k) can be attenuated below the level γ
inH∞ sense, which implies ‖ē(k)‖2 � γ ‖w̄(k)‖2.

We say that the output y(k) of control system
asymptotically tracks output yr(k) of the given ref-
erence system if closed-loop system in (7) is global
asymptotically stable (Fridman et al., 2008). Hence, the
problem of asymptotically tracking control is turned
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into the problem of the global asymptotically stability
of the augmented system.

3. Event-triggered H∞ output tracking control

3.1. Stability analysis

Lemma 3.1 (Moon et al., 2001): Assume that vectors
a(·), b(·) and L(·), for any matrices V, Y, and S the
following holds:

−2aTLb ≤
[

a
b

]T [ V Y − L
YT − LT S

] [
a
b

]

where
[ V Y
YT S

] ≥ 0.

Lemma 3.2 (Moon et al., 2001): A special choice of Y
and Z such that Y = L = I andV = S−1 in Lemma 3.1,
the following holds:

2aTb ≤ aTVa + bTV−1b

Theorem 3.3: Consider closed-loop system (7), given
positive scalars η̄ � η, γ , δ, if there exist a posi-
tive scalar δ1, parameter-dependent symmetric P(θk),
positive definite matrices function M1(θk), M2(θk)

and symmetric positive definite matrices Q,N,Ui,
(i = 1, 2, 3), symmetric matrices Rii (i = 1, 2, 3) and
matrices R12, R13, R23, Si (i = 1, 2, 3), such that⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11 ε12 ε13 U1Ē C̄T U1B̄(θk)K̄(θk) F1
∗ ε22 ε23 U2Ē 0 U2B̄(θk)K̄(θk) F2
∗ ∗ ε33 U3Ē 0 U3B̄(θk)K̄(θk) F3
∗ ∗ ∗ −γ I D̄T 0 F4
∗ ∗ ∗ ∗ −γ I 0 0
∗ ∗ ∗ ∗ ∗ −M1(θk) 0
∗ ∗ ∗ ∗ ∗ ∗ −δ1I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (8)⎡
⎢⎢⎣

R11 R12 R13 S1
∗ R22 R23 S2
∗ ∗ R33 S3
∗ ∗ ∗ N

⎤
⎥⎥⎦ ≥ 0 (9)

where

ε11 = P(θk+1) − P(θk) + (1 + η̄ − η)Q

+ sym{U1(Ā(θk) − I)} + sym{S1} + η̄R11

ε12 = U1B̄(θk)K̄(θk) + (Ā(θk) − I)TU2

− S1 + ST2 + η̄R12

ε13 = P(θk+1) − U1 + (Ā(θk) − I)TU3 + ST3 + η̄R13
ε22 = δM2(θk) − Q + sym{U2B̄(θk)K̄(θk)}

+ sym{−S2} + η̄R22

ε23 = −U2 + K̄T(θk)B̄T(θk)U3 − ST3 + η̄R23
ε33 = η̄N + P(θk+1) + sym{−U3} + η̄R33

Fi =
⎡
⎣0 · · · 0 I︸︷︷︸

i−th column

0 · · · 0

⎤
⎦ ,

i = 1, 2, 3, 4

holds with parameter θk varying within its range, then
the closed-loop system (7) is global asymptotically stable
with γ -disturbance attenuation property.

Proof: The proof is given in Appendix. �

Remark 3.1: The choice of an appropriate Lya-
punov–Krasovskii functional is the key-point for
deriving of stability criteria. It is known that the
general form of this functional leads to a compli-
cated system of partial differential equations. That is
why many authors considered special forms of Lya-
punov–Krasovskii functional and thus derived simpler
(but more conservative) sufficient conditions. There
are nonquadratic Lyapunov functions (J. Li & Yang,
2019; J. Li & Zhang, 2019) and quadratic Lyapunov
functions. Furthermore, quadratic Lyapunov func-
tions are divide into delay-independent and delay-
dependent conditions. In this paper, the parameter-
dependent Lyapunov function is selected. But only V1
is parameter-dependent,V2 andV3 are not parameter-
dependent. The purpose is to simplify the calculation,
but at the same time, it makes the solution conditions
more stringent and increase conservatism.

3.2. Design of state feedback controller and
event-triggeringmechanism

Based on Theorem 3.3, we give the following suffi-
cient conditions for design of controller gain matrix
and event-triggering mechanism.

Theorem 3.4: Consider the closed-loop system (7),
given positive scalars η̄ � η, γ , δ, c1, c2, if there exist a
positive scalar δ1, parameter-dependent symmetric pos-
itive definite matrices function P̂(θk), M̂1(θk), M̂2(θk),
parameter-dependent matrix Y(θk) and symmetric pos-
itive definite matrices Q̂, N̂,W, symmetric matrices
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R̂ii (i= 1, 2, 3) andmatrices R̂12, R̂13, R̂23, Ŝi (i= 1, 2, 3)
satisfying (10) and (11), the closed-loop system (7) is
global asymptotically stable with γ -disturbance atten-
uation property.

�(θk)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε̂11 ε̂12 ε̂13 Ē WC̄T

∗ ε̂22 ε̂23 c1Ē 0
∗ ∗ ε̂33 c2Ē 0
∗ ∗ ∗ −γ I D̄T

∗ ∗ ∗ ∗ −γ I
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
B̄ (θk)Y (θk) WF1
c1B̄ (θk)Y (θk) WF2
c2B̄ (θk)Y (θk) WF3

0 F4
0 0

−M̂1 (θk) 0
∗ −δ1I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (10)

ϒ
=

⎡
⎢⎢⎢⎣

R̂11 R̂12 R̂13 Ŝ1
∗ R̂22 R̂23 Ŝ2
∗ ∗ R̂33 Ŝ3
∗ ∗ ∗ N̂

⎤
⎥⎥⎥⎦ ≥ 0 (11)

where

ε̂11 = P̂(θk+1) − P̂(θk) + (1 + η̄ − η)Q̂

+ sym{(Ā(θk) − I)W} + sym{Ŝ1} + η̄R̂11

ε̂12 = B̄(θk)Y(θk) + c1W(Ā(θk) − I)T

− Ŝ1 + ŜT2 + η̄R̂12

ε̂13 = P̂(θk+1) − W + c2W(Ā(θk) − I)T + ŜT3 + η̄R̂13

ε̂22 = δM̂2(θk) − Q̂ + sym{c1B̄(θk)Y(θk)}
+ sym{−Ŝ2} + η̄R̂22

ε̂23 = −c1W + c2YT(θk)B̄T(θk) − ŜT3 + η̄R̂23

ε̂33 = η̄N̂ + P̂(θk+1) + sym{−c2W} + η̄R̂33

Fi =
⎡
⎣0 · · · 0 I︸︷︷︸

i−th column

0 · · · 0

⎤
⎦ ,

i = 1, 2, 3, 4

Moreover, the state feedback controller (6) can be
obtained by K̄(θk) = Y(θk)W−1 and ETM (4) can be
obtained by M1(θk) =W−1M̂1(θk)W−1 andM2(θk) =
W−1M̂2(θk)W−1.

Proof: Let WU1 = I,WU2 = c1I,WU3 = c2I, Ŵ =
diag{W W W W} and W̄ = diag{W W W I I W I},
then, pro-multiplying and post-multiplying W̄ and
W̄ to (8) in Theorem 3.3, respectively, as well as
Ŵ and Ŵ to (9). Denoting WQW = Q̂, WNW = N̂,
WRijW = R̂ij (i, j = 1, 2, 3), WSjW = Ŝj (j = 1, 2, 3),
WP(θk)W = P̂(θk), K̄(θk)W = Y(θk), it then yields
�(θk) < 0, ϒ � 0. This completes the proof. �

Theorem 3.4 explains the LMI method to solve
the design of H∞ output tracking controller (6) and
ETM (4), but the LMI condition (10) is of infi-
nite dimensions and non-convex with respect to the
scheduling parameter θ ; so, it causes difficulty for
implementing the controller. In order to solve this
problem and reduce conservatism simultaneously, we
introduce a convex optimisation approach. At the ver-
tex of the given bounded time-delayed polytopic LPV
system, a finite dimensional parameterised LMI is pre-
sented, and then by means of convex relaxation, the
desired LMI that satisfies the solution conditions is
obtained.

Theorem 3.5: Consider the closed-loop system (7),
given positive scalars η̄ � η > 0, γ > 0, δ > 0, c1 > 0,
c2 > 0, if there exist a positive scalar δ1, symmetric posi-
tive definite matrices P̂j,Yj, M̂1j, M̂2j, Q̂, N̂,W symmet-
ric matrices R̂ii (i = 1, 2, 3) and matrices R̂12, R̂13, R̂23,
Ŝi (i = 1, 2, 3) satisfying (12), (13) and (14), then the
closed-loop system (7) is global asymptotically stable
with γ -disturbance attenuation property.

�l
ii < 0, i, l ∈ {1, 2, . . . L} (12)
2

L − 1
�l

ii + �l
ij + �l

ji < 0, i, j, l ∈ {1, 2, . . . L}, i 
= j

(13)

ϒ
=



⎡
⎢⎢⎢⎣

R̂11 R̂12 R̂13 Ŝ1
∗ R̂22 R̂23 Ŝ2
∗ ∗ R̂33 Ŝ3
∗ ∗ ∗ N̂

⎤
⎥⎥⎥⎦ ≥ 0 (14)

where

�l
ij �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε̃11 ε̃12 ε̃13 Ē WC̄T B̄jYi WF1
∗ ε̃22 ε̃23 c1Ē 0 c1B̄jYi WF2
∗ ∗ ε̃33 c2Ē 0 c2B̄jYi WF3
∗ ∗ ∗ −γ I D̄T 0 F4
∗ ∗ ∗ ∗ −γ I 0 0
∗ ∗ ∗ ∗ ∗ −M̂1i 0
∗ ∗ ∗ ∗ ∗ ∗ −δ1I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Table 1. The computational complexity of LPV system of
Theorem 3.5.

Decision variables No. of LMIs The maximum order of LMI

12(n + m)2 + 3L(n + m)2 + 7 L3 + 1 5(n + m + 1)

ε̃11 = P̂l − P̂i +
(
1 + η̄ − η

)
Q̂ + sym

{(
Āj − I

)
W
}

+ sym{Ŝ1} + η̄R̂11

ε̃12 = B̄jYi + c1W
(
Āj − I

)T − Ŝ1 + ŜT2 + η̄R̂12

ε̃13 = P̂l − W + c2W
(
Āj − I

)T + ŜT3 + η̄R̂13

ε̃22 = δM̂2i − Q̂ + sym
{
c1B̄jYi

}
+ sym

{
−Ŝ2

}
+ η̄R̂22

ε̃23 = −c1W + c2YT
i B̄

T
j − ŜT3 + η̄R̂23

ε̃33 = η̄N̂ + P̂l + sym {−c2W} + η̄R̂33

Fi =
⎡
⎣0 · · · 0 I︸︷︷︸

i−thcolumn

0 · · · 0

⎤
⎦ ,

i = 1, 2, 3, 4

Then the state feedback controller (6) can be obtained by
Ki = YiW−1 and ETM (4) can be obtained by M1i =
W−1M̂1iW−1 and M2i = W−1M̂2iW−1.

Proof: The parameter-dependent LMI (12) can be
written as (15)

�(θk) =
N∑
l=1

αl(θk+1)

⎛
⎝ N∑

j=1

N∑
i=1

αi(θk)αj(θk)�
l
ij

⎞
⎠

=
N∑
l=1

αl(θk+1)

⎛
⎝ N∑

i=1
αi

2(θk)�
l
ii

+
N−1∑
i=1

N∑
j=i+1

αi(θk)αj(θk)(�
l
ij + �l

ij)

⎞
⎠ < 0

(15)

In terms of Lemma 3.1 inGuerra et al. (2012),�(θk) <

0 is satisfied if (12) and (13) hold. �

The numerical complexity of stability criteria
depends on number of scalar decision variables, num-
ber of LMIs and maximal order of LMI. The numer-
ical complexity of the Theorem 3.5 is summarised in
Table 1.

Remark 3.2: From Table 1, we know that as the verti-
cal number L of convex polytopes increase, the compu-
tational complexity of Theorem 3.5 increases consid-
erably. The conditions (12) and (13) provide a convex
condition with L3 LMIs in terms of the polytope ver-
tices, which can be solved numerically. It should be
noted that the computation complexity of the pro-
posed theorems is mainly caused by the coupling term
B̄(θk)Y(θk). If the control gain K̄(θk) in Equation (6)
is independent of the time-varying parameter θk, the
conditions (12) and (13) will provide a convex con-
dition with L2 LMIs, which efficiently reduces the
computation complexity, however, it increases the con-
servatism of the proposed results.

4. Self-triggered output tracking control
strategy

Self-triggered control strategy does not require addi-
tional hardware compared to event-triggered control.
We can extend the above ETM to obtain a corre-
sponding self-triggered control scheme.We can derive
the sufficient conditions for the system with network-
induced delay to asymptotically track the output
of given reference system under the self-triggering
mechanism.

Corollary 4.1: Define event-triggering conditions as:

|‖e(k)‖2 ≤ ρ‖ξ(ki)‖2, k ∈ [ki, ki+1) (16)

where, e(k) = ξ(ki) − ξ(k), ρ = μ/2(1 + μ), μ =
δ(λmin(M1i))

−1λmax(M2i), δ > 0, γ > 0, then the
closed-loop system (7) is global asymptotically sta-
ble with γ -disturbance attenuation property if condi-
tion (16) is satisfied.

Proof: Referring to (4), (16) can written as

eT(k)e(k) ≤ −μeT(k)e(k) + μ

2
ξT(ki)ξ(ki)

= −μeT(k)e(k)

+ μ

2
(e(k) + ξ(k))T (e(k) + ξ(k))

≤ −μ

2
eT(k)e(k) + μ

2
ξT(k)ξ(k)

+ μ

2
eT(k)e(k) + μ

2
ξT(k)ξ(k)

= μξT(k)ξ(k)

eT(k)λmin(M1i)e(k) ≤ δξT(k)λmax(M2i)ξ(k) is obtai-
ned through proper transformation, namely ‖e(k)‖2 ≤
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μ‖ξ(k)‖2. Therefore, (16) can guarantee the same
performance as the even-triggering conditions (4) in
Theorem 3.3, where the closed-loop system (7) is
global asymptotically stable with γ -disturbance atten-
uation property. �

Theorem 4.2: Consider the closed-loop system (7),
given positive scalars η̄ � η > 0, γ > 0, δ > 0, c1 > 0,
c2 > 0, if there exist a positive scalar δ1, symmetric posi-
tive definite matrices P̂j,Yj, M̂1j, M̂2j, Q̂, N̂,W, symmet-
ric matrices R̂ii (i = 1, 2, 3), and matrices R̂12, R̂13, R̂23,
Ŝi (i = 1, 2, 3) satisfying (12), (13) and (14), the self-
triggering mechanism is designed as:

ki+1 = ki + max

{
h, log‖Ā(θk)‖

×
(
1 −

√
ρ
(
1 − ∥∥Ā(θk)

∥∥) ‖ξ(ki)‖
ϑ (ξ(ki))

)}
,

k ∈ [ki, ki+1) (17)

then the closed-loop system (7) is global asymptotically
stable with γ -disturbance attenuation property, where,

ϑ(ξ(ki)) = ‖I − Ā(θk) − B̄(θk)K̄(θk)‖‖ξ(ki)‖.

Proof: In time interval [ki, ki+1), we can get:

e(k + 1) = ξ(ki) − ξ(k + 1)

= ξ(ki) − [Ā(θk)ξ(k) + B̄(θk)K̄(θk)ξ(ki)]

= −Ā(θk)ξ(k) + (I − B̄(θk)K̄(θk))ξ(ki)

= (I − Ā(θk) − B̄(θk)K̄(θk))ξ(ki)

+ Ā(θk)e(k)

‖e(k + 1)‖ ≤ ‖Ā(θk)‖‖e(k)‖ + ‖I − Ā(θk)

− B̄(θk)K̄(θk)‖‖ξ(ki)‖
= ‖Ā(θk)‖‖e(k)‖ + ϑ(ξ(ki))

Hence, in time interval [ki, ki+1),

‖e(k)‖ ≤ ‖Ā(θk)‖‖e(k − 1)‖ + ϑ(ξ(ki))

≤ ‖Ā(θk)‖{‖Ā(θk)‖‖e(k − 2)‖ + ϑ(ξ(ki))}
+ ϑ(ξ(ki))

· · ·
≤ ‖Ā(θk)‖k−ki‖e(ki)‖ + (1 − ‖Ā(θk)‖)−1

× (1 − ‖Ā(θk)‖k−ki
)ϑ(ξ(ki))

≤ (1 − ‖Ā(θk)‖)−1(1 − ‖Ā(θk)‖k−ki
)ϑ(ξ(ki))

Supposing (1−‖Ā(θk)‖)−1(1−‖Ā(θk)‖k−ki
)ϑ(ξ(ki))

≤ √
ρ‖ξ(ki)‖, k ∈ [ki, ki+1), we have ‖e(k)‖2 ≤ ρ‖ξ

(ki)‖2. So,

Tk
=

ki+1 − ki

= log‖Ā(θk)‖

(
1 −

√
ρ(1 − ‖Ā(θk)‖)‖ξ(ki)‖

ϑ(ξ(ki))

)
.

Based on the above analysis, self-triggering condi-
tion (17) can guarantee that the event-triggering con-
dition (4) will be satisfied. Therefore, Theorem 4.2 can
be obtained by Theorem 3.5. �

Remark 4.1: From the definition of ϑ(ξ(ki)) =
‖I − Ā(θk) − B̄(θk)K̄(θk)‖‖ξ(ki)‖, we can obtain

Tk = log‖Ā(θk)‖

(
1 −

√
ρ(1 − ‖Ā(θk)‖)‖ξ(ki)‖

ϑ(ξ(ki))

)

= log‖Ā(θk)‖

(
1 −

√
ρ(1 − ‖Ā(θk)‖)

‖I − Ā(θk) − B̄(θk)K̄(θk)‖

)

This implies that Tk is only relevant to the scheduling
parameter θk.

5. Simulation results

Example 5.1: A numerical example is used to illus-
trate the effectiveness of the proposed strategy rel-
evant to the event-triggered and self-triggered H∞
output tracking control. Firstly, we evaluate the event-
triggered H∞ output tracking control strategy by two
relatively simple cases: the non-zero initial conditions
without external disturbances (w(t) = 0) and zero ini-
tial conditions with external disturbances (w(t) 
= 0).
We mainly analyse the stability and disturbance atten-
uation performance. Then, we continue our evalua-
tion in the case of non-zero initial conditions with
external disturbances (w(t) 
= 0). Finally, we examine
the tracking performance of the control system under
the self-triggering mechanism. Consider the following
polytopic discrete LPV system:

x(k + 1) =
⎡
⎣ −2 − θk 1 −1

2 −2 + θk −1.5
−2 2 (1 − θk) −2

⎤
⎦ x(k)
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Figure 2. Network-induced ηk .

+
⎡
⎣ −2 + θk

−1
−θk

⎤
⎦ u(k) +

⎡
⎣ −1

1
−0.5

⎤
⎦w(k)

y(k) = [−0.5 0 −2]x(k) + 0.1w(k)

Suppose the reference model is given by

xr(k + 1) = −xr(k) + r(k),

yr(k) = 0.5xr(k).

It is assumed that the sampling period h = 0.1s,
time-varying parameter θk = |sin(10kπ)|, 0 ≤ θk ≤
1. Network-induced delays are bounded by η̄ = 0.5s
and η = 0.1s. Other parameters are assumed to be
c1 = 0.1, c2 = 0.01, γ = 0.2.Wemay choose α1(θk) =
1 − θk, α2(θk) = θk and event-triggering parameter
δ = 0.1 in (4). The state of the discrete LPV system
is initialised to x0 =

[ 1−1
0.5

]
, and the initial state of

the reference model is xr0 = −1. The time-parameter
network-induced delays are uniformly distributed
within [η, η̄] as shown in Figure 2. In addition, the
update rate of the control signal under the ETM is
denoted as fk = (ns/nk) × 100%, where ns and nk
represent the amount of packets sent and sampled,
respectively.

According to the solution conditions in Theorem
3.5, we give the event-triggering conditions and design
the state feedback controller. Using MATLAB LMI
toolbox, the free weight matrices of the ETM (4) and
the gain matrices of the controller (6) are obtained as

following:

M11 =

⎡
⎢⎢⎣

0.0424 −0.0001 0.1116 0.0278
−0.0001 0.0156 −0.0003 0.0000
0.1116 −0.0003 0.4591 0.1111
0.0278 0.0000 0.1111 0.0416

⎤
⎥⎥⎦

M12 =

⎡
⎢⎢⎣

0.0424 −0.0001 0.1116 0.0280
−0.0001 0.0160 −0.0003 0.0000
0.1116 −0.0003 0.4591 0.1111
0.0280 0.0000 0.1111 0.0416

⎤
⎥⎥⎦

M21 =

⎡
⎢⎢⎣

3.3998 −0.0084 13.2945 3.3190
−0.0084 0.0727 −0.0329 −0.0077
13.2945 −0.0329 53.0546 13.2301
3.3190 −0.0077 13.2301 3.3630

⎤
⎥⎥⎦

M22 =

⎡
⎢⎢⎣

3.3400 −0.0084 13.2950 3.3190
−0.0084 0.0727 −0.0330 −0.0077
13.2950 −0.0330 53.0543 13.2300
3.3190 −0.0077 13.2300 3.3630

⎤
⎥⎥⎦

K1 = [−0.0173 0.0064 − 0.0124 − 0.0013]

K2 = [0.0112 − 0.0030 0.0062 0.0009]

When there is no external disturbance (w(t) = 0), the
state responses of the event-triggered tracking con-
trol system are shown in Figure 3, indicating that
all states of the augmented closed-loop system con-
verge to zero under actions of the proposed ETM.
The system is global asymptotically stable. The out-
puts of the control system and reference system under
ETM are shown in Figure 4. It is clear to see from
Figure 4 that y(k) tracks yr(k) well under the non-
zero initial conditions without external disturbances
(w(t) = 0). Figure 5 shows the evolution of the pro-
posed ETM, where κ = eT(k − τk)M1(θk)e(k − τk)
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Table 2. The update rates of the control signal with different
values of δ under ETM.

δ 0.01 0.05 0.1 0.15 0.2

M1(θk) 
= M2(θk)

(ETM (4) in this paper) 14.1% 6.4% 4.5% 3.3% 3.2%
M1(θk) = M2(θk)

(ETM in B. G. Li & Xu, 2013) 48.3% 24.3% 17.3% 14.5% 12.6%

and
ς = δξT(k − τk)M2(θk)ξ(k − τk). Figure 6 shows inter-
event interval of ETM. The value of each stem repre-
sents the length of the time period between the cur-
rent event and the previous one, which illustrates a
reduction in data transmission.

The update rates of the control signal for different
δ under ETM are listed in Table 2. From Table 2, it is
clear that the ETM proposed in this paper has a lower
percentage of packets transmission than that in B. G.
Li and Xu (2013). Meanwhile, as displayed in Table 2,
with the increasing of δ, the amount of packets trans-
mission becomes smaller. It is reasonable since a larger
δ make it more difficult to be triggered.

Remark 5.1: In order to obtain the update rates of
the control signal, two cases for the quadratic positive
weighting matrices in ETM are given as (i) the con-
straints with M1(θk) 
= M2(θk), (ii) the constraints
with M1(θk) = M2(θk). At the same time, the scalar δ

is given according to the Table 2 each time. Assum-
ing that the amount of packets sampled is nk, we know
that ns of them is successfully transmitted by solving
Theorem 3.5, and then the update rates of the control
signal are got according to fk = (ns/nk) × 100%.

Assume that the initial state of the augmented
system is

ξ0 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ ,

exogenous disturbance is assumed to be

w(k) =
{

1.5 sin(5k) 0 � k � 100
0 otherwise ,

the input of the reference model

r(k) =
{

sin(0.5k) 0 � k � 100
0 otherwise .

The state responses of the augmented system are
shown in Figure 7, indicating that the system is asymp-
totically stable again when the disturbance disappears.
The outputs of the control system and reference sys-
tem under ETM are shown in Figure 8, from which
we can see that the tracking performance is good.
In addition, by calculation,

∑100
k=0 ‖ē(k)‖2 = 12.1924,∑100

k=0 ‖w̄(k)‖2 =∑100
k=0 ‖w(k)‖2 +∑100

k=0 ‖v(k)‖2 =
130.1358, which yields

100∑
k=0

‖ē(k)‖2
/ 100∑

k=0

‖w(k)‖2 = 0.0937 < γ = 0.2

showing the effectiveness of the H∞ tracking con-
troller design. Figure 9 shows inter-event interval
of ETM. That indicates ETM effectively reduces the
amount of data transmission significantly.

Then, in order to further verify the output tracking
performance in the case of non-zero initial condi-
tions with external disturbance (w(t) 
= 0), consider-
ing the w(k) = 1.5 sin(5k) and reference input r(k) =
sin(0.5k), the output y(k) of the control system and
yr(k) of the given reference system under the actions
of ETM are shown in Figure 10. From Figure 10, we
can see that though the initial condition is nonzero, the
tracking performance is good.

The above simulation results focus on the analy-
sis of the H∞ output tracking control performance
under the actions of ETM, next we will verify the
output tracking performance under the self-triggering
mechanism. Apply self-triggering mechanism:

ki+1 = ki + max

{
h, log‖Ā(θk)‖

×
(
1 −

√
ρ(1 − ‖Ā(θk)‖)‖ξ(ki)‖

ϑ(ξ(ki))

)}
,

k ∈ [ki, ki+1),

where δ,M11,M12,M21,M22,K1,K2 are the same as
those in the event-triggering mechanism. Assume the
sampling period h = 0.01 s. Figure 11 shows the inter-
event interval under the self-triggered control strat-
egy. From Figure 11, we can see that the average task
period is 0.0312 s, theminimum task period is 0.0310 s
and the update rate of control signal under the self-
triggering mechanism is about 25%. Figure 12 shows
the output y(k) of the control system and yr(k) of
the given reference systemunder self-triggered control
strategy.
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Figure 3. The state response curves of event-triggered tracking control.

Figure 4. The outputs of the control system and reference system under ETM.

Example 5.2: As shown in Figure 13, we study the
application of proposed track strategy to control an
angular positioning system via a network remotely,
namely, a networked angular positioning system. The
system consists of a rotating antenna at the origin of
the plane, driven by an electric motor. The control
problem is to use the input voltage to the motor to

rotate the antenna so that it always points in the direc-
tion of a moving object in the plane. The motion of
the antenna can be described by the following discrete-
time equations obtained from their continuous-time
counterparts by discretisation, using a sampling time
of 0.1 s and Euler’s first-order approximation for the
derivative (Han & Feng, 2019):

Figure 5. The evolution of the proposed ETM.
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Figure 6. Inter-event interval of ETM.

Figure 7. The state response curve of the augmented system.

[
θ(k + 1)
θ̇(k + 1)

]
=
[
1 0.1
0 1 − 0.1α(k)

] [
θ(k)
θ̇(k)

]

+
[

0
0.0787

]
u(k) +

[
0.05
−0.1

]
w(k)

y(k) = [1 0]
[
θ(k)
θ̇(k)

]
+ 0.01w(k),

where θ(k) is the angular position of the antenna, θ̇ (k)
is the angular velocity of the antenna and u(k) is the
input voltage to the motor. The uncertain parameter
α(k) is proportional to the coefficient of viscous fric-
tion in the rotating parts of the antenna. It is assumed
to be arbitrarily time-varying in the range of 0.1 �
α(k) � 10. We conclude that A(k) ∈ �, where � is

Figure 8. The outputs of the control system and reference system under ETM.
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Figure 9. Inter-event interval of ETM.

Figure 10. The outputs of the control system and reference system under ETM.

Figure 11. The inter-event interval under the self-triggered control strategy.

Figure 12. The outputs of the control system and reference system under self-triggered control strategy.
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Figure 13. Networked angular positioning system.

given as follows

� = Co
{[

1 0.1
0 0.99

]
,
[

1 0.1
0 0

]}
.

The trajectory of moving object to be tracked is
given by

θr(k + 1) = −θr(k) + r(k),

yr(k) = θr(k),

where θr(k) is the angular position of the moving
object.

In the networked angular positioning system, we
assume that network-induced delays are bounded by
η̄ = 3 s and η = 1 s. Other parameters are assumed
to be γ = 90, c1 = 10−3, c2 = 1 and event-triggering
parameter δ = 0.1. The state of the discrete LPV sys-
tem is initialised to θ0 = [ 0.050 ] and the initial state
of the reference model is θr0 = −1. The exogenous
disturbance is assumed to be

w(k) =
{

0.05 sin(0.01k) 0 � k � 100
0 otherwise ,

the input of the reference model

r(k) =
{

0.02 sin(0.5k) 0 � k � 100
0 otherwise .

Using MATLAB LMI toolbox, the free weight
matrices of the ETM (4) and the gain matrices of the

controller (6) are obtained as following:

M11 =
⎡
⎣ 0.7550 −0.0001 −0.1705

−0.0001 0.4351 0.0000
−0.1705 0.0000 0.5048

⎤
⎦ ,

M12 =
⎡
⎣ 0.7550 −0.0001 −0.1705

−0.0001 0.4351 0.0000
−0.1705 0.0000 0.5048

⎤
⎦ ,

M21 =
⎡
⎣ 4.9964 −0.0007 −1.6181

−0.0007 1.9232 0.0002
−1.6181 0.0002 2.6208

⎤
⎦ ,

M22 =
⎡
⎣ 4.9964 −0.0007 −1.6181

−0.0007 1.9232 0.0002
−1.6181 0.0002 2.6208

⎤
⎦ ,

K1 = [0.1348 −0.1816 −0.0106],

K2 = [−0.2033 0.2906 0.0151]

Figure 14 shows inter-event interval of ETM. That
indicates ETM effectively reduces the amount of
data transmission significantly. Figure 15 depicts the
closed-loop responses for networked angular position-
ing system, one can see that when there is no distur-
bance, the system will operate close to the origin. The
output y(k) of the control system and yr(k) of the given
reference system are shown in Figure 16, indicating
that the angular positions θ of the antenna tracks θr of
the moving object well under the proposed ETM and
output-feedback controller.

6. Conclusion

In this paper, we have presented a solution of designing
event-triggered and self-triggered H∞ output track-
ing controller for discrete LPV systems with network-
induced delay. We have constructed the augmented
system model through combining with states of the
control system and reference system. The relative ETM
has been given with the parameter-dependent weigh
matrices. Based on above results, we have derived
the solution conditions such that the control sys-
tem can asymptotically track the output of the refer-
ence system, and proposed the design algorithm to
obtain the control gains and event-triggering param-
eters simultaneously. Moreover, we have extended the
event-triggering condition to self-triggering mecha-
nism, which avoids the additional hardware require-
ments for the event-triggered control. Finally, by a
numerical example, we have demonstrated that the



16 J.-J. HUANG ET AL.

Figure 14. Inter-event interval of ETM.

Figure 15. The closed-loop responses for networked angular positioning system.

Figure 16. The outputs of the control system and the given reference system.

proposedmethod can guarantee tracking performance
well in H∞ sense, and reduce the update rate of
the control signal to a certain degree. The simu-
lation results have convinced us that the proposed
method is effective. How to present a more rea-
sonable event-triggering mechanism based on Lya-
punov–Krasovskii functional, and jointly design of

event-triggering mechanism and controller to achieve
non static error tracking are left for our future
study.
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Appendix. Proof of Theorem 3.3

Proof: Firstly, we investigate stability of the augmented closed-
loop system (7) with w̄(k) = 0. Choose the parameter-
dependent Lyapunov functional candidates as (A1):

V(ξ , θ , k) = V1(ξ , θ , k) + V2(ξ , k) + V3(ξ , k), k ∈ Ia

(A1)

V1(ξ , θ , k) = ξT(k)P(θk)ξ(k)

V2(ξ , k) =
k−1∑

l=k−ηk

ξT(l)Qξ(l)

V3(ξ , k) =
−1∑

θ=−η̄

k−1∑
l=k+θ

zT(l)Nz(l)

+
−η∑

θ=−η̄+1

k−1∑
l=k+θ

ξT(l)Qξ(l)

where P(θk) =∑N
i=1 αi(θk)Pi, z(l) = ξ(l + 1) − ξ(l), Pi,Q,N

are positive definite symmetric matrices with appropriate
dimensions.When w̄(k) = 0 and note that ξ(k − ηk) = ξ(k) −∑k−1

l=k−ηk
z(l), combining (7), it yields (A2):

0 = Â(θk)ξ(k) − z(k) − B̄(θk)K̄(θk)

k−1∑
l=k−ηk

z(l)

+ B̄(θk)K̄(θk)e(k − ηk) (A2)

where Â(θk) = Ā(θk) + B̄(θk)K̄(θk) − I.


V1(ξ , θ , k)

= (ξ(k) + z(k))TP(θk+1)(ξ(k) + z(k))

− ξT(k)P(θk)ξ(k)

+ 2χT(k)U

⎛
⎝Â(θk)ξ(k) − z(k)

− B̄(θk)K̄(θk)

k−1∑
l=k−ηk

z(l)+B̄(θk)K̄(θk)e(k − ηk)

⎞
⎠

where P(θk+1) =∑N
j=1 αj(θk+1)Pj,U = col{U1,U2,U3},χ(k)

� col{ξ(k), ξ(k − ηk), z(k)}. By Lemma 3.2 and ETM (4), we
have

2χT(k)UB̄(θk)K̄(θk)e(k − ηk)

� χT(k)UB̄(θk)K̄(θk)M−1
1 (θk)K̄T(θk)B̄T(θk)UTχ(k)

+ eT(k − ηk)M1(θk)e(k − ηk)

� χT(k)UB̄(θk)K̄(θk)M−1
1 (θk)K̄T(θk)B̄T(θk)UTχ(k)

+ δξT(k − ηk)M2(θk)ξ(k − ηk)


V2(ξ , k) =
k∑

l=k+1−ηk+1

ξT(l)Qξ(l) −
k−1∑

l=k−ηk

ξT(l)Qξ(l)

= ξT(k)Qξ(k) +
k−1∑

l=k+1−ηk+1

ξT(l)Qξ(l)

− ξT(k − ηk)Qξ(k − ηk)

−
k−1∑

l=k−ηk+1

ξT(l)Qξ(l)

Considering ηk < η̄, we have
k−1∑

l=k+1−ηk+1

ξT(l)Qξ(l)

=
k−1∑

l=k+1−η

ξT(l)Qξ(l) +
k−η∑

l=k+1−ηk+1

ξT(l)Qξ(l)

�
k−1∑

l=k+1−ηk

ξT(l)Qξ(l) +
k−η∑

l=k+1−η̄

ξT(l)Qξ(l)

So, 
V2(ξ , k) � ξT(k)Qξ(k) − ξT(k − ηk)Qξ(k − ηk) +∑k−η

l=k+1−η̄
ξT(l)Qξ(l)


V3(ξ , k) =
⎛
⎝ −1∑

θ=−η

k∑
l=k+1+θ

zT(l)Nz(l)

−
−1∑

θ=−η

k−1∑
l=k+θ

zT(l)Nz(l)

⎞
⎠

+
⎛
⎝ −η∑

θ=−η̄+1

k∑
l=k+1+θ

ξT(l)Qξ(l)

−
−η∑

θ=−η̄+1

k−1∑
l=k+θ

ξT(l)Qξ(l)

⎞
⎠

=
⎛
⎝ (−1 − (−η̄) + 1) zT(k)Nz(k)

−
k−1∑

l=k−η̄

zT(l)Nz(l)

⎞
⎠
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+
⎛
⎝(−η − (−η̄ + 1)

)
ξT(k)Qξ(k)

−
k−1∑

l=k+1−η̄

ξT(l)Qξ(l) +
k∑

l=k+1−η

ξT(l)Qξ(l)

⎞
⎠

= η̄zT(k)Nz(k) −
k−1∑

l=k−η̄

zT(l)Nz(l)

+
(
η̄ − η

)
ξT(k)Qξ(k) −

k−η∑
l=k+1−η̄

ξT(l)Qξ(l)


V(ξ , θ , k)

� (ξ(k) + z(k))TP(θk+1)(ξ(k) + z(k))

− ξT(k)P(θk)ξ(k)

+ 2χT(k)U
(
Â(θk)ξ(k) − z(k)

)

+ η̄χT(k)Rχ(k) +
k−1∑

l=k−η̄

zT(l)Nz(l)

+ 2χT(k)
(
S − UB̄(θk)K̄(θk)

)
(ξ(k) − ξ(k − ηk))

+ χT(k)UB̄(θk)K̄(θk)M−1
1 (θk)K̄T(θk)B̄T(θk)UTχ(k)

+ δξT(k − ηk)M2(θk)ξ(k − ηk) + ξT(k)Qξ(k)

− ξT(k − ηk)Qξ(k − ηk)

+
k−η∑

l=k+1−η̄

ξT(l)Qξ(l) + η̄zT(k)Nz(k)

−
k−1∑

l=k−η̄

zT(l)Nz(l) +
(
η̄ − η

)
ξT(k)Qξ(k)

−
k−η∑

l=k+1−η̄

ξT(l)Qξ(l)

� χT(k)�χ(k) (A3)

� =

⎡
⎢⎣P(θk+1) − P(θk) +

(
1 + η̄ + η

)
∗
∗

0 P(θk+1)

δM2(θk) − Q 0
∗ η̄N + P(θk+1)

⎤
⎦

+ sym{UA(θk)} + sym{S�} + η̄R

+ UB̄(θk)K̄(θk)M−1
1 (θk)K̄T(θk)B̄T(θk)UT

where A(θk) = [Ā(θk) − I B̄(θk)K̄(θk) −I], � = [I − I 0].
Next, � < −δ−1

1 I will be proved. For (8), using Schur com-
plement Lemma, we obtain � + δ−1

1 FTF < 0, F = col{F1, F2,
F3, F4}, where F is the matrix with appropriate dimen-
sion. Hence, it further yields that � + δ−1

1 I < 0, where � =[
� UĒ∗ −γ I

]
+ γ −1[Ĉ D̄]T[Ĉ D̄], Ĉ = [C̄ 0 0].

Using Schur complement Lemma again, we have � +
γ −1UĒĒTL + γ −1[Ĉ D̄]T[Ĉ D̄] + δ−1

1 I < 0. When w̄(k) = 0,
it yields � + δ−1

1 I < 0. Taking norm, inequality (A3) then
yields


V(ξ , θ , k) � χT(k)�χ(k)

� −δ−1
1 ‖χ(k)‖2 � −α(‖χ(k)‖) < 0 (A4)

When w̄(k) = 0, (A4) satisfies condition (3) in Lemma 2 in
F. Li et al. (2015); S. B. Li et al. (2015), and by parameter-
dependent Lyapunov functional (A1), (A4) obviously satisfies
condition (1) and (2) in Lemma 2 in F. Li et al. (2015) and
S. B. Li et al. (2015). Hence, closed-loop system (7) is global
asymptotically stable.

When w̄(k) 
= 0 and note that χ̄(k) = col{χ(k) w̄(k)}, then
it yields ‖χ(k)‖ � ‖χ̄(k)‖, so inequality (A5) holds.


V(ξ , θ , k) + γ −1ēT(k)ē(k) − γ w̄T(k)w̄(k)

� χ̄T(k)�χ̄(k) � −δ−1
1 ‖χ̄(k)‖2 < 0 (A5)

Considering zero initial conditions V(ξ , θ , k0) = 0, it yields
m∑

k=k0

(γ −1ēT(k)ē(k) − γ w̄Tw̄(k) + 
V(ξ , θ , k)) � 0

m∑
k=k0

‖ē(k)‖2

� γ 2
m∑

k=k0

‖w̄(k)‖2 − γV(ξ , θ ,m + 1) + γV(ξ , θ , k0)

� γ 2
m∑

k=k0

‖w̄(k)‖2 + γV(ξ , θ , k0)

� γ 2
m∑

k=k0

‖w̄(k)‖2 �
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