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Abstract
The aimof this study is to assess the possibility of developing novel predictivemodels based on data
mining algorithmswhichwould provide an automatic tool for the calculation of the extent of lung
tumormotion characterized by its known location and size. Datamining is an analytic process
designed to explore data in search of regular patterns and relationships between variables. The
ultimate goal of datamining is prediction of the future behavior. Artificial neural network (ANN)
data-mining algorithmwas used to develop an automaticmodel, whichwas trained to predict extent
of the tumormotion using the data set obtained from the available 4DCT imaging data. The accuracy
of the designed neural networkwas tested by using longer training time, different input values and/or
more neurons in its hidden layer. An optimized ANNbestfit the training and test datasets with a
regression value (R) of 0.97 andmean squared error value of 0.0039 cm2. Themaximumerror that was
recorded for the best network performance was 0.32 cm in the craniocaudal direction. The overall
prediction error was largest in this direction for 70%of the studied cases. In this study, the concepts of
neural networkswere discussed and anANNalgorithm is proposed to be usedwith clinical lung tumor
information for the prediction of the tumormotion extent. The results of optimized ANNare
promising and can be a reliable tool formotion pattern calculation. It is an automated tool, whichmay
assist radiation oncologists in defining the tumormargins needed in lung cancer radiation therapy.

1. Introduction

Currently available treatment planning systems calcu-
late dose distributions on a static CT imaging set.
Nevertheless, respiratory induced tumor motion
results in noteworthy movement of the tumor volume
during the breathing cycle whichmay lead to consider-
able discrepancies between the planned and delivered
dose distributions (Lujan et al 1999, Chui et al 2003,
George et al 2003, Naqvi and D’Souza 2005, Brandner
et al 2006). This is especially a concern in the lung
tumor radiotherapy due to the respiratory induced
intra-fraction motion (Cox et al 2003). Studies have
shown that tumors in the lung can move up to 3–5 cm
(Shirato et al 2004, 2006). The anatomical motion is
somewhat accounted for during treatment planning
and delivery by using different methods and
approaches (tumor tracking, gating etc) as well as by
increasing the 3D margins to the delineated tumor.

Therefore, there is a great interest in the development
of computational tools that will assist in the tumor
margin design, offering reliable ways of reducing them
while ensuring that the full extent of the tumor volume
is treated.

The generation of a single 4D CT scan involves a
digital reconstruction of the CT slices over the respira-
tory cycle. Published data (Underberg et al 2004) have
shown that individualized assessment of tumor
motion can improve the accuracy of target definition
and it is best achieved by using a 4DCTdataset.

This study is inspired by our preliminary findings
on the existence of a certain correlation between dif-
ferent factors influencing tumor motion in the lung
and the related need to develop a tool that could accu-
rately predict this motion in the 3D space. Our objec-
tives are twofold. First, we want to use the power of the
available 4D CT imaging data to predict tumor
motion. Until now, a lot of research has been done on
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this topic (Seppenwoolde et al 2002, Liu et al 2007,
Boldea et al 2008, Sonke et al 2008). Most of them try
to address the respiration-induced tumor motion in
the lung by looking specifically at the tumor location
and its correlation to the extent of themotion.

Our second objective is the development of a reli-
able tool by utilizing an artificial neural network
(ANN) algorithm. ANNs are proven to be a valuable
tool in a multitude of applications (Burke 1994,
Bottaci 1997, Wei et al 2004, Dogra et al 2013, Ahmad
et al 2014, Kourou et al 2015), as well as in cancer diag-
nosis and prediction. In the latter case, the network is
designed to look at pattern recognition and use it to
translate input (e.g. different biopsy attributes) and
output (cancer categories) data. The potential useful-
ness of this tool with the right set of data is significant
(Konstantina Kourou 2014). Neural networks are
trained using different samples and are used in numer-
ous applications; for instance in bioinformatics, opti-
cal character recognition, object detection, image
processing, stockmarket prediction, modeling human
behavior, loan risk analysis, pattern classification, can-
cer prognostics (Burke 1994, Bottaci et al 1997, Wei
et al 2004, Dogra et al 2013, Ahmad et al 2014, Kon-
stantinaKourou 2014).

In this study, neural networks are used for tumor
motion prediction based on the different factors that
may be influencing its motion extent, as they were
identified in our preliminarywork.

2.Material andmethods

2.1.Dataset
The current study was performed on the 4D CT
datasets of 11 radiotherapy patients who were treated
for lung cancer. The dataset of each patient included
12 subsets: maximum intensity projection (MIP),
average intensity projection (AIP) and ten equally
spaced phases of equal duration (the breathing cycle
was sampled at ten different instances and aCTdataset
was created for each instance). The clinical target
volume was delineated on each set of images for each
patient.

The reference dataset for the tumormotion assess-
ment was the AIP CT. After performing a DICOM
registration for aligning each CT set with the average
CT dataset, the corresponding tumor volumes were
copied to the AIP CT, wheremotion was subsequently
determined by looking at their related center of the
mass. The same procedure was applied on theMIP CT
dataset.

2.2. Artificial neural network
In 1943, Warren S McCulloch, a neuroscientist, and
Walter Pitts, a logician, developed the first theoretical
model of an ANN. In their paper, ‘A logical calculus of
the ideas imminent in nervous activity’, they describe
the concept of a neuron, a single cell living in a network

of cells that receives inputs, processes those inputs,
and generates an output (Shiffman 2012). ANN is
inspired by the structure of the brain and consists of a
set of highly interconnected entities, called neurons.
Each accepts a weighted set of inputs and responds
with an output, figure 1. ANN has been applied in
clustering, pattern recognition, object detection,
image processing, function approximation, and pre-
diction systems. ANN uses several architectures and
can be trained to solve problems by using a teaching
method and sample data. If proper training is put in
place ANN has the ability to recognize similarities
among different input data. As such, it represented an
ideal tool that can utilize similarities found in tumor
size and/or location.

One of themost commonly used ANNs is themul-
tilayer perceptron (MLP). In machine learning, per-
ceptron is a type of linear classifier, i.e. an algorithm
for supervised classification of an input into one of
several possible outputs. MLP maps set input data
onto a set of appropriate outputs and it consists of
multiple layers of nodes with each layer being con-
nected to the next one. Apart from the input nodes,
each node is a neuron. MLP utilizes the back-
propagation (BP) algorithm for supervised network
training. BP algorithm is capable of handling large
learning problems as it looks for the minimum of the
error function in weight space using the method of
gradient descent. There are different variants of this
algorithm: quasi-Newton, conjugate gradient BP, one-
secant BP, Levenberg Marquardt (LM), resilient BP,
and many others (Møller 1993). The designed ANN
was programmed using the neural network toolbox in
MATLAB (Beale et al 2010). In MATLAB training and
learning functions are mathematical procedures used
to automatically adjust the network’s weights and bia-
ses. In MATLAB’s perceptron, networks initial values
of theweights and biases are zeros.

In this work, the LM algorithm was adopted to
train the designed ANN. The LM algorithm is a stan-
dard method used to solve nonlinear least squares

Figure 1.AnANN layer of neurons.
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problems. Least squares problems arise when fitting a
parameterized function to a set of measured data
points by minimizing the sum of the squares of the
errors (SSE) between the data points and the function.
Nonlinear least squares problems arise when the func-
tion is not linear in the parameters. Nonlinear least
squares methods involve an iterative improvement to
parameter values in order to reduce the SSE between
the function and the measured data points. The LM
algorithm interpolates between the following two
minimization algorithms: the gradient descent
method and the Gauss–Newton algorithm. In the gra-
dient descent method, the SSE is reduced by updating
the parameters in the direction of the greatest reduc-
tion of the least squares objective. In the Gauss–New-
ton algorithm, the SSE is reduced by assuming the least
squares function is locally quadratic, and finding the
minimum of the quadratic. The LM algorithm ismore
robust than the Gauss–Newton algorithm, and is a
very popular curve fitting algorithm used in many
software applications (Gavin 2011). The main advan-
tage of this algorithm is that it requires less number of
data for training and achieves accurate results. The
network training function updates weight and bias
values according to LMoptimization.

The default network for function fitting problems,
a feed forward network, with the default tan-sigmoid
transfer function in the hidden layer and linear trans-
fer function in the output layer was used as this type of
network can be used for any kind of input to output
mapping (Beale et al 2010). A feedforward network
with one hidden layer and enough neurons in the hid-
den layer can fit any finite input–output mapping pro-
blem. The network was created with varying number
of neurons in the input layer and three neurons in the
output layer, because there are three target values asso-
ciated with each input vector. In our network design,
once the training started, the number of neurons nee-
ded in the hidden layer was determined experimen-
tally as there is no precise rule for their selection
(Othman and Ghorbel 2014). More neurons require
more computation, and they have a tendency to over
fit the data when the number is set too high, but they
allow the network to solve more complicated pro-
blems. The error criterion that was used for training is
mean square error (MSE), as training functions used
utilizes the Jacobian for calculations, which assumes
that performance is a mean or sum of squared errors
(SSE). Therefore, networks trained with this function
must use either theMSE or SSE performance function
and MSE is the default performance function for feed
forward network. In the designed network, MSE is the
average squared difference between output and target
values. The network algorithm adjusts the weights and
biases of the network so as to minimize this MSE.
Another default measure used to validate the network
performance is regression; R. R values measure the
correlation between output and target values. An R
value of 1means a close relationship (Beale et al 2010).

ANN training algorithms seek to minimize error
in neural networks, however local minima can be a
problem, and this problem can be addressed by vary-
ing the number of neurons in the hidden layer up until
the acceptable accuracy is achieved. The first step was
to find the suitable number of neurons in the hidden
layer of the ANNarchitecture.

The number of iterations (called epochs)was set to
stop the training when the best generalization was
reached. This was achieved by partitioning the data
into different sub datasets: training, validation and
testing. In the ANN training, a set is used to train the
network while another validation set is used to mea-
sure the error; network training stops when the error is
increasing for the validation dataset. Values belonging
in each subset are randomly chosen and they change
on each training step (Beale et al 2010). The values
used in a testing set have no effect on training and so
provide an independent measure of the network per-
formance during and after training. The number of
neurons in the hidden layer was varied from 1 to 30
and the MSE and regression values for each trial were
recorded. Each time a neural network is trained, it can
result in a different solution due to different initial
weight and bias values and different divisions of data
into training, validation, and test sets. Weight and bias
values are automatically updated according to the LM
optimization. Network default values were used for
training parameters such as maximum number of
epochs, performance goal, maximum validation fail-
ures, initial adaptive learning parameter value, etc.

Other parameters such as subset partition and
number of variables in the input dataset were varied
through training process and their MSE and regres-
sion values were recorded in order to determine which
of the available parameters influence output, i.e. acc-
uracy of the prediction, themost. The trained network
was then used to predict motion extent for the various
sets of the tumor attributes.

2.3. ANN input dataset
The dataset used as the input was extracted from our
preliminary study (Jurkovic et al 2016). That study
compiled tumor motion and volume change data
based on the tumor size and/or location and it
investigated their relationship patterns. In this study
for each of the studied patients the whole respiratory
motion through the phases was divided in the two
separate trajectories—inhale and exhale. Similarity
between the inhalation and exhalation trajectories was
evaluated by using two different measures, dynamic
timewarping and Fréchet distance, and the assessment
essentially showed that motion trajectories in the
inhale and exhale phases do depend on the location
but also depend significantly on the tumor size, i.e. it
was shown that two categories of patients have most
similar inhale–exhale trajectories: patients with larger
tumor volumes (>100 cm3) regardless of the tumor
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location, and patients with tumor volumes >15 cm3

that are located in the upper lung lobe. Regression
analysis was also performed when comparing the
similarity between the motion paths through the
whole breathing cycle among the different patients
versus the tumor size and location in order to establish
if there is any correlation. Calculated coefficient (0.73)
indicated amoderate linear relationship between these
variables. This information was subsequently applied
towards the network design and input data extraction.
The variables used were tumor volume as delineated
on the AIP CT dataset and tumor location in the lung:
left/right lung, upper/middle/lower lobe, anterior/
posterior location, and/or central/peripheral loca-
tion, table 1.

Different subsets of the input dataset were used to
establish the best training dataset for the designed net-
work and algorithm.

2.4. ANNoutput dataset
Regarding the output dataset that was used for
training, the validation and testing were based on the
findings of the preliminary study that calculated the
maximum motion extents in the superior–inferior
(SI), left–right (LR) and anterior–posterior (AP) direc-
tions (table 2). The motion extents were calculated
using the tumor volume center of mass (COM)
positions through the ten breathing phases in relation
to the COM of the tumor volume on the AIP CT
dataset. This position was used as a coordinate system
center with coordinates 0,0,0.

Based on the foregoing analytical decisions, ANN
was designed inMATLAB and one of the resulting net-
work architectures is shown in figure 2. This is a feed-
forward network that has one-way connections from
input to output layers and it is one of the four available
types of supervised neural networks (Beale et al 2010).
It is most commonly used for prediction, pattern
recognition, and nonlinear function fitting.

3. Results

The best generalization was achieved by partitioning
the data into 80% training, 10% validation and 10%

testing sub datasets. Several different ANN configura-
tions were initially tested with varying number of
neurons in the hidden layer. The result with the best
MSE and regression values was then used to determine
the appropriate number of neurons in the hidden layer
of the ANN. We noticed that with increasing number
of neurons beyond 10we did not get any improvement
inMSE andR values.

Subsequently, we further examined the network
by varying the number of variables in the input data-
set. Again, the best result was achieved when all the
available variables were taken into account. However,
even when the number of variables was lowered down
to two (looking only at the tumor size and location in
the lung lobes: lower, middle, upper to predict motion
extent), the prediction gave a maximumMSE value of
0.0099 cm2 with a regression value of 0.93. Compared
to our output data this is translated to amaximum dif-
ference of −0.31 cm of the motion extent in SI direc-
tion between the target data and data predicted with
ANN (predicted value was higher than the measured
one). The corresponding error in the LR direction was
−0.17 cm and in the AP direction it was 0.15 cm
(table 4). To clarify this point, sinceMSE is the average
squared difference between all the output and target
values and R is regression value that measures correla-
tion between all the output and target values, the

Table 1. Input dataset.

Patient# Tumor size (cm3) Lung Lobe Location 1 Location 2

1 1.66 Right Middle Anterior Central

2 11.04 Right Lower Posterior Peripheral

3 21.90 Right Upper Anterior Central

4 2.48 Right Upper Posterior Peripheral

5 108.93 Left Upper Posterior Central

6 14.11 Left Lower Posterior Central

7 29.91 Left Upper Posterior Central

8 21.70 Left Lower Posterior Central

9 96.55 Right Upper Anterior Central

10 23.47 Right Lower Posterior Central

11 17.75 Right Lower Anterior Central

Table 2.Output dataset (maximummotion extent).

Patient# LR (cm) SI (cm) AP (cm)

1 0.19 0.62 0.45

2 0.25 1.00 0.38

3 0.73 0.25 0.24

4 0.20 0.75 0.34

5 0.06 0.25 0.21

6 0.15 0.37 0.25

7 0.25 0.37 0.28

8 0.10 0.76 0.15

9 0.25 0.37 0.25

10 0.28 1.25 0.25

11 0.27 0.75 0.45

Prediction error was calculated for each of the trials

according to the following: error=desired out-

put−guessed output.
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maximum differences (errors) between output and
target values for eachmotion direction for a given net-
work’s MSE and R values can be calculated based on
the following equations, (Beale et al 2010):

{ } { } { }¼p t p t p t, , , , , , ,Q Q1 1 2 2

( ( ) ( ))å= -
=Q

t k n kMSE
1

,
k

Q

1

2

where pQ is an input to the network, tQ is the
corresponding target output, and nQ is the network
output. The default regression equation between
inputs and outputs is a curve in three-dimensional
input space. However, the plots and total regression
values reported are the one-dimensional regressions of
output versus target:

= +y bx a,

where y is the output and x is the target value, and R is
the correlation between x and y.

Furthermore, to also test the ANNwe varied num-
ber of subsets that were used for training, validation
and testing. The network performed best when more
data was used for training. For each run, theMSEs and

regression values were recorded. The lowest error and
best regression values, looking at the network that also
used maximum number of input variables, were
achieved with ANN#3, MSE=0.0039 cm2 and
regression value=0.971 71 (table 3). This table actu-
ally shows the ANN runs that gave the best results with
the different setups after retrainingwas performed.

In ANN, an epoch (cycle) is a measure of the num-
ber of times that all the training vectors are used to
update the weights (network is presented with a new
input pattern). It is the number of iterations needed to
achieve adequate network training, i.e. until mini-
mum gradient is reached. In our case, depending on
the number of input variables, the values in the parti-
tion sets and the number of neurons in the hidden
layer, final number of epochs during training ranged
from5 to 50 (for the runs with the lower number of the
input parameters). An example of the network perfor-
mance is shown in figure 3. This figure shows when
best validation performance is reached. Epoch 6 in this
example indicates the iteration at which the validation
performance reached aminimum. And then the train-
ing continued for a few more iterations before the

Table 3.TheANNexperimentation results for varying numbers of the partition subsets, input factors, and
neurons in the hidden layer.

ANN Partition subsets Hidden layer neurons Input data MSE (cm2) Regression

1 70%, 15%, 15% 30 5 0.0391 0.846 91

2 50%, 25%, 25% 10 5 0.0207 0.849 80

3 80%, 10%, 10% 10 5 0.0039 0.971 71

4 80%, 10%, 10% 30 5 0.0051 0.963 26

5 80%, 10%, 10% 30 3 0.0335 0.740 57

6 80%, 10%, 10% 10 2 0.0099 0.928 57

7 70%, 15%, 15% 10 5 0.0108 0.932 88

8 70%, 15%, 15% 1 5 0.0241 0.827 34

9 70%, 15%, 15% 3 5 0.0223 0.843 59

10 70%, 15%, 15% 6 5 0.0106 0.927 72

11 80%, 10%, 10% 10 4 0.0071 0.954 33

12 80%, 10%, 10% 10 3 0.0067 0.951 74

13 80%, 10%, 10% 30 3 8.97E-05 0.999 17

Figure 2.Example of theMATLABANNarchitecture.

Table 4.Motion extent error values for theANNwith the two input parameters.

Direction/patient# 1 2 3 4 5 6 7 8 9 10 11

LR (cm) 0.00 0.08 0.02 −0.02 0.00 −0.06 −0.01 −0.17 0.00 −0.01 0.03

SI (cm) 0.00 0.29 0.02 −0.03 0.00 −0.31 −0.01 −0.24 0.00 0.04 0.01

AP (cm) 0.00 0.05 −0.01 0.00 0.00 −0.07 0.01 −0.11 0.00 0.01 0.15
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training stopped. The figure does not indicate any
major problems with the training. The validation and
test curves are very similar. If the test curve had
increased significantly before the validation curve
increased, then it is possible that some overfitting
might have occurred. Generally, the error reduces
after more epochs of training, but might start to
increase on the validation data set as the network starts
overfitting the training data. In the MATLAB’s Neural
Network Toolbox default setup, the training stops
after six consecutive increases in validation error, and
the best performance is taken from the epoch with the
lowest validation error (Beale et al 2010).

The regression plot and error histogram for the
best performance run are shown in figures 4–6, ANN
#3, table 3. These figures present examples of the plots
available and used as a tool to analyze neural network
performance after training. In figure 4, the dashed line
represents the perfect result—outputs=targets. The
solid line represents the best fit linear regression line
between outputs and targets. The R value is an indica-
tion of the relationship between the outputs and tar-
gets. In this case, a good fit is indicated for data results
that show R values greater than 0.9. The scatter plot
shows that certain data points have poor fits. The next
step would be to investigate these data points and

Figure 3.ANN training performance example (with epoch 11minimumgradient reached).

Figure 4.Regression plot for the best ANNwith 10 neurons in the hidden layer.
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determine if they should be included in the training
set, in which case we would need additional data in the
test data set. Error histograms plotted in figures 5 and
6 provide additional verification of network perfor-
mance. In figure 6, the blue bars represent training
data, the green bars represent validation data, and the
red bars represent testing data. This histogram can be
used to point out outliers, which are data points where
the fit is significantly worse than the majority of data.
In this case, we notice that while most errors fall
between −0.07 and 0.06, there is a validation point
with an error of 0.12 and test points with errors of
−0.16 and 0.25. These outliers are also visible on the
regression plot, figure 4. We can check the outliers to
determine if the data is bad, or if those data points are
different than the rest of the data set. If the outliers are
valid data points, but are unlike the rest of the data,
then the network is extrapolating for these points.

Next step would be to collect more data that looks like
the outlier points, and retrain the network, i.e. have a
larger data set for training and testing of a neural net-
work. Same reasoning applies to a data plotted in the
figures 7 through 9. As shown in table 3, the 5th ANN
had three input variables, which were chosen for the
network design (tumor size, upper/lower lung and
anterior/posterior location). The 6th ANN had two
input variables chosen for the network design (tumor
size and upper/lower lung location). Finally, the 11th
ANN had four input variables chosen for the network
design (tumor size, left/right lung, upper/lower lung,
and peripheral/central tumor location). In all the
cases, when the regression values for all the subsets
were>0.8 and the MSE values<0.005 cm2, retraining
would stop. This was achievable for all the ANNs
except for the one that had 30 neurons in the hidden
layer and three input variables (number 5). However,

Figure 5.Error histogramplot for the best ANNwith 10 neurons in the hidden layer.

Figure 6.Error histogramplot for the best ANNwith 10 neurons in the hidden layer, with the partitions also shown.
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when the network was further retrained we achieved
a MSE value of 8.97E-05 cm2 and a regression
value of 0.9992 (ANN number 13 in table 3), which
is also shown in figures 7–9. This is probably due to
over-fitting and/or larger training subset, which
requires more test data to be used for additional
checks.

Table 5 shows the error values obtained from the
best network result with the 10 neurons in the hidden
layer. The maximum errors were −0.17 cm in the LR
direction, 0.26 cm in the SI direction and−0.07 cm in
the AP direction. In 70% of the cases, the maximum
error was in the craniocaudal direction, mostly

because tumor motion values in that direction had a
widest span of values for the examined cases.

4.Discussion

Our preliminary work (Jurkovic et al 2016) showed
that there is a preferred tumor motion direction (left,
inferior, regardless of the location), more specifically,
upper/middle tumors move predominantly left
(67%), anterior (67%) and inferior (83%), while lower
lesions tend to move more left (60%), posterior (60%)
and inferior (60%). Overall, for all the cases, displace-
ment was predominantly left (64%), anterior (55%)

Figure 7.Regression plot for the best ANNwith 30 neurons in the hidden layer after excessive retraining.

Figure 8.Error histogramplot for the best ANNwith 30 neurons in the hidden layer after excessive retraining.
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and inferior (73%). This was confirmed by the largest
volume change in those directions (Jurkovic
et al 2016), where for each patient, tumor volume
residuals (FUS (volume that is sum of all tumor
volumes through the breathing phases)—AIP (volume
delineated on the AIP CT dataset)) were calculated for
each of the plane halves. The results show that in the
majority of the cases the FUS residual volume part
prevailed on the following directions: left, 82%,
posterior, 55%, and inferior, 64%. The preferred
tumor motion that was observed relates to the motion
of the tumor volume COM in the AIP CT dataset
against the COM in each phase CT dataset. More
specifically, it was found that smaller volume sizes
require contouring on all the phases since contouring
only on the AIP and MIP scans will not cover the
extent of motion and volume change in these cases. In
other clinical cases, it was found that there is 3D angle
similarity when plane fitting is done that depends on
the tumor size and location and this can allow for
adequate margin calculation when certain parameters
are known without extra contouring on all the phases;
for example it was found that the lower located tumors
have AP angles around 30° and LR-AP angles around
50° and more specifically in all the studied examples
correlation was found between the best line fit and the
tumor location. In most instances the R2 value was
greater than 0.9 for those planes. Hysteresis (the
difference between the inhalation and exhalation

trajectory of the tumor) is studied in various publica-
tions (Seppenwoolde et al 2002, Mageras et al 2004,
Low et al 2005, Boldea et al 2008,White et al 2013) and
represents an important issue for the patients with
lung cancer. In most studies computing hysteresis
between the trajectories came to calculating the
maximum distance between inhalation polygonal
curve and exhalation polygonal curve, which can be
done by using different distance measures, i.e. Frechet
distance for example. In our study we used similar
approach and found that there is correlation between
the motion trajectories among individual patients
depending on the tumor size and location and also
between the inhale and exhale paths in some patients
that allows for contouring on either just the inhale or
exhale phase (Jurkovic et al 2016). This finding may
lead to a reduction of the work labor especially for
smaller tumors where contouring on all the phases is
recommended.

Taking into account these findings, the correlation
that is found between various factors was further
explored, and used as a basis for the neural network
creation and design.

Once trained, ANN performed well with regres-
sion values that included all three subsets (training,
validation and test), which were above 0.80 in almost
all cases regardless of the number of input parameters
chosen. Some studies point out that a neural network
may be an unstable predictor or classifier as it may

Figure 9.Error histogramplot for the best ANNwith 30 neurons in the hidden layer with the partitions also shown.

Table 5.Motion extent error values for the best ANN in cm.

Direction/

patient# 1 2 3 4 5 6 7 8 9 10 11 Average

LR 0.00 0.00 0.01 −0.17 0.01 0.03 0.13 0.03 0.00 0.00 0.00 0.005

SI −0.02 0.00 0.00 0.26 0.01 −0.02 −0.07 0.05 −0.01 −0.04 −0.03 0.012

AP 0.00 0.00 0.00 −0.01 −0.03 −0.01 −0.03 −0.07 0.01 −0.01 0.02 −0.012
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have high error in the test datasets due to the over fit-
ting on the training dataset (i.e. small changes in initial
conditions can lead to high variability in predictions).
To overcome this problem amethod for reducing var-
iance is suggested. This method is called bagging,
which works best with unstable models but can
degrade performance of the stable models (Brei-
man 1998). Bagging is performed using a bootstrap
model where bootstrap samples of a training set using
sampling with replacement are created. Each boot-
strap sample is used to train a different component of
base classifier. However, our network showed good
performance even with the test datasets, constantly
achieving regression values above 0.80 andMSE values
below 0.005 cm2 when all the input parameters were
used for the network design.

In MATLAB’s default network setup (MATLAB &
Simulink. n.d.) each network is trained starting from
different initial weights and biases, andwith a different
division of the first dataset into training, validation,
and test sets. Note that the test sets are a goodmeasure
of generalization for each respective network, but not
for all the networks, because data that is a test set for
one network will likely be used for training or valida-
tion by other neural network runs. This is why it is
recommended to divide the original dataset into two
parts, to ensure that a completely independent test set
is preserved. However, in the case of a limited size
dataset this is not possible. As a consequence, with
each run, data is divided randomly and differently for
each setup leading to different results, i.e. MSE and R
values. For each of the setups multiple runs are per-
formed and then the one with the best overall perfor-
mance is chosen, which does not necessarilymean that
due to the fact that different divisions among datawere
applied we do not run into overfitting in some of the
runs. In our case, we did not have an independent
dataset to further check the network’s behavior. We
also followed these rules to assess the reasonability of
the results: the final MSE is small and the test set error
and the validation set error have similar characteristics
(figure 3). If the network performance is not satisfac-
tory it is recommended to increase the number of hid-
den neurons and/or increase the number of input
values.

Another problem is overgeneralization (MATLAB
& Simulink. n.d.). The purpose of training a feedfor-
ward network is to modify weight values iteratively
such that the weights, ultimately, converge on a solu-
tion that correctly relates inputs to outputs. It is nor-
mally desirable during the training of a network to be
able to generalize basic relations between inputs and
outputs based on training data, which may not consist
of all possible inputs and outputs for a given problem.
A problem that can arise in the training of a neural net-
work involves the tuning of weight values so closely to
the training data that the usefulness of the network in
processing new data is diminished, which results in

over-generalization (or over-training). Basically, this
means that the network training may incorporate fea-
tures of the training dataset that are uncharacteristic of
the data as a whole. However, as the measured error
continually decreases, the network usefulness and cap-
abilities will also be decreasing (as the network modi-
fies weights to match the characteristics of the training
data). This is also where validation and test sets come
into the picture, since the network’s MSE and R values
are a result of the whole network’s behavior, i.e. even
though theMSE values that are result of the validation
and tests dataset may be lower, the overall MSE value
(due to the high training set MSE value) may be high
enough for the network run to pass our criteria.

Nevertheless, we need to point out limits of our
approach. The data set used was small and by increas-
ing the number of neurons in such limited data set size
we run into the issue of over fitting. In order to
improve the results of the motion extent prediction
designed network, the dataset size should be increased.
The inclusion of the larger datasets would also give
more accurate and stable results. An issue to be dis-
cussed concerns the number of hidden neurons used
during each trial. However, multiple published studies
(Elisseeff and Paugam-Moisy 1996, Lawrence
et al 1998, Basheer andHajmeer 2000, Priddy and Kel-
ler 2005, Devaraj et al 2007, Kuncheva 2012, Sheela
et al 2013, Mozer et al 2014) show that in most of the
cases several rules of thumb are suggested, but the
most popular approach for finding the optimal num-
ber of hidden nodes is by trial and error with one of the
mentioned rules as starting point, i.e. retrain the net-
work with varying numbers of hidden neurons and
observe the output error as a function of the number
of hidden neurons. Furthermore, a study done by
Tetko et al (1995) states that real examples suggest a
rather wide tolerance of ANN to the number of the
hidden layer neurons. From our study it is apparent
that even with the limited size of the presented dataset,
a solution with acceptable accuracy could be found.
Once network is build and trained, the results can be
used for the adequatemargin design.

The amount of the input data can be as large as
needed and/or deemed necessary. We have shown
that we can achieve good results with only two input
neurons, but this is most probably due to the fact that
for a particular run the training dataset was much lar-
ger than the validation and testing datasets, and
the network may have simply over fit the data,
which emphasizes our conclusion of more cases
needed to test network’s stability and accuracy.
Besides the data that was already taken into account,
tumor characteristics can be further stratified to
include pathology, tumor stage, attachment to rigid
structures, simulation setup (compression being used
or not), etc.
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5. Conclusions

The present study discussed the concepts related to
neural networks and proposes the use of a given ANN
algorithm together with the clinical lung tumor
information for prediction of the tumor motion
extent. Based on the analysis of our results the
proposed solution has several advantages—automated
motion extent prediction using the ANN algorithm,
usage of the readily available clinical data, and possible
high prediction accuracy. In the future, we aim at
incorporating more clinical tumor information with
the application of different algorithms on the pro-
posed platform, use a larger data set, and carry out
additional studies to further improve their liability and
stability of the proposed neural network.
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