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Summary

This paper investigates the resilient control problem for constrained continuous-
time cyber-physical systems subject to bounded disturbances and denial-of-
service (DoS) attacks. A sampled-data robust model predictive control law with
a packet-based transmission scheduling is taken advantage to compensate for
the loss of the control data during the intermittent DoS intervals, and an
event-triggered control strategy is designed to save communication and com-
putation resources. The robust constraint satisfaction and the stability of the
closed-loop system under DoS attacks are proved. In contrast to the existing
studies that guarantee the system under DoS attacks is input-to-state stable,
the predicted input error caused by the system constraints can be dealt with by
the input-to-state practical stability framework. Finally, a simulation example is
performed to verify the feasibility and efficiency of the proposed strategy.
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1 INTRODUCTION

Cyber-physical systems (CPSs) where sampled signals and control inputs are generally transmitted via shared communi-
cation networks connect the cyber layer to the physical plant flexibly. Since the networks are vulnerable to cyber attacks,1
the analysis and control of critical infrastructures have witnessed increasing research interests, such as power-grid,
autonomous vehicles, and water distribution systems.2-4 The research areas on security of CPSs in the literature involve
attack detection and identification,5 optimal attack scheduling,6 remote state estimation,7,8 resilient control under
attacks,9 and so on.

There are kinds of cyber attacks, including false injection attacks, replay attacks, and denial-of-service (DoS) attacks.
Among them, the goal of DoS attacks is to jam the network communication channels between system devices and com-
ponents. Extensive attention to the security research of the CPSs under DoS attacks has been attracted, including optimal
DoS attack scheduling10 and resilient control under DoS attacks.11,12 In the work of De Persis and Tesi,13 the DoS model,
which is characterized by frequency and duration, is proposed, and the closed-loop system is proved to be input-to-state
stable. Based on the general DoS model, several studies have been presented for linear systems,14,15 nonlinear systems,16

CPSs with multiple transmission channels,17 and CPSs with event-triggered control strategy.18,19 However, the resilient
control methods of the aforementioned works mainly focus on the transmission times scheduling and input-to-state sta-
bility (ISS) framework. There have been few theoretical studies appeared on control methodology to guarantee the control
performance under DoS attacks, especially when the state and input of the physical plant are subject to hard constraints.
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Model predictive control (MPC) is a control method that the control input at each sampling instant is defined as the
first part of the solution of a finite-horizon optimal control problem.20 The MPC is widely utilized in industrial control
systems and extensive literature exists. For instance, Mayne et al21 concerned the problem of robust MPC for constrained
linear discrete-time systems with bounded disturbances. The “tube-based” approach for discrete-time MPC algorithms
is extended in the work of Farina and Scattolini22 for the continuous-time case. In the work of He et al,23 a self-triggered
MPC algorithm is developed based on first-order hold for continuous-time systems. In the work of Liu et al,24 a robust
self-triggered min-max MPC algorithm is developed for nonlinear systems. To achieve a more appropriate trade-off
between control performance and communication utilization, event-triggered control25 for networked control systems has
been widely investigated. The design of event-triggered MPC strategies is of great importance since it enables the reduc-
tion in frequencies of solving optimization problems and saves computation resources.26 In the work of Brunner et al,27

a robust event-triggered MPC method is proposed for constrained discrete-time systems subject to bounded stochastic
disturbances.

When the DoS attacks are present, if the optimal control values are still available, the control performance is still
guaranteed. Inspired by the predictor-based control framework,15,18,19 a robust MPC strategy for linear CPSs with
disturbances under DoS attacks is investigated in this paper. The physical plant considered in this paper is a con-
strained continuous-time system, and the robust sampled-data MPC strategy is designed to calculate the optimal control
sequences. In order to save the communication and computation resources of the system, an event-triggered strategy is
designed to determine the time instants at which to solve the optimal problem and transmit the control data packets to the
buffered actuator. It is worth noting that the existing results of event-triggered MPC cannot handle the system under DoS
attacks since the constraints and the robustly asymptotically stability to a set may not be satisfied. Motivated by these facts,
new conditions are presented to prove the feasibility under DoS attacks. To establish the time characteristics of the tolera-
ble attack intensity, the input-to-state practical stability (ISpS) framework is used to prove the stability under DoS attacks.

The main results and contributions are summarized as follows. First, a robust MPC algorithm is designed to achieve
resilient control for generic constrained continuous-time CPSs with bounded disturbances under DoS attacks, and the
MPC algorithm is proved to be recursively feasible with some conditions by taking advantage of the worst case of all
possible uncertainty realizations caused by the DoS attacks. Second, compared to the existing results, which ensure ISS
under DoS attacks, the stability of the closed-loop system with the predicted input error caused by the system constraints is
guaranteed by the ISpS framework, and an even better control performance is achieved. Furthermore, a link between the
prediction horizon and the tolerable attack intensity that can guarantee the stability is obtained. Third, the sampled-data
MPC is used to continuous-time CPSs based on the event-triggered strategy, inspired by lemma 1 in the work of De Persis
and Tesi,13 the relationship between the sampling period and the event-triggering condition (ETC) is obtained.

The remainder of this paper is organized as follows. Section 2 presents the preliminaries and problem formulation.
The event-triggered MPC algorithm under DoS attacks is designed in Section 3. In Section 4, the main results are pro-
posed, including robust constraint satisfaction and the stability proof. Then, Section 5 gives the simulation, and Section 6
concludes this paper.

Notation. Denote the set of reals by R, Rn is the n-dimensional Euclidean space. Given 𝛼, 𝛽 ∈ R, R≥𝛼 is the set of
reals greater than or equal to 𝛼 and R[𝛼,𝛽] is the set {a ∈ R|𝛼 ≤ a ≤ 𝛽}. Let N be the nonnegative integers set. For a
vector x ∈ Rn, ‖x‖ is the Euclidean norm. For a matrix A, AT, ‖A‖, and 𝜇A denote the transpose, spectral norm, and
logarithmic norm,28 respectively, where 𝜇A = max{𝜆|𝜆 ∈ spectrum{A+AT

2
}}. Given two sets S1 and S2, a scalar 𝛼 and

matrices A ∈ Rm×n and B ∈ Rn×m, let S2⧵S1 be the relative complement of S1 in S2, 𝛼S1 = {𝛼x|x ∈ S1}, AS1 = {Ax|x ∈
S1}, and B−1S1 = {x ∈ Rn|Bx ∈ S1}. Define that the Minkowski set addition is S1 ⊕ S2 = {x + y|x ∈ S1, y ∈ S2} and
the Pontryagin set difference is S1 ⊖ S2 = {z ∈ Rn|z ⊕ S2 ⊆ S1}. For a sequence of sets Si, i ∈ N[a,b] with a, b ∈ N,
define ⊕b

i=aSi = Sa ⊕ Sa+1 ⊕ · · · ⊕ Sb. For an interval T = [t1, t2), the length is denoted by |T(t1, t2)| = t2 − t1. For a
measurable function f(t) with interval [0, t), the ∞ norm of f(·) on [0, t) is given as ‖𝑓t‖∞ = ess sups∈[0,t) ‖f(s)‖. ⌊·⌋ is
defined as the floor integral function.

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 Process dynamics and network
The concerned CPS process is shown in Figure 1, the plant and the sensor are integrated with the actuator and they
are distributed with the controller. The controller is remotely connected to the actuator via a resource-limited wireless
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FIGURE 1 Control structure of the cyber-physical system under
denial-of-service (DoS) attacks. ACK, acknowledge [Colour figure can be viewed
at wileyonlinelibrary.com]

network, and the network is vulnerable to DoS attacks by malicious adversaries leading to the open-loop of the system.
Consider the CPS described in the following continuous-time linear form

.x(t) = Ax(t) + Bu(t) + w(t), (1)

where x(t) ∈ Rn and u(t) ∈ Rm are system state and input, respectively. The disturbance w(t) is time-varying, unknown
bounded, and satisfies w(t) ∈  ⊆ Rn, t ∈ R≥0. Furthermore, hard constraints on the state and input are given as x(t) ∈  ,
u(t) ∈  , where  ⊆ Rn,  ⊆ Rm, and  are compact convex sets containing the origin. Assume that the controller can
obtain the state x(t) as a measurement at any time instant t ∈ R≥0.27 The matrix pair (A,B) is assumed to be stabilizable.

To increase the reliability of the communication, a packet-based control strategy is designed. Each data packet contains
a sequence of control values that comes from a sampled-data controller. Denote by {tk}k∈N the sequence of the transmis-
sion attempts of the networked communication, and define Δk as the interval between any two consecutive data packets
transmission attempts, which satisfies

𝛿 ≤ tk+1 − tk = Δk ≤ Δ̄, (2)

where 𝛿 is the sampling period of the controller computation platform, and Δ̄ ∈ R is the upper bound of the intervals.
When the discrete control values are transmitted to the buffered actuator, the actuator implements a sample-and-hold
policy to obtain the continuous control input u(t).

2.2 DoS attacks
Due to the energy constraint, or several provisions such as spreading and high-pass filtering techniques to restrict DoS
attacks, the attack signals generally occur in a random and intermittent mode. Here, a general DoS model is considered,
which the attack behavior is characterized as time by posing restrictions on the frequency and duration merely. Denote
by {hn}n∈N with h0 ≥ 0 the sequence of DoS off/on transitions, which are the time instants when DoS attacks transform
from null (transmission attempts are all successful) to one (transmission attempts fail).14 The nth DoS interval is defined
as Hn = {hn} ∪ [hn, hn + 𝜏n), where 𝜏n ∈ R≥0 is its length. If 𝜏n = 0, Hn degenerates into a pulse. Assume that there is no
overlap in {Hn}n∈N. Given any interval [t1, t2), 0 ≤ t1 < t2, let

(t1, t2) = ∪
n∈N

Hn ∩ [t1, t2) (3a)

(t1, t2) = [t1, t2) ⧵(t1, t2) (3b)

be the subsets of [t1, t2), where the network channel is in DoS and healthy status, respectively. Denote by n(t1, t2) the
number of DoS off/on transitions over [t1, t2). Referring to the work of De Persis and Tesi,13 the following assumptions
are proposed to model the frequency and duration of DoS attacks.

Assumption 1 (See the work of De Persis and Tesi13). For any 0 ≤ t1 < t2, there exist 𝜂 ∈ R≥0 and 𝜏D ∈ R≥0 such that

n(t1, t2) ≤ 𝜂 + t2 − t1

𝜏D
. (4)

Assumption 2 (See the work of De Persis and Tesi13). For any 0 ≤ t1 < t2, there exist ς ∈ R≥0 and T ∈ R>1 such that

|(t1, t2)| ≤ ς + t2 − t1

T
. (5)

http://wileyonlinelibrary.com
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Remark 1. It is necessary for guaranteeing the controllability of the system (1) to propose Assumptions 1 and 2 as
in the work of De Persis and Tesi.13 Suppose that 𝜏D → 0 or T = 1, each transmission attempt can be jammed by
the adversary, which is equivalent to the case where the system is in open-loop status all the time. Furthermore, this
general DoS model can also constrain random losses of the networks. For the continuous-time, the length of a random
loss is zero, but the sum of the number of malicious attacks and random losses is constrained by (4). Besides, it is
impossible to know whether the data losses are due to malicious attacks or random packet losses for the defender. It
means that, no matter whether the data losses are due to malicious attacks or random losses, the total data loss actions
satisfy Assumptions 1 and 2.

2.3 Event-triggered strategy
The event-triggered control strategy is defined as follows:

u(t) = 𝜇(x(tk), t − tk), t ∈ R[tk ,tk+1), (6)

where k ∈ N represents the sequence of the input data transmission attempts when the event triggered, and t0 = 0.
Furthermore, it is assumed that there is no network-induced delay.

The event-triggered transmission logic is designed based on the discrete time sequence of the controller computation
platform. Consider the following transmission logic.

i. Transmission mode under normal status. If tk does not belong to a DoS interval, then

tk+1 = inf{t ∈ R≥tk+𝛿|x(t) ∉ (x(tk), t − tk) ∨ t − tk ≥ Δ̄}, (7)

where x(t) ∉ (x(tk), t − tk) is the ETC, t ∈ R[tk ,tk+1), k ∈ N.
ii. Transmission mode under DoS status. If tk belongs to some DoS interval, then tk+1 = tk + 𝛿, where 𝛿 is the sampling

interval of the sampled-data control unit.

That is, when the DoS attacks are absent, the control data is updated only at the event instants tk based on the current
state x(tk) as in (7). The data packet, which contains the whole sequence {u(tk), … ,u(tk + (N − 1)𝛿)} transmitted to the
actuator at tk, is able to improve the system performance of the open loop intervals, N ∈ N≥1 is the prediction horizon
(buffer size). The control values still stored in the buffered actuator will be discarded when the next data packet arrives at
tk+1. On the other side, when the DoS attacks are present, the transmission attempt at tk fails, the controller cannot receive
an acknowledge (ACK) signal from the actuator to confirm that the transmission at tk was successful or not. Then, the
next transmission attempt occurs at tk+1 = tk + 𝛿 until the controller receives the ACK signal. In this mode, the actuator
will use the data stored in the buffer until it is empty, and the actuator holds the last control value.

2.4 Control objective
In this paper, the control objectives to be achieved will be centered around the following definition.

Definition 1 (See the work of Lazar et al29). System (1) is said to be input-to-state practical stable if there exist a
L-function f1, a -function f2, and a number d such that

‖x(t)‖ ≤ 𝑓1(‖x(0)‖ , t) + 𝑓2(‖v‖) + d (8)

holds for all t ∈ R≥0, x(0) ∈  . If (8) holds for d ≡ 0, then system (1) is said to be input-to-state stable (ISS) in  .
Furthermore, if (8) holds for v ≡ 0 and d ≡ 0, then system (1) is globally asymptotically stable (GAS) in  .

The objective is to design the control strategy 𝜇 ∶ Rn × R → Rm and the set-valued function  ∶ Rn × N → 2Rn for the
closed-loop system (1) and (6) under the DoS attacks modeled as Assumptions 1 and 2 such that:

i. the constraints x(t) ∈  and u(t) ∈  are robustly satisfied;
ii. the closed-loop system is ISpS;

iii. the tolerable DoS attacks are as long as possible with a suitable chosen buffer size N.
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Several properties of the Minkowski set addition and the Pontryagin set difference are summarized as the following
lemma to be used in this paper.

Lemma 1 (See the work of Brunner et al27). Let  ,  ,  be compact convex sets, and A ∈ Rm×n. Then, ⊕ = ⊕ ,
 ⊖ ( ⊕ ) = ( ⊖ )⊖ , ( ⊕ )⊖  =  , ( ⊖ )⊕  ⊆  , A( ⊕ ) = A ⊕ A , and ( ∩ )⊕  ⊆

( ⊕) ∩ ( ⊕).

3 EVENT-TRIGGERED MPC UNDER DOS ATTACKS

In this section, an event-triggered robust MPC algorithm is presented to solve the problem proposed in Section 2. That is,
function 𝜇 and  are obtained by the solution of an optimal control problem in finite horizon, which is achieved online
at the event instants tk, k ∈ N

The decision variable of the optimization problem at tk is

d = ((x0|tk , … , xN|tk ), (u0|tk , … ,uN−1|tk )) ∈ DN , (9)

where DN = Rn × · · · ×Rn ×Rm × · · · ×Rm and N ∈ N≥1 is the prediction horizon. Let A𝛿 = eA𝛿 and B𝛿 = ∫ 𝛿

0 eA𝜏Bd𝜏, the
following constraints are imposed on d:

x0|tk = x(tk) (10a)
∀i ∈ N[0,N−1], xi+1|tk = A𝛿xi|tk + B𝛿ui|tk (10b)

∀i ∈ N[0,N−1], xi|tk ∈ i (10c)

∀i ∈ N[0,N−1], ui|tk ∈ i (10d)
xN|tk ∈ 𝑓 , (10e)

where variables xi|tk are defined as a predicted state trajectory for the nominal system generated by the predicted inputs
ui|tk according to (10b). The sets i and i depending on the step i in the prediction horizon are tightened constraint sets
with i ∈ N[0,N−1], which can be defined as

i =  ⊖ i, i ∈ N[0,N−1] (11a)

i =  ⊖ Ki, i ∈ N[0,N−1], (11b)

where the sets i ⊆ Rn are the uncertainty sets to describe a tube containing all possible error around the nominal state
given by xi|tk . The set 𝑓 is a compact and convex set representing the terminal set. i and 𝑓 will be given later. Given
x(tk) ∈ Rn, the set contains all the feasible decision variables that is defined as

N(x(tk)) = {d ∈ DN |(10a) to (10e)}. (12)

An auxiliary feedback law is used to design the control strategy, which is assumed to be the desired feedback with the
gain matrix K ∈ Rm×n for the plant if the system constraints are ignored. K is selected to make the matrix A𝛿 +B𝛿K Schur
stable. Based on the difference between the predicted input ui|tk and the expected feedback using the predicted state, the
cost function of the optimal control problem is given as follows:

JN(d) =
N−1∑
i=0

l(ui|tk − Kxi|tk ), (13)

where l ∶ Rm → R≥0 is a stage cost function to be defined as l(v) = vTLv, where v is the error between the predicted input
and the desired feedback input of the predicted state, that is, vi = ui|t − Kxi|t for i ∈ N[0,N] with v0 = 0, L is a positive
definite symmetric matrix. The finite horizon optimal control problem can be defined as

J0
N(x(tk)) = min

d∈N (x(tk))
JN(d) (14)

d∗(x(tk)) = arg min
d∈N (x(tk))

JN(d), (15)
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where d∗(x(tk)) is the optimization decision variable at time tk. The set containing all the feasible state for the opti-
mization problem is defined by ̂N = {x ∈ Rn|N(x) ≠ ∅}. Given any optimization decision variable d∗(xtk ) =
((x∗0|tk

, … , x∗N|tk
), (u∗

0|tk
, … ,u∗

N−1|tk
)), the ETC is given as

(x(tk), t − tk) = x∗t−tk|tk
⊕ t−t𝑗 , (16)

where i ⊆ Rn, i ∈ N[1,N] are given closed sets that describe the difference between the actual system trajectory and the
predicted one of the normal system. Define N = ∅ such that an event is triggered within the transmission interval bound
and 0 = {0}.

Consider the mode where the DoS attacks are present. Denote by {zr}r∈N the sequence of time instants at which the
control unit successfully transmits a packet containing N predicted control values. That is, if tk ∈ (t1, t2), zr = tk; if
tk ∈ (t1, t2), zr = inf{t ∈ R≥tk+𝛿|t ∈ (t1, t2)}. The length of the interval [zr, zr+1) is an integer multiple of 𝛿 since the
event condition is verified with the period 𝛿. Then, the control input of the system under DoS attacks is given by

𝜇(x(zr), t − zr) =
⎧⎪⎨⎪⎩

0, t ∈ R[0,z0]

u∗⌊(t−zr)∕𝛿⌋|zr
, t ∈ R[zr ,zr+(N−1)𝛿)

u∗
N−1|zr

, t ∈ R[zr+(N−1)𝛿,zr+1).

(17)

Lemma 2. If the DoS attacks considered satisfy Assumptions 1 and 2, and 1∕T + 𝛿∕𝜏D < 1 holds, then the sequence
{zr}r∈N satisfies z0 ≤ Q and zr+1 − zr ≤ Q + Δ̄, where

Q = (ς + 𝜂𝛿)
(

1 − 1
T
− 𝛿

𝜏D

)−1

. (18)

Remark 2. Similar lemmas have been proved in the works of Feng and Tesi.14,15 The difference of the lemma in this
paper is the consideration of the event triggering intervals. The upper bound of the event intervals is Δ̄ with Δ̄ ≤ N𝛿.
Take account of the worst case, where a DoS attack occurs at the instant when the event triggered after an interval with
length Δ̄, then zr+1 − zr ≤ Q + Δ̄ is obtained. The uniform boundedness of the time elapsing between two successful
transmissions is guaranteed by the lemma.

Then, the sets i, i ∈ N that contain the uncertainty of the prediction are given as

i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i−1
⊕
𝑗=0

(A𝛿 + B𝛿K)𝑗 , i ∈ N[0,N]

Ai−N
𝛿

(
N−1
⊕
𝑗=0

(A𝛿 + B𝛿K)𝑗
)

⊕
i−N−1
⊕
𝑗=0

A𝑗

𝛿
 , i ∈ N[N+1,M],

(19)

where M =
⌊
(Q + Δ̄)∕𝛿

⌋
.

The following assumption should be satisfied for the event threshold sets i and the uncertainty sets i for i ∈ N[0,N].

Assumption 3 (See the work of Brunner et al27). There exist sets i defied as i+1 = A𝛿(i ∩i)⊕ with 0 = {0}
for i ∈ N[0,N] such that i ⊆ i holds.

Remark 3. This assumption is proposed and discussed in the work of Brunner et al,27 which requires that the tolerable
error sets are included in the uncertainty sets i at the event intervals. The suitable event threshold sets i should be
designed to satisfy this assumption, and the detailed design will be given in Section 4.2.

The terminal constraint (10e) is formulated to guarantee the recursive feasibility of the system constraints as in
(10c)-(10d) as the following scenario. If an input sequence at zr satisfying the constraints in (10c)-(10d) is applied to system
(1) for an interval Δ̄, then the worst DoS attack begins. At the end of the DoS interval, the existence of a control sequence
that satisfies the constraints as (10c)-(10d) is still guaranteed. To ensure this feature, the terminal set 𝑓 is required to
ensure the following assumption hold referring to the relevant assumptions in the works of Brunner et al.20,27
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Assumption 4. For all i ∈ N[0,M−N], the terminal set 𝑓 satisfies

Ai
𝛿
𝑓 ⊕ N+i ⊆  (20a)

KAi
𝛿
𝑓 ⊕ KN+i ⊆  (20b)

(A𝛿 + B𝛿K)𝑓 ⊕ (A𝛿 + B𝛿K)N ⊆ 𝑓 (20c)

A𝛿𝑓 ⊕ AN
𝛿
 ⊆ 𝑓 . (20d)

Remark 4. Similar assumptions are proposed in the works of Brunner et al.20,27 Notice that, if there is no DoS attack,
a properly selected upper bound of the event intervals Δ̄ has no effect to the system. However, Δ̄ should be defined as
Δ̄ ≤ N𝛿 when the DoS attacks occurred to make the system aware of the attacks as early as possible. If zr+1 − zr ≤ N𝛿,
the prediction horizon involves the open-loop interval, then the assumption is satisfied from (11) and (19). On the
other hand, if zr+1 − zr > N𝛿, the assumption is more conservative than those in the aforementioned work.20,27 It is a
trade-off that this assumption increases the conservatism of the set constraints in exchange for the robustness against
DoS attacks.

4 MAIN RESULTS

In this section, the main results of this paper are proposed, that is, recursive feasibility of the optimal problem (14) with
robust constraint satisfaction and the ISpS of the closed-loop system.

4.1 Feasibility result
Theorem 1. Let any zr ∈ R≥0 with r ∈ N, x(zr) ∈ Rn and any decision variable d = ((x0|zr , … , xN|zr ), (u0|zr , … ,

uN−1|zr )) ∈ DN be given. For the system (1) with the input (17), there exists a dN ∈ N(x(zr+1)). Furthermore, for all
x(0) ∈ ̂N and any disturbances w(t) ∈  , x(t) ∈  and u(t) ∈  for all t ∈ N[zr ,zr+1) hold when Assumptions 3 and 4
are satisfied.

Proof. Denote by

zr + s𝛿 = min{zr + 𝑗𝛿 ∈ R≥zr+𝛿|x(zr + 𝑗𝛿) ∉ x𝑗|zr ⊕ 𝑗} (21)

the first transmission attempt instant during a DoS interval, where s, 𝑗 ∈ N[1,N], it holds that x(zr + s𝛿) − xs|zr ∈ s.
According to Assumption 3, it can be obtained that

x(zr + s𝛿) − xs|zr ∈ s ⊆ s, (22)

for s ∈ N[1,N]. For the time step zr + s𝛿, the transmission attempt fails because of the DoS attack occurred during
(zr, zr + s𝛿]. Then, the transmission mode is under DoS status, the optimal problem is calculated at each sampling
step. For s̃ ∈ N[s,N], consider the decision variable d̃ = ((x0|zr+s̃, … , xN|zr+s̃), (u0|zr+s̃, … ,uN−1|zr+s̃)), where

xi|zr+s̃ = (A𝛿 + B𝛿K)i(x(zr + s̃𝛿) − xs̃|zr ) + xs̃+i|zr , i ∈ N[0,N]

xs̃+i|zr = (A𝛿 + B𝛿K)s̃+i−N xN|zr , i ∈ N[N−s̃+1,N]
(23)

ui|zr+s̃ = K(A𝛿 + B𝛿K)i(x(zr + s̃𝛿) − xs̃|zr ) + us̃+i|zr , i ∈ N[0,N−1]

us̃+i|zr = K(A𝛿 + B𝛿K)s̃+i−N xN|zr , i ∈ N[N−s̃,N−1].
(24)

For s̃ ∈ N[s,N], the buffered control values obtained at zr are still available for the system. By induction, it can be
obtained from (23) and (24) that

x(zr + (s̃ + i)𝛿) − xi|zr+s̃ = (A𝛿 + B𝛿K)i(x(zr + s̃𝛿) − xs̃|zr )

+
i−1∑
𝑗=0

(A𝛿 + B𝛿K)𝑗E𝛿w(zr + (s̃ + i − 𝑗 − 1)𝛿)

∈ (A𝛿 + B𝛿K)is̃ ⊕

i−1∑
𝑗=0

(A𝛿 + B𝛿K)𝑗
= s̃+i,

(25)
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where E𝛿 = ∫ 𝛿

0 eA𝜏d𝜏I with E𝛿w(zr + 𝑗𝛿) ∈  . From (10c) and (11a), it holds that x(zr + (s̃ + i)𝛿) ∈  for i ∈
N[0,N]. Similarly, it holds that u(zr + (s̃ + i)𝛿) ∈  for i ∈ N[0,N−1]. Furthermore, using (20c) with iteration, we have
(A𝛿 + B𝛿K)k𝑓 ⊕ (A𝛿 + B𝛿K)Nk ⊆ 𝑓 . Then,

xN|zr+s̃ ∈ xs̃+N|zr ⊕ (A𝛿 + B𝛿K)Ns̃

= (A𝛿 + B𝛿K)s̃xN|zr ⊕ (A𝛿 + B𝛿K)Ns̃

∈ 𝑓 ,

(26)

leading to d̃ ∈ N(x(zr + s̃𝛿)). Notice that, if zr+1 − zr < N𝛿, the proof is completed here.
When zr+1 − zr ≥ N𝛿, for ŝ ∈ N[N,zr+1−zr], the buffered control values are used up, then u(zr + ŝ𝛿) = uN|zr , we have

x(zr + (ŝ + i)𝛿) − xŝ+i|zr = Aŝ+i−N
𝛿

(x(zr + N𝛿) − xN|zr ) +
ŝ+i−N−1∑

𝑗=0
A𝑗

𝛿
E𝛿w(zr

∗)

∈ Aŝ+i−N
𝛿

(
N−1
⊕
𝑗=0

(A𝛿 + B𝛿K)𝑗
)
⊕

ŝ+i−N−1
⊕
i=0

A𝑗

𝛿


= ŝ+i,

(27)

where zr
∗ = zr + (ŝ + i − 𝑗 − 1)𝛿 for i ∈ N[0,N]. It can be obtained from (20a) and (20b) that x(zr + (ŝ + i)𝛿) ∈

Aŝ+i−N
𝛿

𝑓 ⊕ ŝ+i ⊆  for i ∈ N[0,N] and u(zr + (ŝ + i)𝛿) ∈ KAŝ+i−N
𝛿

𝑓 ⊕ Kŝ+i ⊆  for i ∈ N[0,N−1] hold.
In this case, the decision variable of the controller changes since the predicted input data at the last successful

transmission instant has been used up. Consider the decision variable d̂ = ((x0|zr+ŝ, … , xN|zr+ŝ), (u0|zr+ŝ, … ,uN−1|zr+ŝ)),
where

xi|zr+ŝ = Aŝ+i−N
𝛿

(x(zr + ŝ𝛿) − xN|zr ) + xŝ+i|zr , i ∈ N[0,N] (28)

ui|zr+ŝ = KAŝ+i−N
𝛿

(x(zr + ŝ𝛿) − xN|zr ) + uŝ+i|zr , i ∈ N[0,N−1]. (29)
Based on A𝛿𝑓 ⊕ AN

𝛿
 ⊆ 𝑓 from (20d), assume that Ak

𝛿
𝑓 ⊕ AN

𝛿
k+N ⊆ 𝑓 holds for k ∈ N[0,M−N], and yields

Ak+1
𝛿

𝑓 ⊕ AN
𝛿
k+N+1 = Ak+1

𝛿
𝑓 ⊕ AN

𝛿
(A𝛿k+N ⊕)

= A𝛿

(
Ak
𝛿
𝑓 ⊕ AN

𝛿
k+N

)
⊕ AN

𝛿


⊆ 𝑓 .

(30)

Then, Ak
𝛿
𝑓 ⊕ AN

𝛿
k+N ⊆ 𝑓 holds. Combined with (28), it yields

xN|zr+ŝ ∈ Aŝ
𝛿
𝑓 ⊕ AN

𝛿
ŝ

⊆ AM
𝛿
𝑓 ⊕ AN

𝛿
M ⊆ 𝑓 ,

(31)

for ŝ ≤ M. Consider that ŝ𝛿 = zr+1 − zr, it readily follows that dN ∈ N(x(zr+1)) with dN = ((x0|zr+1 , … , xN|zr+1),
(u0|zr+1 , … ,uN−1|zr+1 )), and the system constraints are satisfied for all t ∈ R[zr ,zr+1) for the closed-loop system. Then, the
proof is completed.

Remark 5. The main difficulty compared with the work of Brunner et al27 is the proof of the recursive feasibility at
DoS intervals, especially when the N prediction input values stored in the buffer are used up. In this case, the predicted
state and input are different from the normal case. The idea is to predict the current state of the open-loop interval to
provide the optimal input information for the first successful transmission after an attack, as shown in (28) and (29).
This design has increased the robustness against the DoS attacks, but a larger terminal set is required as a trade-off,
as shown in Assumption 4.

4.2 Stability analysis
Notice that the optimal solution of the MPC optimization problem (14) is ui|t = Kxi|t, which means that the additional
input vi = 0. If the constraints are tight, vi ≠ 0. For t ∈ R[zr+i𝛿,zr+(i+1)𝛿), v(t) = vi. In this sense, v(t) can be regarded as an
exogenous signal to the closed-loop system when the MPC optimization problem (14) is feasible.
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Denote by e(t + i𝛿) = xi|t − x(t + i𝛿), i ∈ N[0,N] is the prediction error. Then, using sample-and-hold unit, it can be
obtained that

e(t) = xi|t − x(t), (32)

where e(t) ∈ i for t ∈ R[zr+i𝛿,zr+(i+1)𝛿). Then, for t ∈ R≥0, the process dynamics can be transformed as

.x(t) = (A + BK)x(t) + BKe(t) + Bv(t) + w(t). (33)

The event-triggering threshold sets are given as

i = {e(t + i𝛿) ∈ R
n, i ∈ N[0,N−1]| ‖e(t + i𝛿)‖ ≤ 𝜎 ‖x(t + i𝛿)‖}. (34)

Lemma 3. For i, i ∈ N[0,N] given in (34), if 0 < 𝜎 ≤ ‖A𝛿‖−1 is satisfied for the constant 𝜎, Assumption 3 is satisfied.

Proof. For i = 0, 0 ⊆ 0 is trivially satisfied from 0 = {0} and 0 =  . For ē = sup{i ∈ N[0,N]|e(t+ i𝛿) ∈ i}, it can
be obtained that it is bounded as e(t + i𝛿) ∈ i = {e(t + i𝛿) ∶ ‖e(t + i𝛿)‖ ≤ emax}, where emax = ‖A𝛿‖ ē + maxw∈ ‖w‖.
Then, if 0 < 𝜎 ≤ ‖A𝛿‖−1 holds, one has A𝛿i ⊕ ⊆ i+1. It follows that, for i ∈ N[1,N],

i = A𝛿(i−1 ∩ i−1)⊕
⊆ A𝛿i−1 ⊕
⊆ (i ⊖)⊕ ⊆ i

(35)

holds. Then, Assumption 3 is satisfied.

The stability proof is based on the Lyapunov function chosen as V(t) = xT(t)Px(t), where P can be solved from the
following equation:

PΦ +ΦTP = −Q, (36)

with Φ = A + BK, and Q is defined as an any given positive definite symmetric matrix. Then,

𝛼2 ‖x(t)‖ ≤ V(t) ≤ 𝛼1 ‖x(t)‖ (37)

.
V(t) ≤ −𝛾1‖x(t)‖2 + 𝛾2 ‖x(t)‖ ‖e(t)‖ + 𝛾3 ‖x(t)‖ ‖v(t)‖ + 𝛾4 ‖x(t)‖ ‖w(t)‖ , (38)

where 𝛼1 and 𝛼2 denote the largest and smallest eigenvalues of P, respectively. Denote by 𝛾1 the smallest eigenvalue of Q,
𝛾2 = ‖2PBK‖, 𝛾3 = ‖2PB‖, and 𝛾4 = ‖2P‖.

Theorem 2. Consider the dynamical system (1) with the control input (6) and (17), the event condition is chosen as (16)
and (34). Then, the closed-loop system (33) is ISpS in the absence of DoS attacks when 𝛾1 > 𝜎𝛾2 is satisfied, and the
sampling interval of the controller unit satisfies

𝛿 ≤
⎧⎪⎨⎪⎩

1
𝜇A

log
(

𝜇A𝜎

𝜆(1+𝜎)
+ 1
)
, 𝜇A > 0

𝜎

𝜆(1+𝜎)
, 𝜇A ≤ 0.

(39)

Proof. First, the predicted state xi|t is

xi|zr = Ai
𝛿
x0|zr +

i−1∑
𝑗=0

Ai−𝑗−1
𝛿

B𝛿(Kx𝑗|zr + v𝑗), (40)

with i ∈ N[1,N−1]. The process dynamics with t ∈ R[zr ,zr+1) satisfy

x(t) = eA(t−zr)x(zr) + ∫
t

zr

eA(t−𝜏)B(Kx(𝜏) + v(𝜏))d𝜏 + ∫
t

zr

eA(t−𝜏)w(𝜏)d𝜏. (41)
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It can be obtained that
e(zr + i𝛿) = xi|t − x(zr + i𝛿)

= eAi𝛿(x0|zr − x(zr)) − ∫
zr+i𝛿

zr

eA(zr+i𝛿−𝜏)w(𝜏)d𝜏,
(42)

where x0|zr = x(zr) and following the same argument from lemma 2 in the work of Feng and Tesi15 that

∫
zr+i𝛿

zr

eA(zr+i𝛿−𝜏)B(Kx(𝜏) + v(𝜏))d𝜏 =
i−1∑
𝑗=0

Ai−𝑗−1
𝛿

B𝛿(Kx𝑗|zr + v𝑗),

with s = zr+( j+1)𝛿−𝜏. Then, (42) yields ‖e(zr + i𝛿)‖ ≤ 𝜀1‖w(zr + i𝛿)‖∞, where 𝜀1 =

{ 1
𝜇A
(e𝜇A(N−1)𝛿 − 1), 𝜇A > 0

(N − 1)𝛿, 𝜇A ≤ 0.
Notice that the upper bound of the error dynamics e(t) at the sampling times zr + i𝛿 is provided in (34), where

𝜀1‖w(zr + i𝛿)‖∞ ≤ 𝜎 ‖x(t + i𝛿)‖ for the worst case i ∈ N[1,N−1]. However, it is necessary to give the upper bound
between intersamplings since if ‖e(t)‖ = 𝜎 ‖x(t)‖ is satisfied between the sampling intervals, the upper bound at the
sampling times may be invalid. The error dynamic is given as

ė(t) = Ae(t) − Φxi|t − Bv(t) − w(t), (43)

for t ∈ R[zr+i𝛿,zr+(i+1)𝛿), i ∈ N[0,N−1] with e(zr) = 0. Denote by g(t − zr − i𝛿) = ∫ t
zr+i𝛿 e𝜇A(t−𝜏)d𝜏 for t ∈ R≥zr+i𝛿 . Then, it can

be obtained that ‖e(t)‖ ≤ e𝜇A(t−zr−i𝛿) ‖e(t + i𝛿)‖ + 𝜆g(t − zr − i𝛿)(‖wt‖∞ + ‖v(t)‖ + ‖xi|t‖)
≤ 𝜀1𝜀2‖wt‖∞ + 𝜆g(𝛿)(‖wt‖∞ + ‖v(t)‖ + ‖e(t)‖ + ‖x(t)‖), (44)

where 𝜀2 = max{e𝜇A𝛿, 1} and 𝜆 = max{‖Φ‖ , ‖B‖ , 1}. Notice that g(0) = 0 and g(·) is monotonically increasing with t,
following the same argument as in theorem 1 in the work of De Persis and Tesi13 and lemma 2 in the work of Feng and
Tesi15 in which the parameter 𝜎 is selected such that 𝜆g(𝛿) ≤ 𝜎

1+𝜎
, it can be obtained that, for t ∈ R[zr ,zr+i𝛿), i ∈ N[0,N],

‖e(t)‖ ≤ 𝜎 ‖x(t)‖ + 𝜎 ‖v(t)‖ + 𝜀‖wt‖∞, (45)

where 𝜀 = 𝜎 + (1 + 𝜎)𝜀1𝜀2. Besides, 𝜆g(𝛿) ≤ 𝜎

1+𝜎
leads to the condition (39) for the sampling interval of the

controller unit.
Substituting (45) into (38), by using Young's inequality, yields

V(t) ≤ e−𝜃1(t−zr)V(zr) + 𝜂1‖v(t)‖2 + 𝜂2 ‖wt‖2
∞ , (46)

for t ∈ R[zr ,zr+i𝛿), i ∈ N[0,N], where 𝜃1 = 𝛾1−𝜎𝛾2
2𝛼1

, 𝜂1 = (𝜎𝛾2+𝛾3)2

𝜃1(𝛾1−𝜎𝛾2)
and 𝜂2 = (𝜀𝛾2+𝛾4)2

𝜃1(𝛾1−𝜎𝛾2)
. Then, for t ∈ R≥0,

‖x(t)‖ ≤√𝛼1

𝛼2
e−

𝜃1 t
2 ‖x(0)‖ + 𝑓 (v) +

√
𝜂2

𝛼2
‖wt‖∞, (47)

where 𝑓 (v) =
√

𝜂1
𝛼2
‖v(t)‖ is a -function and

√
𝜂2
𝛼2
‖wt‖∞ is a constant for w(t) ∈  . Then, it can be concluded from

Definition 1 that the closed-loop system is ISpS. Then, the proof is completed.

Now, the main stability theorem is given as follows.

Theorem 3. Consider the dynamical system (1) with the control input (6) and (17), the event condition is chosen as (16)
and (34). For the DoS attacks with arbitrary ς, 𝜂, 𝜏D, and T satisfying Assumptions 1 and 2 and 1

T
+ 𝛿

𝜏D
< 1, the prediction

horizon N satisfies N ≥ 𝜃2(Q+Δ̄)
𝛿(𝜃1+𝜃2)

with 𝜃1 = 𝛾1−𝜎𝛾2
2𝛼1

and 𝜃2 = 3𝛾2
2𝛼2

. Then, the closed-loop system (33) is ISpS.
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Proof. Denote by zr + i𝛿, i ∈ N[0,N] the time instant that the next data packet is transmitted. When the DoS attacks
are present in the interval (zr + (i − 1)𝛿, zr + i𝛿], consider the worst case that i = Δ̄∕𝛿 with Δ̄ ≤ N𝛿, e(t) = xi|t − x(t) for
t ∈ R[zr+N𝛿,zr+1), then

‖e(t)‖ ≤ ‖x(t)‖ + ‖x(zr + N𝛿)‖ + ‖e(zr + N𝛿)‖ . (48)

From (45), it can be obtained that ‖e(zr + N𝛿)‖ ≤ 𝜎 ‖x(zr + N𝛿)‖ + 𝜎 ‖vN‖ + 𝜀‖wt‖∞. Then,

.
V(t) ≤ (−𝛾1 + 2𝛾2 + 𝜎𝛾2)‖x(t)‖2 + (𝜎𝛾2 + 𝛾3) ‖x(t)‖ ‖v(t)‖ + (𝜀𝛾2 + 𝛾4) ‖x(t)‖ ‖wt‖∞

≤ 2𝛾2‖x(t)‖2 + 𝛾5‖v(t)‖2 + 𝛾6 ‖d(t)‖2
∞ ,

(49)

where the first inequality is derived from ‖vN‖ ≤ ‖v(t)‖ and ‖x(zr + N𝛿)‖ ≤ ‖x(t)‖ for t ∈ R[zr+N𝛿,zr+1), the second
inequality is derived from Young's inequality with 𝛾5 = (𝜎𝛾2+𝛾3)2

2(𝛾1−𝜎𝛾2)
and 𝛾6 = (𝜀𝛾2+𝛾4)2

2(𝛾1−𝜎𝛾2)
. Then, we have

V(t) ≤ e𝜃2(t−zr−N𝛿)V(zr + N𝛿) + e𝜃2(t−zr−N𝛿) (𝜂3‖v(t)‖2 + 𝜂4 ‖wt‖2
∞
)
, (50)

where 𝜃2 = 2𝛾2
𝛼2

, 𝜂3 = 𝛾5

𝜃2
, and 𝜂4 = 𝛾6

𝜃2
. Combine (46) with (50), it can be obtained that, for all t ∈ R[zr+N𝛿,zr+1) with

zr + N𝛿 < zr+1,

V(t) ≤ e𝜃2(t−zr−N𝛿)−𝜃1N𝛿V(zr) + e𝜃2(t−zr−N𝛿) ((𝜂1 + 𝜂3)‖v(t)‖2 + (𝜂2 + 𝜂4) ‖wt‖2
∞
)

≤ e−𝜃3(t−zr)V(zr) + 𝜂5‖v(t)‖2 + 𝜂6 ‖wt‖2
∞ ,

(51)

where 𝜂5 = e𝜃2(Q+Δ̄−N𝛿)(𝜂1+𝜂3), 𝜂6 = e𝜃2(Q+Δ̄−N𝛿)(𝜂2+𝜂4), 𝜃3 = 𝜃1N𝛿−𝜃2(Q+Δ̄−N𝛿)
Q+N𝛿

such that the time horizon is transformed
from zr+1 − zr to t− zr with t ∈ R[zr+N𝛿,zr+1) and zr+1 − zr ≤ Q+ Δ̄. In order to get a dissipation inequality from (51), the
prediction horizon N should be chosen as N ≥ 𝜃2(Q+Δ̄)

𝛿(𝜃1+𝜃2)
. Then, for any t ∈ R[zr ,zr+1), by iterating the work of De Persis

and Tesi13 and let 𝜃 = min{𝜃1, 𝜃3} yield

V(t) ≤ e−𝜃(t−z0)V(z0) +

(
1 +

r(t)−1∑
k=0

e−𝜃(zr(t)−zk)

)(
𝜂5‖v(t)‖2 + 𝜂6 ‖wt‖2

∞
)

≤ e−𝜃(t−z0)V(z0) +
(

1 + 1
1 − e−𝜃𝛿

)
(𝜂5‖v(t)‖2 + 𝜂6 ‖wt‖2

∞),

(52)

where r(t) = sup{m ∈ N|zr ≤ t} is the number of successful transmission packets up to now and t ≥ z0. Then,

‖x(t)‖ ≤√𝛼1

𝛼2
e−

𝜃(t−z0 )
2 ‖x(z0)‖ +√1 + 1

1 − e−𝜃𝛿

(√
𝜂5

𝛼2
‖v(t)‖ +√ 𝜂6

𝛼2
‖wt‖∞) (53)

holds. From Definition 1, the ISpS of the closed-loop system (33) is achieved. Then, the proof is completed.

Remark 6. Compared with the strategies proposed in the works of De Persis and Tesi13 and Feng and Tesi,15 where
the system constraints are not concerned, the difficulties are the analysis of the event-triggered control and how to
deal with the predicted input error v(t). Based on the ISpS framework, not only the relationship between the stabi-
lization criteria and the time characteristics of the tolerable DoS attacks is obtained but also v(t) can be regarded as
an additional input to prove the stability of the closed-loop system. When the DoS attacks are absent, Theorem 2
details the sufficient conditions of the ETC and the sampling interval to guarantee the ISpS of the closed-loop system.
Notice that the prediction horizon N only influences the parameter 𝜀1. When 𝜀1‖w(zr + i𝛿)‖∞ ≤ 𝜎 ‖x(t + i𝛿)‖ holds,
the increasing of N increases the average triggering time. However, when N is large enough such that the aforemen-
tioned inequality is untenable, the average triggering time will not increase but may worsen the system performance
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on account of the increasing of 𝜂2. When the DoS attacks are present, Theorem 3 shows that the robustness against
the worst attacks depends on the selection of N. In this case, N may be a pretty large value when the worst case that
an attack occurred at the instant when the N control values are used up. To reduce the conservatism of the selection
of N, the upper bound of the event-triggering intervals Δ̄ is given.

5 SIMULATION EXAMPLE

In this section, we consider a batch reactor model taken from the work of Walsh and Ye.30 The system is an open-loop
unstable process with coupled two-input and two-output. Besides, the control data is transmitted by network. The system

matrices are given as A =
⎡⎢⎢⎢⎣

1.38 −0.2077 6.715 −5.676
−0.5814 −4.29 0 0.675

1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

⎤⎥⎥⎥⎦, B =
⎡⎢⎢⎢⎣

0 0
5.679 0
1.136 −3.146
1.136 0

⎤⎥⎥⎥⎦. The disturbance w(t) is a random

signal that satisfies uniform distribution in [−0.3, 0.3]. The system constraints are set as −1 ≤ x(t) ≤ 1 and −2 ≤
u(t) ≤ 2. The initial condition is x(0) = [0.8,−1, 0, 0.3]T. The auxiliary feedback gain matrix is chosen by LQR as K =[
−0.7299 −0.5116 −1.2459 0.1511
2.3638 0.1773 1.6615 −2.7389

]
. Therelative parameters can be obtained that 𝛼1 = 2.1581, 𝛼2 = 0.0466, 𝛾1 = 1,

𝛾2 = 15.9451, 𝛾3 = 3.9377, 𝛾4 = 1.5352, and 𝜇A = 3.4425. We select the ETC 𝜎 = 0.0625 and the sampling interval
𝛿 = 0.01 s. The simulation time is selected as T = 15 s with Ts = 1500 steps for the controller unit.

When the DoS attacks are absent, the buffer size is chosen as N = 20, then the system state responds and the input
signals are given in Figure 2. Consider the performance index Jp = 1

Ts

∑Ts−1
t=0 xT

t Qxt + uT
t Rut with Q = I4×4 and R = I2×2,

the average triggering time and the performance indices for different prediction horizons are presented in Table 1.
It can be seen from Table 1 and Figure 2 that the event-triggered MPC strategy in this paper reduces the communication

utilization and computation load while achieving comparable control performance.
When the DoS attacks are present, the system state responds and the input signals under DoS attacks are given in

Figure 3. The total duration and the frequency of the DoS attacks are |(0, 15)| = 10.93 s and n(0, 15) = 12, respectively.
This corresponds to values of ς = 0.146, T = 1.3724, 𝜂 = 1.35, and 𝜏D = 1.25. Moreover, 73% of communication attempts
fail, and 𝛿

𝜏D
+ 1

T
≈ 0.737. The upper bound of the event intervals is defined as Δ̄ = 0.7 s. The buffer size can be obtained

from Theorem 3 that N ≥ 129.3 and N = 135 is selected. The performance index is Jp = 0.1107. Furthermore, the event
intervals and the evolution of the event condition are given in Figure 4. In order to highlight the advantages of the methods
in this paper, the comparison simulation results are given in Figure 5. The top of Figure 5 shows the result without the

TABLE 1 Performance comparison Average triggering time Jp

Periodic 1 0.0869
N = 5 2.4712 0.0884
N = 20 2.5641 0.0889
N = 100 2.5510 0.0893

FIGURE 2 The state responds and the input signals [Colour
figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 The state responds and the input signals under
denial-of-service (DoS) attacks [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 4 The event intervals and event condition. DoS,
denial-of-service [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Top: The state responds without MPC strategy.
Bottom: The simulation results of the algorithm in15 [Colour figure
can be viewed at wileyonlinelibrary.com]

MPC algorithm. It can be observed that the system cannot be stabilized without the packet-based method and predicted
input signals. The bottom shows the result of the algorithm in the work of Feng and Tesi,15 where a packed-based predictor
method is used. It can be seen that the method in the aforementioned work15 can tolerate the same DoS attacks. However,
the performance index J∗p = 0.1359 is larger than that in this paper. Besides, the event-triggered strategy in this paper
can achieve a better control performance with much less communication and computation resources than the periodic
transmission policy in the work of Feng and Tesi.15

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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6 CONCLUSIONS

This paper concerns the resilient control problem based on the robust event-triggered MPC strategy for constrained
continuous-time linear CPSs with bounded disturbances under DoS attacks. The ETC is designed to save the communica-
tion utilization and computation resources. The sampling-data MPC algorithm is designed to compensate the loss of the
control data during the open-loop intervals. The recursive feasibility of the MPC algorithm and the ISpS of the closed-loop
system is proved whether or not the DoS attacks are present. Moreover, the relationship between the sampling interval
of the MPC control and the ETC is obtained. Simulation results have verified the effectiveness of the proposed method.
In the future, one possible extension is to extend the algorithm to nonlinear systems26,31 under DoS attacks.
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