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Abstract. The paper presents our approach to SVM implementation in parallel
environment. We describe how classification learning and prediction phases were
pararellised. We also propose a method for limiting the number of necessary com-
putations during classifier construction. Our method, named one-vs-near, is an
extension of typical one-vs-all approach that is used for binary classifiers to work
with multiclass problems. We perform experiments of scalability and quality of
the implementation. The results show that the proposed solution allows to scale
up SVM that gives reasonable quality results. The proposed one-vs-near method
significantly improves effectiveness of the classifier construction.

Keywords: SVM · Wikipedia · Documents categorization · Parallel
classification

1 Introduction

The size of the internet and globally stored data is growing with every year. Today
the estimated number of indexed web pages is somewhere between 20 and 50 billion
pages [1]. Automatic categorization of this evergrowing data becomes a real challenge.
Even smaller text documents repositories, such as the Wikipedia reaching 4.5 million
articles organized with hundreds of thousands of categories [2], require the aid of auto-
matic categorization. The building of accurate text classifiers is a hard task by itself and
the huge size of the data makes this problem even more challenging. There are many
existing approaches to this problem, with different results both in terms of accuracy and
performance [3] [4] [5] [6] [7] [8], but there is still need for improvements in this area.

The aim of the work presented here was to create a classifier capable of automatic
categorization of text documents from repositories containing over 100k categories with
acceptable performance and quality. The experiments, aimed at evaluating our classifi-
cation solution, have been performed using Wikipedia data, created with our application
that allows to construct its machine-processable representation [9].

The structure of this article is as follows. The next section briefly describes SVM
classifiers and the way they are incorporated to solve multiclass classification prob-
lems. Section 3 describes our proposition to speed up and boost performance of SVM
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in highly multiclass classification tasks. Then, in section 4 we present details of our
parallel implementation of the proposed method. The experiments using this imple-
mentation, along with empirical results on Wikipedia datasets, are given in section 5.
Last section concludes the paper and gives the ideas for further research in this area.

2 SVM Classifier in a Typical Multiclass Setting

One of the most effective methods of text classification is Support Vector Machines [10].
SVM in its base form is a binary classifier. Mathematically, SVM classifier is a hyper-
plane h() in high dimensional feature space (examples are typically projected into that
space by a kernel function), which is convex-optimized during training so that it sep-
arates the classes leaving maximal possible space (margins) between them. Prediction
step can be summarized in a simple equation a = h(x), where a is the activation of the
hyperplane, and x is the feature vector (possibly transformed by a kernel) of a testing
object. The sign of a decides which class is predicted, whereas the absolute value of a
indicates the confidence of this decision. With advanced optimization algorithms used
by SVM, time complexity of training such a hyperplane is O (mtrain), where mtrain is
number of training examples.

Although there are attempts to directly deal with multiclass problems using reformu-
lated SVMs [11,12], most often such problems are decomposed into binary classifica-
tions and incorporate typical SVM classifiers summarized above.

In a popular one–vs–all scheme (also more correctly referred to as one–vs–rest), for
each class a separate hyperplane is trained by treating examples from that class as posi-
tives and all the rest examples in the dataset as negatives. During prediction a test object
is assigned to a class which hyperplane’s activation a is the highest (winner takes all
strategy). Complexity of calculating the whole model in this setting is O (mtrain ·N),
where N denotes the number of classes. In case of prediction, assigning labels to mtest

test objects can be performed in a O (mtest ·N) time. For large datasets comprising lots
of classes and objects, both training and prediction is computationally expensive to the
extent where it becomes impractical to perform training and prediction sequentially and
thus parallel techniques are necessary. Moreover, for very big datasets, the requirement
that the whole dataset is needed for training a single hyperplane, can lead to memory
problems. Another important issue with this approach is that it divides data into positive
and negative classes which are very imbalanced, especially for highly multiclass prob-
lems. For example, assuming that there are 100k classes of equal size, the proportion of
positive to negative examples would be 1:99999. This high imbalance can lead to poor
quality of predictions.

The second popular scheme is called one–vs–one. Here, a separate SVM classifier is
trained for each pair of classes, yielding N(N − 1)/2 hyperplanes. The prediction in
such a system is most often done with Max Wins approach, in which the class with the
biggest number of votes from all classifiers is chosen, although more advanced tech-
niques are possible [13]. Although the number of hyperplanes grows quadratically with
N , each classifier requires examples only from two classes and not from the whole
dataset, therefore the learning phase theoretically could still be O (mtrain ·N), while
there are no problems with fitting data into memory and imbalanced data. Unfortunately,
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this complexity estimation does not hold for datasets, where objects can belong to more
than one class (multi-label classification tasks). Also, the testing phase, assuming stan-
dard Max Wins approach, is O

(
N2

)
. Therefore, for large-scale multi-label problems

(and categorizing Wikipedia articles belongs to this family), one–vs–one scheme be-
comes impractical. The comparative study of these multiclass SVM settings, as well as
less popular ones, can be found in [14].

It is important to note, that the Wikipedia classification belongs to a multi-label fam-
ily of problems, where a given document can be (and almost always is) associated with
more that one category label. In such cases, the winner takes all algorithm of one–vs–all
strategy is replaced with the following procedure. Each article is tested against every
category in the dataset and the final result consists of categories with activation scores
that exceed a specified threshold value. The number of categories returned as well as
the minimum acceptable level of activation are parametrized. It should be noticed that
changing these parameters has great impact on accuracy of the classifier. Having large
computational resources (as training has to be repeated many times) this task can be
optimized to select the parameters giving the best results.

3 One–vs–near Method

Since the number of categories has a crucial influence on classifier performance, we
propose a solution to limit the number of necessary comparisons by modifying standard
one–vs–all scheme. During SVM training instead of comparing every class with set of
all others we compare it only to the most similar ones.

This scheme we call one–vs–near. It allows to limit the number of articles mtrain,
required to train during a single binary classifier construction, by reducing the dataset
only to the most similar categories. This solution makes certain assumptions that need
to be met for it to work properly.

– The dataset should contain many distinguishable categories.
– It should be possible to find nearest neighbors of each category in a short time.
– The neighboring categories should allow to create an accurate classifier.

All these conditions should be easily met in a sparse dataset such as the Wikipedia
machine processable representation based on bag of words [15] and its extensions [16].
Because of the huge number of categories and articles, it should be possible to limit the
training dataset size for each binary classifier. This solution should give us the following
advantages:

– The memory consumption should be limited.
– The training performance should be better due to smaller size of the training set.
– The accuracy of the resulting classifier should be comparable to the one trained on

the entire dataset, if above assumptions are satisfied, or even better due to noise
reduction.

– The problem of highly unbalanced datasets should be mitigated.

Since the SVM uses the support vectors to create the hyperplane only the datapoints
at the border between categories are significant to the result. This means that most of
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the dataset should be redundant and only the points in the neighboring categories are
needed to create an accurate classifier. This situation is symbolically represented in
Fig. 1.

Fig. 1. Schematic example motivating one–vs–near approach

In this example we can see that only the border points of categories represented
as red and green dots are needed in order to create the support vectors and plot the
optimal hyperplane. The points of the category represented with blue dots are therefore
redundant, and have no impact at the resulting classifier.

The neighboring classes are computed by a kNN classifier using cosine distance,
typical in text processing [17]. To obtain nearest categories, instead of comparing dis-
tances of a test document feature vector to training feature vectors, the kNN classifier
computes the distances between every category centroid – we model distances between
categories by distances between their centroids.

4 Parallel Implementation Details

Besides the speedups obtained due to our one–vs–near multiclass scheme, the construc-
tion of scalable text classifier requires the use of a parallel computations environment.
As presented before, both the training and the prediction task related to each SVM
hyperplane are intrinsically independent, therefore the job of decomposing the prob-
lem between parallel computational nodes is straightforward. In fact, each task is either
a category to train (in the training phase) or an article, for which classes are to be pre-
dicted (in the prediction phase). Each computational node picks up tasks from the task
queue.
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In our implementation each of computed hyperplanes is saved into a separate file and
for each category prediction this file should be read. SVM training for large data can
be parallelized by running a single class training procedure in one thread. Managing to
distribute training procedures related to all classes over different computational nodes
allows to construct a scalable classifier. Our implementation uses a file queue in order
to distribute training tasks between processes. This allows us to run the classifier in
parallel on many computing nodes using common network file system.

The prediction phase of the classifier requires to test each article from the test set
against every hyperplane. Just as in the training phase, this problem can also be paral-
lelized – the procedure is run in parallel threads and the use of file queue allows to run
the program on many computing nodes.

In our implementation computations were parallelized in two ways. First, the jobs
are spread across multiple machines. Then, on each machine multiple processor cores
are used to speed up the whole process. Synchronization between computing nodes was
obtained using Network File System (NFS) and file locking. With NFS, every machine
works in the same directory, having access to the same files and saving results in the
same folder. All the jobs to be done are stored in a single TODO file. The TODO file
contains names of hyperplanes to train in case of training and list of objects to predict
labels for in case of prediction. Every computing node can obtain certain number of
jobs from the TODO file and run these jobs using available cores. Having done that it
can receive new jobs and so on.

In addition to machine level parallelization the architecture allows for each node to
run its computations in parallel threads. This means that eg. having 5 nodes each with
4 logical processors gives us 20 parallel threads in total. Both the number of nodes
and threads running on each node is parametrized and can be changed depending on
available hardware.

As manually starting the software on each node is time consuming and prone to er-
rors we did MPI Message Passing Interface implementation [18] to run and initialize
the program on specified nodes with a single command as well as to assign ranks to
each process in order to identify them. The ranks are used for logging the computa-
tions of each node in a separate file and in some cases to assign certain parts of the
problem to separate threads on separate nodes. Since the filesystem queue performed
with acceptable results there was no need for any additional tasks division scheme like
master-slave.

5 Experiments

To evaluate effectiveness of our approach we perform series of tests. They were planned
to check performance, scalability and accuracy of the classifier. Initial tests have been
performed with smaller size data and without cross validation in order to make them
feasible to run with limited time and computing power. The final tests have been per-
formed using large scale datasets.
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Fig. 2. SVM and kNN performance

5.1 SVM and kNN Training Scalability

For evaluation of SVM and kNN scalability we use data prepared from Wikipedia that
contained 530 categories and 853283 articles. The average density of feature vectors
equals 0.004%, which gives 876 MB file. The results were computed on our computer
cluster with usage of different number of nodes. Each node consists of four logical
processors, the time results are shown in Fig. 2.

The aim of this test was to approximate the performance of SVM classifier construc-
tion in relation to the number of computational nodes. As we can see the classifier scales
quite well as it was expected. Whats more, we can see that the kNN classifier is faster
by a magnitude, which confirms the most important assumption of the one–vs–near
scheme, that we can find neighbours of each category in a short time.

5.2 Tests of Accuracy on Small Data

In order to assess the quality of the SVM classifier we perform a test of its accuracy. To
limit the time of the experiment we run this test on the dataset with limited number of
elements, same as in the previous experiment. The tests were performed using 10-fold
cross-validation. The measured values contains precision, recall and the F-score. These
values are presented in Tab. 1.

– Precision = true_positive/(true_positive+ false_positive)
– Recall = true_positive/(true_positive+ false_negative)
– F − score = 2 ∗ Precision ∗Recall/(Precision+Recall)

Big number of examples per category allowed to train an accurate classifier. The
results of the experiments presented in sections 5.1 and 5.2 indicate the classifier will
scale up well and can reach acceptable results of classification quality.



Improving Effectiveness of SVM Classifier for Large Scale Data 681

Table 1. SVM classification results

True positives False positives False negatives Precision Recall F-score
888306 203669 339974 81.34% 72.32% 76.56%

5.3 Scalability in the Function of Datasets Size

To check how the classifiers architecture works on large data we perform experiments
with different sizes of big data packages. Beside computational effectiveness, the main
concern here was the memory required on each computing node to load a dataset. To
overcome that problem it was required to implement additional parameter that specifies
the size of processed data block. For this experiment different sets of data were created
with different numbers of articles.

Five various datasets were created from the full Wikipedia using Matrix’u appli-
cation [9] based on 8th March 2013 [19] dump. They differ in the number of arti-
cles filtered out from them, the number of small categories merged with their parents
and finally the number of the remaining small categories removed (categories with not
enough examples to train a general classifier). Their description is shown in Tab. 2.

Table 2. Large scale datasets

Name File size Num. of cat. Num. of art. Vector density
Dataset1 2.1 GB 127402 2331707 0,0017%
Dataset2 2.4 GB 125573 2675198 0,0017%
Dataset3 2.7 GB 146444 3067138 0,0017%
Dataset4 3.0 GB 156829 3517048 0,0017%
Dataset5 4.4 GB 163986 3520309 0,0024%

The tests were run on two different clusters of computers with different hardware
configurations:

Department Cluster: processor: Intel(R) Xeon(TM) CPU 2.80GHz, 4 physical, 8 log-
ical cores, L2 Cache size: 2048KB, Memory: 4054340 kB, Swap 3076436 kB.

Lab 527: processor: Intel(R) Core(TM) i7-2600K CPU 3.40GHz, 4 physical, 8 logical
cores, L2 cache size: 256K, L3 cache size, Memory: 8172568 kB, Swap 2111484 kB.

Each dataset was run on each cluster in order to test the memory consumption as
well as to compare the performance between different hardware configurations. Both
clusters consisted of 8 computing nodes with four threads per node, giving a total of 32
threads. The results of these tests are presented in Fig. 3

As expected, the execution times in this test are bigger for datasets containing more
articles and categories and having bigger density. The lab527 cluster shows better per-
formance than the department cluster for all datasets, most likely due to the hardware
specification. The most interesting result of this test is the scaling of the classifier on the
department cluster. The execution times grew nonlineary with the size of the dataset.
This can be explained by the memory limitations of each node on this cluster. The times
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Fig. 3. kNN training scalability for large data

used for memory initialization by the system grew rapidly with dataset sizes closing to
the maximum size of system memory.

5.4 One–vs–near Accuracy in Relation to the Number of Neighbors

This test was designed in order to measure the accuracy of the one–vs–near strategy in
relation to the number of category neighbours and to compare it with the accuracy of the
one–vs–all scheme. The test was conducted for a predefined set of parameters and the
only variable parameter was the number of neighbours. As an evaluation dataset, here
we use the same dataset as in section 5.2. The assessment of the one–vs–near accuracy
was performed with use of 10-fold cross-validation. The results of this test are shown
in Fig. 4.

As we can see in Fig. 4 the one–vs–near strategy starts to perform quite well above
particular treshold of k neighbors. The results for the one–vs–near strategy were worse
than the one–vs–all scheme if smaller number of class neighbors has been selected.
Increase of that parameter leads to improvement of the results. Increasing the number
of k neighbors over 400 makes the strategy practically equivalent to one–vs–all. This
is intuitive as the number of category’s nearest categories limits in the total number of
all the other categories. It should be noticed proposed approach consumes additional
computation time required to calculate neighbors. In next section we show how this
addition processing is compensated by more effective classifier learning.



Improving Effectiveness of SVM Classifier for Large Scale Data 683

40 60 8010
0
12

0
14

0
16

0
18

0
20

0
24

0
28

0
32

0
36

0
40

0
44

0
48

0
52

940

50

60

70

80

one–vs–all

number of neighbours

F
–s

co
re

[%
]

one–vs–near

Fig. 4. One-vs-near accuracy compared to one-vs-all

5.5 One–vs–near Performance

Another factor we measure is the performance of the one–vs–near approach in relation
to the number of neighbors. The results performed on lab527 cluster and dataset #5 are
shown in Fig. 5.

What can be observed from the graphs given in Fig. 5 is that the decreasing number
of classes used for classifier construction significantly reduces the computation time.
The gain is significant up to using 500 neighboring classes. This fact together with pre-
viously observed improvement of the classifier quality constructed with smaller number
of classes (see Fig. 4) constitute a strong argument that one–vs–near scheme can be used
as a general method for SVM improvement.

However, it should be noticed that the one–vs–near method adds a fixed factor to the
computations that comes from computing the neighbouring classes. This additional time
can be observed in the graph when the total number of neighbouring classes exceeds
1000. Above that point one-vs-all strategy starts to perform better than one-vs-near. In
our application we use a simple comparison of one class with others, but this time can
be significantly reduced incorporating dedicated indexes [20].

Despite increasing computation cost, the memory requirements of the strategy pro-
posed by us, interestingly, are still below requirements of one–vs–all approach. Our
solution allows us to limit the memory consumption using the cost of additional com-
putations. If the number of neighbouring classes would contain all examples from the
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Fig. 5. One–vs–near performance in relation to the number of neighbors

dataset, it would cause maximum memory requirements that would be as big as for the
one–vs–all scheme.

6 Conclusions and Future Work

In our research we developed and evaluated a parallel approach to classification of text
documents with SVM. The algorithm was designed to be used with large scale text
document repositories in mind, such as the Wikipedia. The proposed solution scales
up well and gave acceptable accuracy results. Additionally, a new approach to improve
effectiveness of classification – one–vs–near scheme – was implemented and tested.
Proposed scheme provides accuracy comparable, to typical one–vs–all scheme while
significantly improving time needed to classifier construction.

Although the problem of text documents classification was extensively tested in
many works (eg. [5] [3] [21]), there is still some room for further research and im-
provements in this area. There are many yet untested approaches to this problem that
might be worth testing.

One of such possible approaches is an application of different methods for neighbors
search, such as the one proposed by Holloway et al [22]. It would be valuable to com-
pare its quality and performance with the centroid based approach. Another idea would
be to seek for neighboring articles instead of whole categories although this could be
very demanding performance–wise. It would be also interesting to test the one–vs–near
classifier with different kinds of SVM solvers and their parameters. Proposed approach
can also be useful for identifying inner categories relations [23].
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One thing that did not present satisfying results in our research was the memory
usage reduction. Storage of large matrixes in the form of neighbor list can be possibly
improved using some sort of array data DBMS, such as SciDB [24], to store the feature
vectors, instead of plain text files. This would further improve the performance of the
classifier and allow to limit the batch size and thus the memory requirements.

Another potentially interesting approach would be to make the initial classification
on some reduced set of higher level categories (only if categories are organized in a hi-
erarchical structure, as in case of Wikipedia categories) and then continue the more
detailed classification only on the set of neighboring categories. However, the accuracy
of such solution could be greatly decreased since errors from each classification stage
would multiply.

As mentioned before, the developed classifier presents promising results in the
Wikipedia classification task. There are many different approaches to automatic clas-
sification that have not been tested yet or at least not in the context of text documents
classification. Some of which were mentioned in this section. It is an interesting topic
and there is still a lot of potentially valuable research to be done in this area of computer
science. A big challenge will be to develop some classifiers using a quantum-inspired
algorithms [25] as well as some immune algorithms.
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