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Abstract— Recently the sparse representation based classifica-
tion (SRC) has been proposed for robust face recognition (FR). In
SRC, the testing image is coded as a sparse linear combination of
the training samples, and the representation fidelity is measured
by the l2-norm or l1-norm of the coding residual. Such a sparse
coding model assumes that the coding residual follows Gaussian
or Laplacian distribution, which may not be effective enough to
describe the coding residual in practical FR systems. Meanwhile,
the sparsity constraint on the coding coefficients makes the
computational cost of SRC very high. In this paper, we propose a
new face coding model, namely regularized robust coding (RRC),
which could robustly regress a given signal with regularized
regression coefficients. By assuming that the coding residual and
the coding coefficient are respectively independent and identically
distributed, the RRC seeks for a maximum a posterior solution
of the coding problem. An iteratively reweighted regularized
robust coding (I R3C) algorithm is proposed to solve the RRC
model efficiently. Extensive experiments on representative face
databases demonstrate that the RRC is much more effective
and efficient than state-of-the-art sparse representation based
methods in dealing with face occlusion, corruption, lighting, and
expression changes, etc.

Index Terms— Face recognition, regularization, robust coding,
sparse representation.

I. INTRODUCTION

AS ONE of the most visible and challenging problems in
computer vision and pattern recognition, face recognition

(FR) has been extensively studied in the past two decades
[1]–[21], and many representative methods, such as Eigenface
[2], Fisherface [3], and SVM [4], have been proposed. More-
over, to deal with the challenges in practical FR system, active
shape model and active appearance model [5] were developed
for face alignment; LBP [6] and its variants were used to
deal with illumination changes; and Eigenimages [7], [8] and
probabilistic local approach [9] were proposed for FR with
occlusion. Although much progress have been made, robust
FR to occlusion/corruption is still a challenging issue because
of the variations of occlusion, such as disguise, continuous or
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pixel-wise occlusion, randomness of occlusion position, and
the intensity of occluded pixels.

The recognition of a query face image is usually accom-
plished by classifying the features extracted from this image.
The most popular classifier for FR may be the nearest neighbor
(NN) classifier due to its simplicity and efficiency. In order to
overcome NN’s limitation that only one training sample is
used to represent the query face image, Li and Lu proposed
the nearest feature line (NFL) classifier [10], which uses two
training samples for each class to represent the query face.
Chien and Wu [11] then proposed the nearest feature plane
(NSP) classifier, which uses three samples to represent the test
image. Later on, classifiers using more training samples for
face representation were proposed, such as the local subspace
classifier (LSC) [12] and the nearest subspace (NS) classifiers
[11], [13]–[15], which represent the query sample by all the
training samples of each class. Though NFL, NSP, LSC, and
NS achieve better performance than NN, all these methods
with holistic face features are not robust to face occlusion.

Generally speaking, these nearest classifiers, including NN,
NFL, NFP, LSC, and NS, aim to find a suitable representation
of the query face image, and classify it by checking which
class can give a better representation than other classes.
Nonetheless, how to formulate the representation model for
classification tasks such as FR is still a challenging problem.
In recent years, sparse representation (or sparse coding) has
been attracting a lot of attention due to its great success in
image processing [22], [23], and it has also been used for FR
[16]–[18] and texture classification [24]. Based on the findings
that natural images can be generally coded by structural
primitives (e.g., edges and line segments) that are qualitatively
similar in form to simple cell receptive fields [25], sparse
coding represents a signal using a small number of atoms
parsimoniously chosen out of an over-complete dictionary. The
sparsity of the coding coefficient can be measured by l0-norm,
which counts the number of nonzero entries in a vector. Since
the combinatorial l0-norm minimization is an NP-hard prob-
lem, the l1-norm minimization, as the closest convex function
to l0-norm minimization, is widely employed in sparse coding,
and it has been shown that l0-norm and l1-norm minimizations
are equivalent if the solution is sufficiently sparse [26]. In
general, the sparse coding problem can be formulated as

min
α

‖α‖1 s.t. ‖y − Dα‖2
2 � ε (1)

where y is the given signal, D is the dictionary of coding
atoms, α is the coding vector of y over D, and ε > 0
is a constant. Recently, Wright et al. [16] applied sparse
coding to FR and proposed the sparse representation based
classification (SRC) scheme. By coding a query image y as
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a sparse linear combination of all the training samples via
Eq. (1), SRC classifies y by evaluating which class could result
in the minimal reconstruction error of it. However, it has been
indicated in [27] that the success of SRC actually owes to its
utilization of collaborative representation on the query image
but not the l1-norm sparsity constraint on coding coefficient.

One interesting feature of SRC is its processing of face
occlusion and corruption. More specifically, it introduces an
identity matrix I as a dictionary to code the outlier pixels (e.g.,
corrupted or occluded pixels)

min
α

‖[α; β]‖1 s.t. y = [D, I] · [α; β] (2)

By solving Eq. (2), SRC shows good robustness to face
occlusions such as block occlusion, pixel corruption and
disguise. It is not difficult to see that Eq. (2) is basically
equivalent to minα ‖α‖1 s.t. ‖y − Dα‖1 < ε. That is, it
uses l1-norm to model the coding residual y – Dα to gain
certain robustness to outliers.

The SRC has close relationship to the nearest classifiers.
Like NN, NFL [10], NFP [11], LSC [12], and NS classifiers
[13]–[15], [11], SRC also represents the query sample as the
linear combination of training samples; however, it forces the
representation coefficients being sparse (instead of presetting
the number of non-zero representation coefficients) and allows
across-class representation (i.e., significant coding coefficients
can be from samples of different classes). SRC could be seen
as a more general model than the previous nearest classifiers,
and it uses the samples from all classes to collaboratively
represent the query sample to overcome the small-sample-size
problem in FR. In addition, different from the methods such
as [6], [9], [28], [29] which use local region features, color
features or gradient information to handle some special occlu-
sion, SRC shows interesting results in dealing with occlusion
by assuming a sparse coding residual, as in Eq. (2). There are
many following works to extend and improve SRC, such as
feature-based SRC [18], SRC for face misalignment or pose
variation [30], [66], regularized collaborative representation
[67], and SRC for continuous occlusion [31].

Although the sparse coding model in Eq. (1) has made
a great success in image restoration [22], [23] and led to
interesting results in FR [16]–[18], there are two issues to
be considered more carefully when applying it to pattern
classification tasks such as FR. One is that whether the
l1 sparsity constraint ‖‖1 is indispensable to regularize the
solution, since the l1-minimization needs much computational
cost. The other is that whether the term ‖y − Dα‖2

2 ≤ ε is
effective enough to characterize the signal fidelity, especially
when the observation y is noisy and/or has many outliers. For
the first issue, on one side reweighted l1 or l2 minimization
was proposed to speed up the sparse coding process [32],
[33]; one the other side some works [27], [34], and [35] have
questioned the use of sparse coding for image classification.
Particularly, Zhang et al. [27] have shown that it is not
necessary to impose the l1 sparsity constraint on the coding
vector α, while the l2-norm regularization on α performs
equally well. Zhang et al. also indicated that the success of
SRC actually comes from its collaborative representation of y
over all classes of training samples. For the second issue, to the

best of our knowledge, few works have been reported in the
scheme of sparse representation except for the l1-norm fidelity
(i.e., ‖y − Dα‖1 ≤ ε) in [16] and [17], the correntropy based
Gaussian-kernel fidelity in [36] and [37] and our previous
work in [38]. The fidelity term has a very high impact on
the final coding result. From the viewpoint of maximum a
posterior (MAP) estimation, defining the fidelity term with
l2- or l1-norm actually assumes that the coding residual e = y
− Dα follows Gaussian or Laplacian distribution. In practice,
however, such an assumption may not hold well, especially
when occlusions, corruptions and expression variations occur
in the query face images. Although Gaussian kernel based
fidelity term utilized in [36] and [37] is claimed to be robust
to non-Gaussian noise [39], it may not work well in FR with
occlusion due to the complex variation of occlusion.

To increase the robustness of FR to occlusion, pixel corrup-
tion, disguises and big expression variations, etc., we propose a
regularized robust coding (RRC) model in this paper. A special
case of RRC, namely robust sparse coding (RSC), has been
presented in our previous work [38] by assuming that the
coding coefficients are sparse. Although RSC achieves state-
of-the-art FR results, the l1-sparsity constraint on the coding
vector α makes the computational cost very high. In this paper,
we assume that the coding residual e and the coding vector α

are respectively independent and identically distributed, and
then robustly regress the given signal based on the MAP
principle. In implementation, the RRC minimization prob-
lem is transformed into an iteratively reweighted regularized
robust coding (IR3C) problem with a reasonably designed
weight function for robust FR. Our extensive experiments
in benchmark face databases show that RRC achieves much
better performance than existing sparse representation based
FR methods, especially when there are complicated variations,
such as face occlusions, corruptions and expression changes,
etc.

The rest of this paper is organized as follows. Section II
presents the proposed RRC model. Section III presents the
algorithm of RRC. Section IV conducts the experiments, and
Section V concludes this paper.

II. RRC

A. Modeling of RRC

The conventional sparse coding model in Eq. (1) is equiv-
alent to the so-called LASSO problem [40]

min
α

‖y − Dα‖2
2 s.t. ‖α‖1 � σ (3)

where σ > 0 is a constant, y = [y1; y2; . . . ; yn] ∈ �n is
the signal to be coded, D = [d1, d2, . . . , dm] ∈ �n×m is
the dictionary with column vector d j being its j th atom, and
α ∈ �m is the vector of coding coefficients. In the problem of
face recognition (FR), the atom d j can be simply set as the
training face sample (or its dimensionality reduced feature)
and hence the dictionary D can be the whole training dataset.

If we have the prior that the coding residual e = y − Dα

follows Gaussian distribution, the solution to Eq. (3) will be
the maximum likelihood estimation (MLE) solution. If e fol-
lows Laplacian distribution, the l1-sparsity constrained MLE
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Fig. 1. Empirical distribution of coding residuals and the fitted distributions by different models. (a) Clean face image. (b) and (c) Occluded and corrupted
query face images. (d) and (e) Distributions (top row: occluded image, bottom row: corrupted image) of coding residuals in linear and log domains,
respectively.

solution will be

min
α

‖y − Dα‖1 s.t. ‖α‖1 � σ. (4)

The above Eq. (4) is essentially another expression of
Eq. (2) because they have the same Lagrangian formulation:
minα{||y − Dα||1 + λ||α||1} [41].

In practice, however, the Gaussian or Laplacian priors on e
may be invalid, especially when the face image y is occluded,
corrupted, etc. Let’s use examples to illustrate the fitted dis-
tributions of residual e by different models. Fig. 1(a) shows a
clean face image, denoted by yo, while Fig. 1(b) and 1(c) show
the occluded and corrupted query images y, respectively. The
residual is computed as e = y−Dα̂, while to make the coding
vector more accurate we use the clean image to calculate it via
Eq. (3): α̂ = arg minα

∥
∥yo − Dα

∥
∥

2
2 s.t. ‖α‖1 ≤ σ . The empir-

ical and fitted distributions of e by using Gaussian, Laplacian
and the distribution model [refer to Eq. (15)] associated with
the proposed method are plotted in Fig. 1(d). Fig. 1(e) shows
the distributions in log domain for better observation of the
tails. It can be seen that the empirical distribution of e has a
strong peak at zero but a long tail, which is mostly caused by
the occluded and corrupted pixels. For robust FR, a good fitting
of the tail is much more important than the fitting of the peak,
which is produced by the small trivial coding errors. It can be
seen from Fig. 1(e) that the proposed model can well fit the
heavy tail of the empirical distribution, much better than the
Gaussian and Laplacian models. Meanwhile, Laplacian works
better than Gaussian in fitting the heavy tail, which explains
why the sparse coding model in Eq. (4) [or Eq. (2)] works
better than the model in Eq. (1) [or Eq. (3)] in handling face
occlusion and corruption

Inspired by the robust regression theory [42]–[44], in
our previous work [38] we proposed an MLE solution
for robust face image representation. Rewrite D as D =
[r1; r2; , . . . , ; rn], where ri is the i th row of D, and let e = y−
Dα = [e1; e2; , . . . , ; en], where ei = yi −riα, i = 1, 2, . . . , n.
Assume that e1, e2, . . . , en are independent and identically

distributed (i.i.d.) and the probability density function (PDF)
of ei is fθ (ei ), where θ denotes the unknown parameter set
that characterizes the distribution, the so-called robust sparse
coding (RSC) [38] was formulated as the following l1-sparsity
constrained MLE problem [let ρθ (e) = − ln fθ (e)]

min
α

∑n

i=1
ρθ (yi − riα) s.t. ‖α‖1 ≤ σ. (5)

Like SRC, the above RSC model assumes that the coding
coefficients are sparse and uses l1-norm to characterize the
sparsity. However, the l1-sparsity constraint makes the com-
plexity of RSC high, and recently it has been indicated in
[27] that the l1-sparsity constraint on α is not the key for the
success of SRC [16]. In this paper, we propose a more general
model, namely regularized robust coding (RRC). The RRC can
be much more efficient than RSC, while RSC is one specific
instantiation of the RRC model.

Let’s consider the face representation problem from a view-
point of Bayesian estimation, more specifically, the maximum
a posterior (MAP) estimation. By coding the query image y
over a given a dictionary D, the MAP estimation of the coding
vector α is α̂ = arg maxα ln P (α|y). Using the Bayesian
formula, we have

α̂ = arg max
α

{ln P (y|α)+ ln P (α)}. (6)

Assuming that the elements ei of coding residual e =
y − Dα = [e1; e2; . . . ; en] are i.i.d. with PDF fθ (ei ), we
have P (y|α) = ∏n

i=1 fθ (yi − riα). Meanwhile, assume that
the elements α j , j = 1, 2, . . . ,m, of the coding vector α =
[α1; α2; . . . ; αm] are i.i.d. with PDF fo(α j ), there is P (α) =
∏m

j=1 fo
(

α j
)

. The MAP estimation of α in Eq. (6) is

α̂ = arg max
α

{∏n

i=1
fθ (yi − riα)+

∏m

j=1
fo

(

α j
)}

. (7)

Letting ρθ (e) = − ln fθ (e) and ρo(α) = − ln fo(α), Eq. (7)
is converted into

α̂ = arg min
α

{∑n

i=1
ρθ (yi − riα)+

∑m

j=1
ρo

(

α j
)}

. (8)
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We call the above model regularized robust coding (RRC)
because the fidelity term

∑n
i=1 ρθ (yi − riα) will be very

robust to outliers, while
∑m

j=1 ρo
(

α j
)

is the regularization
term depending on the prior probability P(α).

It can be seen that
∑m

j=1 ρo
(

α j
)

becomes the l1-norm
sparse constraint when α j is Laplacian distributed, i.e.,
P (α) = ∏m

j=1 exp
(−∥

∥α j
∥
∥

1

/

σα
)/

2σα . For the problem of
classification, it is desired that only the representation coeffi-
cients associated with the dictionary atoms from the target
class could have big absolute values. As we do not know
beforehand which class the query image belongs to, a reason-
able prior can be that only a small percent of representation
coefficients have significant values. Therefore, we assume that
the representation coefficient α j follows generalized Gaussian
distribution (GGD). There is

fo
(

α j
) = β exp

{

−(∣
∣α j

∣
∣
/

σα
)β

}/(

2σα�
(

1
/

β
))

(9)

where � denotes the gamma function.
For the representation residual, it is difficult to predefine the

distribution due to the diversity of image variations. In general,
we assume that the unknown PDF fθ (e) are symmetric,
differentiable, and monotonic w.r.t. |e|, respectively. So ρθ (e)
has the following properties: (1) ρθ (0) is the global minimal of
ρθ (x); (2) symmetry: ρθ (x) = ρθ (−x); and (3) monotonicity:
ρθ (x1) > ρθ (x2) if |x1| > |x2. Without loss of generality, we
let ρθ (0) = 0.

The proposed RRC model in Eq. (8) has close relations
to robust estimation [42]–[46], [67], which also aims to
eliminate the effect of outliers. The robust estimation methods,
e.g., Regression Diagnostics [48], M-estimator [42], [66] and
Least Median of Squares [67], are widely used in parameter
estimation and has various applications in computer vision
[45], [46], [50], [67], such as tracking [50], robust subspace
learning [45], [46], and so on. The robust subspace learning
[45], [46] utilizes the technologies [e.g., M-estimator [42],
[66], robust estimation of the covariance matrix [51], and intra-
sample outlier process [46]] to estimate the subspace which
is robust to the outliers in the training data. However, there
are clear differences between the previous robust estimation
methods and the proposed RRC. Most of previous robust
estimation methods regard the whole pieces of samples but
not the elements of a sample (e.g., pixels of an image) as
inliers or outliers [46]. Although the robust subspace learning
method [45], [46] weights each pixel by the judgment of inlier
or outlier, it aims to learn robust principle components but not
to solve the regularized coding coefficients of a testing sample
with outliers. Besides, the proposed RRC model is developed
in order for classification tasks but not regression.

Two key issues in solving the RRC model are how to
determine the distributions ρθ (or fθ ), and how to minimize the
energy functional. Simply taking fθ as Gaussian or Laplacian
and taking fo as Laplacian, the RRC model will degenerate to
the conventional sparse coding problem in Eq. (3) or Eq. (4).
However, as we showed in Fig. 1, such preset distributions for
fθ have much bias and are not robust enough to outliers, and
the Laplacian setting of fo makes the minimization inefficient.
In this paper, we allow fθ to have a more flexible shape, which
is adaptive to the input query image y so that the system is

more robust to outliers. To this end, we transform the mini-
mization of Eq. (8) into an iteratively reweighted regularized
coding problem in order to obtain the approximated MAP
solution of RRC effectively and efficiently.

B. RRC via Iteratively Reweighting

Let Fθ (e) = ∑n
i=1 ρθ (ei ). The Taylor expansion of Fθ (e)

in the neighborhood of e0 is

F̃θ (e) = Fθ (e0)+ (e − e0)
T F ′

θ (e0)+ R1 (e) (10)

where R1(e) is the high order residual, and F ′
θ (e) is the

derivative of Fθ (e). Denote by ρ′
θ the derivative of ρθ ,

and there is F ′
θ (e0) = [

ρ′
θ

(

e0,1
) ; ρ′

θ

(

e0,2
) ; . . . ; ρ′

θ

(

e0,n
)]

,
where e0,i is the i th element of e0. To make F ′

θ (e) strictly
convex for easier minimization, we approximate the residual
term as R1(e) ≈ 0.5(e−e0)

T W(e−e0), where W is a diagonal
matrix for that the elements in e are independent and there is
no cross term of ei and e j , i �= j , in Fθ (e).

Since Fθ (e) reaches its minimal value (i.e., 0) at e = 0, we
also require that its approximation F̃θ (e) reaches the minimum
at e = 0. Letting F̃ ′

θ (0) = 0, we have the diagonal elements
of W as

W i,i = ωθ

(

e0,i
) = ρ′

θ

(

e0,i
)/

e0,i . (11)

According to the properties of ρθ , we know that ρ′
θ (ei ) will

have the same sign as ei . So W i,i is a non-negative scalar.
Then F̃θ (e) can be written as

F̃θ (e) = 1

2

∥
∥
∥W1/2e

∥
∥
∥

2

2
+ be0 (12)

where be0 = ∑n
i=1

[

ρθ

(

e0,i
) − ρ′

θ

(

e0,i
)

e0,i
/

2
]

is a scalar
constant determined by e0.

Without considering the constant be0 , the RRC model in
Eq. (8) could be approximated as

α̂ = arg min
α

{
1

2

∥
∥
∥W1/2 (y − Dα)

∥
∥
∥

2

2
+

∑m

j=1
ρo

(

α j
)
}

. (13)

Certainly, Eq. (13) is a local approximation of Eq. (8) but
it makes the minimization of RRC feasible via iteratively
reweighted l2-regularized coding, in which W is updated via
Eq. (11). Now, the minimization of RRC is turned to how to
calculate the diagonal weight matrix W .

C. WeightsW

The element W i,i , i.e., ωθ (ei ), is the weight assigned to
pixel i of query image y. Intuitively, in FR the outlier pixels
(e.g., occluded or corrupted pixels) should have small weights
to reduce their effect on coding y over D. Since the dictionary
D, composed of non-occluded/non-corrupted training face
images, could well represent the facial parts, the outlier pixels
will have rather big coding residuals. Thus, the pixel which has
a big residual ei should have a small weight. Such a principle
can be observed from Eq. (11), where ωθ (ei ) is inversely
proportional to ei and modulated by ρ′

θ
(ei ). Refer to Eq. (11),

since ρθ is differentiable, symmetric, monotonic and has its
minimum at origin, we can assume that ωθ (ei ) is continuous
and symmetric, while being inversely proportional to ei but
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Fig. 2. Weight functions for different signal fidelity terms, including (a) l2
and l1-norm fidelity terms in SRC [16]. (b) Gaussian kernel fidelity term [36],
[37], as well as the proposed RRC fidelity term.

bounded (to increase stability). Without loss of generality, we
let ωθ (ei ) ∈ [0, 1]. With these considerations, one good choice
of ωθ (ei ) is the widely used logistic function [52]

ωθ (ei )=exp
(

−μe2
i +μδ

)/(

1+exp
(

−μe2
i +μδ

))

(14)

where μ and δ are positive scalars. Parameter μ controls the
decreasing rate from 1 to 0, and δ controls the location of
demarcation point. Here the value of μδ should be big enough
to make ωθ (0) close to 1 (usually we set μδ ≥ 8). With
Eq. (14), Eq. (11), and ρθ (0) = 0, we could get

ρθ (ei ) = − 1

2μ

(

ln
(

1 + exp
(

−μe2
i + μδ

))

− ln (1 + expμδ)

)

. (15)

We can see that the above ρθ satisfies all the assumptions
and properties discussed in Section II-A.

The PDF fθ associated with ρθ in Eq. (15) is more flexible
than the Gaussian and Laplacian functions to model the
residual e. It can have a longer tail to address the residuals
yielded by outlier pixels such as corruptions and occlusions
(refer to Fig. 1 for examples), and hence the coding vector
α will be robust to the outliers in y. ωθ (ei ) could also
be set as other functions. However, as indicated by [53],
the proposed logistic weight function is the binary classifier
derived via MAP estimation, which is suitable to distinguish
inliers and outliers. When ωθ (ei ) is set as a constant such as
ωθ (ei ) = 2, it corresponds to the l2-norm fidelity in Eq. (3);
when set as ωθ (ei ) = 1/|ei |, it corresponds to the l1-norm
fidelity in Eq. (4); when set as a Gaussian function ωθ (ei ) =
exp(−e2

i

/

2σ 2), it corresponds to the Gaussian kernel fidelity
in [36] and [37]. However, all these functions are not as robust
as Eq. (14) to outliers, as illustrated in Fig. 2. From Fig. 2, one
can see that the l2-norm fidelity treats all pixels equally, no
matter it is outlier or not; the l1-norm fidelity assigns higher
weights to pixels with smaller residuals; however, the weight
can be infinity when the residual approaches to zero, making
the coding unstable. Both our proposed weight function and
the weight function of the Gaussian fidelity used in [36] and
[37] are bounded in [0, 1], and they have an intersection
point with weight value as 0.5. However, the proposed weight
function prefers to assign larger weights to inliers and smaller
weights to outliers; that is, it has higher capability to classify
inliers and outliers.

There are also some candidates (e.g., weight function
of “fair” [54], “Huber” [42], and Cauchy in M-estimator

[42], [44], [66]) which could be adopted as the weight func-
tion of RRC. Like the Gaussian weight function [36], [37],
these weight functions in M-estimator could also assign high
weights to inliers and low weights to outliers. Nevertheless,
the proposed RRC model is a general model which could
utilize various weight functions, and in this paper we adopt the
logistic weight function due to its advantage analyzed above.

The sparse coding models in Eqs. (3) and (4) are instanti-
ations of the RRC model in Eq. (13) with β = 1 in Eq. (9).
The model in Eq. (3) is the case by letting ωθ (ei ) = 2.
The model in Eq. (4) is the case by letting ωθ (ei ) = 1/|ei |.
Compared with the models in Eqs. (3) and (4), the proposed
RRC model [Eq. (8) or Eq. (13)] is much more robust to
outliers (usually the pixels with big residuals) because it will
adaptively assign small weights to them. Although the model
in Eq. (4) also assigns small weights to outliers, its weight
function ωθ (ei ) = 1/|ei | is not bounded (i.e., the weights
assigned to very small residuals can have very big values
and dramatic changing ratios), making it less effective to
distinguish between inliers and outliers.

D. Two Important Cases of RRC

The minimization of RRC model in Eq. (13) can be
accomplished iteratively, while in each iteration W and α

are updated alternatively. By fixing the weight matrix W , the
RRC with GGD prior on representation [i.e., Eq. (9)] and
ρo(α j ) = − ln fo(α) could be written as

α̂=arg min
α

{
1

2

∥
∥
∥W1/2 (y−Dα)

∥
∥
∥

2

2
+

∑m

j=1

(

λ
∣
∣α j

∣
∣β+ba0

)}

(16)

where ρo
(

α j
) = λ

∣
∣α j

∣
∣β + bα0 , λ = (

1
/

σα
)β and bα0 =

ln
(

2σα�
(

1
/

β
)/

β
)

is a constant. Similar to the processing
of Fθ (e) = ∑n

i=1 ρθ (ei ) in Section II-B,
∑m

j=1 ρo
(

α j
)

could
also be approximated by the Taylor expansion. Then Eq. (16)
changes to

α̂ = arg min
α

{∥
∥
∥W1/2 (y − Dα)

∥
∥
∥

2

2
+

∑m

j=1
V j, jα

2
j

}

(17)

where V is a diagonal matrix with V j, j = ρ′
o
(

α j
)/

α j .
The value of β determines the types of regularization. If

0 < β ≤ 1, then sparse regularization is applied; otherwise,
non-sparse regularization is imposed on the representation
coefficients. In particular, the proposed RRC model has two
important cases with two specific values of β.

When β = 2, GGD degenerates to the Gaussian distribution,
and the RRC model becomes

α̂ = arg min
α

{∥
∥
∥W1/2 (y − Dα)

∥
∥
∥

2

2
+ λ ‖α‖2

2

}

. (18)

In this case the RRC model is essentially an l2-regularized
robust coding model. It can be easily derived that when W is
given, the solution to Eq. (18) is α̂ = (

DT WD + λI
)−1

DT Wy.
When β = 1, GGD degenerates to the Laplacian distribu-

tion, and the RRC model becomes

α̂ = arg min
α

{∥
∥
∥W1/2 (y − Dα)

∥
∥
∥

2

2
+ λ‖α‖1

}

. (19)
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Algorithm 1 Iteratively Reweighted Regularized Robust
Coding (IR3C)
Input: Normalized query image y with unit l2-norm; dictio-
nary D (each column of D has unit l2-norm); α(1).
Output: α

Start from t = 1:

1. Compute residual e(t) = y − Dα(t).
2. Estimate weights as

ωθ

(

e(t)i

)

= 1

/

1 + exp

(

μ
(

e(t)i

)2 − μδ

)

where μ and δ could be estimated in each iteration
(please refer to Section IV-A for the settings of them).

3. Weighted regularized robust coding:

α∗ = arg min
α

{
1

2

∥
∥
∥
∥

(

W (t)
)1/2

(y − Dα)

∥
∥
∥
∥

2

2

+
∑m

j=1
ρo

(

α j
)
}

(20)

where W (t) is the estimated diagonal weight matrix with
W(t)

i,i = ωθ

(

e(t)i

)

, ρo
(

α j
) = λ

∣
∣α j

∣
∣β + bα0 and β = 2

or 1.
4. Update the sparse coding coefficients:

If t = 1, α(t) = α∗;
If t > 1, α(t) = α(t−1) + ϑ(t)(α∗ − α(t−1));

where 0 < ϑ(t) ≤ 1 is a suitable step size
that makes

∑n
i=1 ρθ

(

yi − riα
(t)

) + ∑m
j=1 ρo

(

α
(t)
j

)

<
∑n

i=1 ρθ

(

yi − riα
(t−1)

)+∑m
j=1 ρo

(

α
(t−1)
j

)

. ϑ(t) can be
searched from 1 to 0 by the standard line-search process
[60].

5. Compute the reconstructed test sample:

y(t)rec = eα(t),

and let t = t + 1.
6. Go back to step 1 until the condition of convergence

(refer to Section III-A) is met, or the maximal number
of iterations is reached.

In this case the RRC model is essentially the RSC model
in [38], where the sparse coding methods such as l1_ls [55] is
used to solve Eq. (19) when W is given. In this paper, we solve
Eq. (19) via Eq. (17) by the iteratively re-weighting technique
[32]. Let V(0)

j, j = ν
(0)
o = 1, and then in the (k + 1)th iteration

V is set as V(k+1)
j, j = νo

(

α
(k)
j

)

= λ
∣
∣
∣(α

(k)
j )

2 + ε2
∣
∣
∣

−1/2
, and

then α̂
(k+1) = (

DT WD + V(k+1)
)−1

DT Wy. Here ε is a scalar
defined in [32].

III. ALGORITHM OF RRC

A. Iteratively Reweighted Regularized Robust Coding (IR3C)
Algorithm

As discussed in Section II, the minimization of RRC is
an iterative process, and the weights W and V are updated
alternatively in order for the desired coding vector α. Although

we can only have a locally optimal solution to the RRC
model, fortunately in FR we are able to have a very reasonable
initialization to achieve good performance. In this section we
propose an iteratively reweighted regularized robust coding
(IR3C) algorithm to minimize the RRC model.

When a query face image y comes, in order to initialize
W , we should firstly initialize the coding residual e of y. We
initialize e as e = y − Dα(1), where α(1) is an initial coding
vector. Because we do not know which class the query face
image y belongs to, a reasonable α(1) can be set as

α(1) = [ 1
m ; 1

m ; . . . ; 1
m

]

. (21)

That is, Dα(1) is the mean image of all training samples.
With the initialized coding vector α(1), the proposed IR3C
algorithm is summarized in Table 1.

When IR3C converges, we use the same classification
strategy as in SRC [16] to classify the face image y

identity (y) = arg min
c

{�c} (22)

where �c =
∥
∥
∥W1/2

final

(

y − Dcα̂c
)
∥
∥
∥

2
, Dc is the sub-dictionary

associated with class c, α̂c is the final sub-coding vector
associated with class c, and Wfinal is the final weight matrix.

Although the proposed IR3C algorithm has a similar form
to the previous reweighted methods [32], [33], [42], [46], there
are significant difference between them. First, most of the
reweighted schemes are applied to the regularization term of
coding coefficient, such as reweighted l2-norm/l1-norm regu-
larization, while our method focuses on the design of robust
data fidelity term with some regularization on the coding
coefficient. Second, although a few works apply reweighted
scheme to the data representation term [42], [46], they ignore
the regularization on the representation coefficients and their
goal is not for classification.

B. Convergence of IR3C

Eq. (20) is a local approximation of the RRC in Eq. (8), and
in each iteration the objective function of Eq. (8) decreases
by the IR3C algorithm, i.e., in steps 3 and 4, the solved
α(t) will make

∑n
i=1 ρθ

(

yi − riα
(t)

) + ∑m
j=1 ρo

(

α
(t)
j

)

<
∑n

i=1 ρθ

(

yi − riα
(t−1)

) + ∑m
j=1 ρo

(

α
(t−1)
j

)

. Since the cost
function of Eq. (8) is lower bounded (≥ 0), the iterative
minimization procedure in IR3C will converge. Specifically,
we stop the iteration if the following holds:

∥
∥
∥W (t+1) − W (t)

∥
∥
∥

2

/∥
∥
∥W(t)

∥
∥
∥

2
< δW (23)

where δW is a small positive scalar.

C. Complexity Analysis

Generally speaking, the complexity of IR3C and SRC [16]
mainly lies in the coding process, i.e., Eq. (18) or (19) for
IR3C and Eq. (1) or Eq. (2) for SRC. It is known that the
l1-minimization, such as Eq. (1) for SRC, has a computational
complexity of O(n2m1.5) [56], where n is the dimensionality
of face feature, and m is the number of dictionary atoms.
It is also reported that the commonly used l1-minmization
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solvers, e.g., l1_magic [57] and l1_ls [55], have an empirical
complexity of O(n2m1.3) [55].

For IR3C with β = 2, the coding [i.e., Eq. (18)]
is an l2-regularized least square problem. The solution
α̂ = (

DT WD + λI
)−1

DT Wy could be got by solving
(

DT WD + λI
)

α̂ = DT W y efficiently via conjugate gradient
method [58], whose time complexity is about O(k1nm) (here
k1 is the iteration number in conjugate gradient method).
Suppose that t iterations are used in IR3C to update W , the
overall complexity of IR3C with β = 2 is about O(tk1nm).
Usually t is less than 15. It is easy to see that IR3C with β = 2
has much lower complexity than SRC.

For IR3C with β = 1, the coding in Eq. (19) is an l1-
norm sparse coding problem, which could also be solved
via conjugate gradient method. The complexity of IR3C with
β = 1 will be about O(tk1k2nm), where k2 is the number of
iteration to update V. By experience, k1 is less than 30 and k2
is less 20, and then k2k1 is basically in the similar order to n.
Thus the complexity of IR3C with β = 1 is about O(tn2m).
Compared with SRC in case of FR without occlusion, although
IR3C needs several iterations (usually t = 2) to update W , its
time consumption is still lower than or comparable to SRC.
In FR with occlusion or corruption, for IR3C usually t = 15.
In this case, however, SRC’s complexity is O(n2(m + n)1.3)
because it needs to use an identity matrix to code the occluded
or corrupted pixels, as shown in Eq. (2). It is easy to conclude
that IR3C with β = 1 has much lower complexity than SRC
for FR with occlusion.

Although many faster l1-norm minimization methods than
l1_magic [57] and l1_ls [55] have been proposed recently, as
reviewed in [59], by adopting them in SRC the running time
is still larger than or comparable to the proposed IR3C, as
demonstrated in Section IV-E. In addition, in the iteration of
IR3C we can delete the element yi that has very small weight
because this implies that yi is an outlier. Thus the complexity
of IR3C can be further reduced. For example, in FR with
real disguise on the AR database, about 30% pixels could be
deleted.

IV. EXPERIMENTAL RESULTS

We perform experiments on benchmark face databases to
demonstrate the performance of RRC. In Section IV-A, we
give the parameter setting of RRC; in Section IV-B, we
test RRC for FR without occlusion; in Section IV-C, we
demonstrate the robustness of RRC to FR with random pixel
corruption, random block occlusion and real disguise. In
Section IV-D, the running time is presented. Finally, some
discussions of parameter selection are given in Section IV-E.

All the face images are cropped and aligned by using the
locations of eyes. We normalize the query image (or feature)
and training image (or feature) to have unit l2-norm energy.
For AR [61] and Extended Yale B [13], [62] databases, the
eye locations are provided by the databases. For Multi-PIE
[63] database, we manually locate the eyes for the experiments
in Sections IV-B. In all experiments, the training samples are
used as the dictionary D in coding. We denote by RRC_L1 our

RRC model with l1-norm coefficient constraint [i.e., β = 1
in Eq. (19)], and by RRC_L2 our RRC model with l2-
norm coefficient constraint [i.e., β = 2 in Eq. (18)]. Both
RRC_L1 and RRC_L2 are implemented by the IR3C algorithm
described in Section III-A.

A. Parameter Setting

In the weight function Eq. (14), there are two parameters,
δ and μ, which need to be calculated in Step 2 of the IR3C
algorithm. δ is the parameter of demarcation point. When the
square of residual is larger than δ, the weight will be less
than 0.5. To make the model robust to outliers, we compute
δ as follows. Let l = �τn�, where scalar τ ∈ (0, 1), and �τn�
outputs the largest integer smaller than τn. We set δ as

δ = ψ1(e)l (24)

where for a vector e ∈ �n , ψ1(e)k is the kth largest element
of the set {e2

j , j = 1, . . . , n}.
Parameter μ controls the decreasing rate of weight W i,i .

Here we simply let μ = ς/δ, where ς = 8 is set as a constant.
In the experiments, τ is fixed as 0.8 for FR without occlusion,
and 0.6 for FR with occlusion. In addition, the regularization
parameter λ in Eq. (18) or Eq. (19) is set as 0.001 by default

For RRC_L1, there is a parameter ε in updating the weight

matrix V : V(k+1)
j, j = λ

(

α
(k)
j

)

= bo

∣
∣
∣(α

(k)
j )

2 + ε2
∣
∣
∣

−1/2
.

According to [32], we choose ε as

ε(k+1) = min
(

ε(k), ψ2

(

α(k)
)

L

/

m
)

(25)

where for a vector α ∈ �m , ψ2(α)i is the i th largest element of
the set {∣∣α j

∣
∣ , j = 1, · · · ,m}. We set L = �0.01m� The above

design of ε could not only make the numerical computing
of weight V stable, but also ensure the iteratively reweighted
least square achieve a sparse solution (ε(k+1) decreases to zero
as k increases).

B. Face Recognition Without Occlusion

We first validate the performance of RRC in FR with
variations such as illumination and expression changes but
without occlusion. We compare RRC with SRC [16], locality-
constrained linear coding (LLC) [34], linear regression for
classification (LRC) [15] and the benchmark methods such
as nearest neighbor (NN), nearest feature line (NFL) [10] and
linear support vector machine (SVM). In the experiments, PCA
is used to reduce the dimensionality of original face images,
and the Eigenface features are used for all the competing
methods. Denote by P the PCA projection matrix, the step
3 of IR3C becomes

α∗ = arg min
α

{
1

2

∥
∥
∥P(W(t))

1/2
(y − Dα)

∥
∥
∥

2

2

+
∑m

j=1
ρo

(

α j
)
}

. (26)
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TABLE I

FACE RECOGNITION RATES ON THE EXTENDED YALE B DATABASE

Dimension 30 84 150 300

NN 66.3% 85.8% 90.0% 91.6%
SVM 92.4% 94.9% 96.4% 97.0%
LRC [15] 63.6% 94.5% 95.1% 96.0%
NFL [10] 89.6% 94.1% 94.5% 94.9%
SRC [16] 90.9% 95.5% 96.8% 98.3%
LLC [34] 92.1% 96.4% 97.0% 97.6%
RRC_L2 71.6% 94.4% 97.6% 98.9%
RRC_L1 91.3% 98.0% 98.8% 99.8%

TABLE II

FACE RECOGNITION RATES ON THE AR DATABASE

Dimension 30 54 120 300

NN 62.5% 68.0% 70.1% 71.3%
SVM 66.1% 69.4% 74.5% 75.4%
LRC [15] 66.1% 70.1% 75.4% 76.0%
NFL [10] 64.5% 69.2% 72.7% 73.4%
SRC [16] 73.5% 83.3% 90.1% 93.3%
LLC [34] 70.5% 80.7% 87.4% 89.0%
RRC_L2 61.5% 84.3% 94.3% 95.3%
RRC_L1 70.8% 87.6% 94.7% 96.3%

1) Extended Yale B Database: The Extended Yale B [13],
[62] database contains about 2,414 frontal face images of 38
individuals. We used the cropped and normalized face images
of size 54 × 48, which were taken under varying illumination
conditions. We randomly split the database into two halves.
One half, which contains 32 images for each person, was
used as the dictionary, and the other half was used for testing.
Table I shows the recognition rates versus feature dimension
by NN, NFL, SVM, SRC, LRC, LLC, and RRC methods.
RRC_L1 achieves better results than the other methods in all
dimensions except that they are slightly worse than SVM when
the dimension is 30. RRC_L2 is better than SRC, LRC, LLC,
SVM, NFL, and NN when the dimension is 150 or higher. The
best recognition rates of SVM, SRC, LRC, LLC, RRC_L2, and
RRC_L1 are 97.0%, 98.3%, 96.0%, 97.6%, 98.9%, and 99.8%
respectively.

2) AR Database: As in [16], a subset (with only illumi-
nation and expression changes) that contains 50 male and
50 female subjects was chosen from the AR database [61]
in this experiment. For each subject, the seven images from
Session 1 were used for training, with other seven images from
Session 2 for testing. The images were cropped to 60 × 43.
The FR rates by the competing methods are listed in Table II.
We can see that apart from the case when the dimension is 30,
RRC_L1 achieves the highest rates among all methods, while
RRC_L2 is the second best. The reason that RRC works not
very well with very low-dimensional feature is that the coding
vector solved by Eq. (26) is not accurate enough to estimate
W when the feature dimension is too low. Nevertheless, when
the dimension is too low, all the methods cannot achieve good
recognition rate. We can see that all methods achieve their
maximal recognition rates at the dimension of 300, with 93.3%
for SRC, 89.0% for LLC, 95.3% for RRC_L2, and 96.3% for
RRC_L1.

(a)

(b)

(c)                                                              (d) 

Fig. 3. Subject in Multi-PIE database. (a) Training samples with only
illumination variations. (b) Testing samples with surprise expression and
illumination variations. (c) and (d) Testing samples with smile expression
and illumination variations in Sessions 1 and 3, respectively.

From Tables I and II, one can see that when the dimension
of feature is not too low, RRC_L2 could achieve similar
performance to that of RRC_L1, which implies that the l1-
sparsity constraint on the coding vector is not so important.
This is because when the feature dimension is not too low, the
dictionary (i.e., the feature set of the training samples) may not
be over-complete enough, and hence using Laplacian to model
the coding vector is not much better than using Gaussian. As
a result, RRC_L2 and RRC_L1 will have similar recognition
rates, but the former will have much less complexity.

3) Multi-PIE Database: The CMU Multi-PIE database [63]
contains images of 337 subjects captured in four sessions with
simultaneous variations in pose, expression, and illumination.
Among these 337 subjects, all the 249 subjects in Session 1
were used for training. To make the FR more challenging,
four subsets with both illumination and expression variations
in Sessions 1, 2, and 3, were used for testing. For the training
set, as in [30], we used the 7 frontal images with extreme illu-
minations {0, 1, 7, 13, 14, 16, and 18} and neutral expression
[refer to Fig. 3(a) for examples]. For the testing set, 4 typical
frontal images with illuminations {0, 2, 7, 13} and different
expressions (smile in Sessions 1 and 3, squint and surprise
in Session 2) were used [refer to Fig. 3(b) for examples with
surprise in Session 2, Fig. 3(c) for examples with smile in
Session 1, and Fig. 3(d) for examples with smile in Session 3].
Here we used the Eigenface with dimensionality 300 as the
face feature for sparse coding. Table III lists the recognition
rates in four testing sets by the competing methods.

From Table III, we can see that RRC_L1 achieves the best
performance in all tests, and RRC_L2 performs the second
best. Compared to the third best method, LLC, 6% and 2.3%
average improvements are achieved by RRC_L1 and RRC_L2,
respectively. In addition, all the methods achieve their best
results when Smi-S1 is used for testing because the training
set is also from Session 1. From testing set Smi-S1 to Smi-S3,
the variations increase because of the longer data acquisition
time interval and the difference of smile [refer to Fig. 3(c) and
Fig. 3(d)]. The recognition rates of RRC_L1 and RRC_L2 drop
by 21.8% and 25.9% respectively, while those of NN, NFL,
LRC, SVM, LLC, and SRC drop by 41.4%, 40.3%, 40.8%,
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TABLE III

FACE RECOGNITION RATES ON MULTI-PIE DATABASE. (SMI-S1: SET

WITH SMILE IN SESSION 1 SMI-S3: SET WITH SMILE IN SESSION 3

SUR-S2: SET WITH SURPRISE IN SESSION 2 AND SQU-S2: SET WITH

SQUINT IN SESSION 2)

Smi-S1 Smi-S3 Sur-S2 Squ-S2

NN 88.7% 47.3% 40.1% 49.6%

SVM 88.9% 46.3% 25.6% 47.7%

LRC [15] 89.6% 48.8% 39.6% 51.2%

NFL [10] 90.3% 50.0% 39.8% 52.9%

SRC [16] 93.7% 60.3% 51.4% 58.1%

LLC [34] 95.6% 62.5% 52.3% 64.0%

RRC_L2 96.1% 70.2% 59.2% 58.1%

RRC_L1 97.8% 76.0% 68.8% 65.8%

42.6%, 33.1%, and 33.4%, respectively. This validates that the
RRC methods are much more robust to face variations than
the other methods. Meanwhile, we could also see that FR with
surprise and squint expression changes are much more difficult
than FR with the smile expression change In this experiment,
the gap between RRC_L2 and RRC_L1 is relatively big.
The reason is that the dictionary (size: 300×1743) used in
this experiment is much over-complete, and thus the l1-norm
is much more powerful than the l2-norm to regularize the
representation of samples with big variations (e.g., expression
changes).

C. Face Recognition With Occlusion

One of the most interesting features of sparse coding
based FR in [16] is its robustness to face occlusion. In this
subsection, we test the robustness of RRC to different kinds
of occlusions, such as random pixel corruption, random block
occlusion and real disguise. In the experiments of random
corruption and random block occlusion, we compare RRC
methods with SRC [16], LRC [15], Gabor-SRC [18] (only
suitable for block occlusion) and correntropy-based sparse
representation (CESR) [37], and NN is used as the baseline
method. In the experiment of real disguise, we compare RRC
with SRC, Gabor-SRC (GSRC) [18], CESR, and other state-
of-the-art methods

1) FR With Pixel Corruption: To be identical to the experi-
mental settings in [16], we used Subsets 1 and 2 (717 images,
normal-to-moderate lighting conditions) of the Extended Yale
B database for training, and used Subset 3 (453 images, more
extreme lighting conditions) for testing. The images were
resized to 96×84 pixels. For each testing image, we replaced
a certain percentage of its pixels by uniformly distributed
random values within [0, 255]. The corrupted pixels were
randomly chosen for each test image and the locations are
unknown to the algorithm.

Fig. 4 shows a representative example of RRC_L1 and RRC
_L2 with 70% random corruption. Fig. 4(a) is the original
sample, and Fig. 4(b) shows the testing image with random
corruption. It can be seen that the corrupted face images are
difficult to recognize, even for humans. The estimated weight

(a) (b) (c) (d) (e)
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Fig. 4. Recognition under random corruption. (a) Original image y0
from Extended Yale B database. (b) Test image y with random corruption.
(c) Estimated weight map of RRC_ L1 (top row) and RRC_L2 (bottom).
(d) Estimated representation coefficients α of RRC_ L1 and RRC_ L2.
(e) Reconstructed images yrec of RRC_ L1 and RRC_ L2.

TABLE IV

RECOGNITION RATES OF RRC, LRC, NN, SRC, AND CESR VERSUS

DIFFERENT PERCENTAGE OF CORRUPTION

Corruption (%) 0 ∼ 50
(Average)

60 70 80 90

NN 89.3% 46.8% 25.4% 11.0% 4.6%
SRC [16] 100% 99.3% 90.7% 37.5% 7.1%
LRC [15] 95.8% 50.3% 26.4% 9.9% 6.2%
CESR [37] 97.4% 96.2% 97.8% 93.8% 41.5%
RRC_L2 100% 100% 99.8% 97.8% 43.3%
RRC_L1 100% 100% 100% 99.6% 67.1%

maps of RRC_L1 and RRC_L2 are shown in the top and
bottom rows of Fig. 4(c) respectively, from which we can
see not only the corrupted pixels but also the pixels in the
shadow region have low weights. Fig. 4(d) shows the coding
coefficients of RRC_L1 (top row) and RRC_L2 (bottom row),
while Fig. 4(e) shows the reconstructed images of RRC_L1
(top row) and RRC_L2 (bottom row). It can be seen that for
RRC_L1 only the dictionary atoms with the same label as
the testing sample have big coefficients and the reconstructed
image is faithful to the original image Fig. 4(a) but with better
visual quality (the shadow which brings difficulties to recog-
nition is removed). For RRC_L2, although the coefficients are
not sparse, the visual quality of the reconstructed image is also
good and the classification performance is similar to RRC_L1,
which are shown in Table IV.

Table IV shows the results of SRC, CESR, LRC, NN,
RRC_L2, and RRC_L1 under different percentage of corrupted
pixels. Since all competing methods could achieve no bad
performance from 0% to 50% corruptions, we only list the
average recognition rate for 0%∼50% corruptions One can see
that when the percentage of corrupted pixels is between 0%
and 50%, RRC_L1, RRC_L2, and SRC could correctly classify
all the testing images. Surprisingly, CESR does not correctly
recognize all the testing images in that case. However, when
the percentage of corrupted pixels is more than 70%, the
advantage of RRC_L1, RRC_L2, and CESR over SRC is
clear. Especially, RRC_L1 achieves the best performance in
all cases, with 100% (99.6% and 67.1%) in 70% (80% and
90%) corruption, while SRC only has a recognition rate of
90.7% (37.5% and 7.1%). LRC and NN are sensitive to the
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Fig. 5. Recognition under 30% block occlusion. (a) Original image y0 from
Extended Yale B. (b) Test image y with random corruption. (c) Estimated
weight maps of RRC_ L1 (top row) and RRC_L2 (bottom row). (d) Estimated
representation coefficients α of RRC_L1 and RRC_L2. (e) Reconstructed
images yrec of RRC_L1 and RRC_L2.

outliers, with much lower recognition rates than others. All
RRC methods achieve better performance than CESR in all
cases, which validates that the RRC model could suppress the
effect of outliers better. Meanwhile, we see that RRC_L2 has
very similar performance to RRC_L1, which shows that when
the feature dimension (8064 here) is high, l2-norm constraint
on coding coefficient is as powerful as l1-norm constraint, but
with much less time complexity.

2) FR With Block Occlusion: In this section we test the
robustness of RRC to block occlusion. We also used the
same experimental settings as in [16], i.e., Subsets 1 and 2
of Extended Yale B for training, Subset 3 for testing, and
replacing a randomly located square block of a test image
with an unrelated image, as illustrated in Fig. 4(b). The face
images were resized to 96 × 84.

Fig. 5 shows an example of occluded face recognition
(30% occlusion) by using RRC_L1 and RRC_L2. Fig. 5(a)
are the original sample from Extended Yale B database and
the occluded testing sample. Fig. 5(c) shows the estimated
weight maps of RRC_L1 (top row) and RRC_L2 (bottom
row), from which we could see that both of them assign
big weights (e.g., 1) to the un-occluded pixels, and assign
low weight (e.g., 0) to the occluded pixels. The estimated
representation coefficients of RRC_L1 and RRC_L2 are shown
in the top row and bottom row of Fig. 5(d) respectively. It can
be seen that RRC_L1 could achieve very sparse coefficients
with significant values on the atoms of correct class; the
coefficients by RRC_L2 also have significant values on the
atoms of correct class but they are not sparse. From Fig. 5(e),
we see that both RRC_L1 and RRC_L2 have very good
image reconstruction quality, effectively removing the block
occlusion and the shadow.

Table V lists the detailed recognition rates of RRC_L1,
RRC_L2, SRC, LRC, NN, GSRC, and CESR under the
occlusion percentage from 0% to 50%. From Table V, we see
that RRC_L2 has the best accuracy, and RRC methods achieve
much higher recognition rates than SRC when the occlusion
percentage is larger than 30% (e.g., more than 22% (6%)
improvement at 50% (40%) occlusion). Compared to GSRC,
RRC still gets better results without using the enhanced Gabor
features. CESR doesn’t achieve very good performance in this
experiment. This may be because FR with block occlusion is
more difficult than that of pixel corruption, but it shows that

TABLE V

RECOGNITION RATES OF RRC, LRC, NN, GSRC, SRC, AND CESR

UNDER DIFFERENT LEVELS OF BLOCK OCCLUSION

Occlusion (%) 0 10 20 30 40 50

NN 94.0% 92.9% 85.4% 73.7% 62.9% 45.7%

SRC [16] 100% 100% 99.8% 98.5% 90.3% 65.3%

LRC [15] 100% 100% 95.8% 81.0% 63.8% 44.8%

GSRC[18] 100% 100% 100% 99.8% 96.5% 87.4%

CESR[37] 94.7% 92.7% 89.9% 83.9% 75.5% 57.4%

RRC_L2 100% 100% 100% 99.8% 97.6% 87.8%

RRC_L1 100% 100% 100% 99.8% 96.7% 87.4%

CESR could not accurately identify the outlier points in such
block occlusion (i.e., outlier points have similar intensity as
the face pixels). Encouragingly, RRC_L2 also has competing
recognition rates to RRC_L1 (even better than them at 40%
and 50% occlusion), which validates that the low-complexity
l2-norm regularization could be as powerful as the l1-norm
regularization for such kind of block occlusions.

3) FR With Real Face Disguise: A subset from the AR data-
base is used in this experiment. This subset consists of 2,599
images from 100 subjects (26 samples per class except for
a corrupted image w-027-14.bmp), 50 males and 50 females.
We perform two tests: one follows the experimental settings
in [16], while the other one is more challenging. The images
were resized to 83×60 in the first test and 42×30 in the
second test.

In the first test, 799 images (about 8 samples per subject)
of non-occluded frontal views with various facial expressions
in Sessions 1 and 2 were used for training, while two
separate subsets (with sunglasses and scarf) of 200 images
(1 sample per subject per Session, with neutral expression)
for testing. Fig. 6 illustrates the classification process of
RRC_L1 by using an example. Fig. 6(a) shows a test image
with sunglasses; Fig. 6(b) and 6(c) show the initialized and
final weight maps, respectively; Fig. 6(d) shows one template
image of the identified subject. The convergence of the IR3C
algorithm to solve the RRC model is shown in Fig. 6(e)
and (f) shows the reconstruction error of each class, with
the correct class having the lowest value. The FR results
by the competing methods are listed in Table V. We see
that the RRC methods achieve much higher recognition rates
than SRC, GSRC and CESR, while RRC_L1 and RRC_L2
achieve similar results. CESR has similar performance to RRC
methods in FR with sunglass, but has much worse recognition
rate in dealing with scarf. Similar to the case of FR with block
occlusion, CESR is not robust enough for more challenging
case (i.e., scarf covers about 40% face region). The proposed
RRC methods also significantly outperform other state-of-
the-art methods, including [64] with 84% on sunglasses and
93% on scarf, and [28] with 93% on sunglasses and 95.5%
on scarf.

In the second test, we conduct FR with more complex
disguise (disguise with variations of illumination and longer
data acquisition interval). 400 images (4 neutral images with
different illuminations per subject) of non-occluded frontal
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Fig. 6. Example of face recognition with disguise using RRC_ L1. (a) Test
image with sunglasses. (b) Initialized weight map. (c) Weight map when IR3C
converges. (d) Template image of the identified subject. (e) Convergence curve
of IR3C. (f) Residuals of each class by RRC_ L1.

TABLE VI

RECOGNITION RATES BY COMPETING METHODS ON

THE AR DATABASE WITH DISGUISE OCCLUSION

Algorithms Sunglasses Scarves

SRC [16] 87.0% 59.5%
GSRC [18] 93% 79%
CESR [37] 99% 42.0%
RRC_L2 99.5% 96.5%
RRC_L1 100% 97.5%

TABLE VII

RECOGNITION RATES BY COMPETING METHODS ON THE AR

DATABASE WITH COMPLEX DISGUISE OCCLUSION

Algorithms
Session 1 Session 2

Sunglasses Scarves Sunglasses Scarves

SRC [16] 89.3% 32.3% 57.3% 12.7%
GSRC [18] 87.3% 85% 45% 66%
CESR [37] 95.3% 38% 79% 20.7%
RRC_L2 99.0% 94.7% 84.0% 77.3%
RRC_L1 99.0% 93.3% 89.3% 76.3%

views in Session 1 were used for training, while the disguised
images (3 images with various illuminations and sunglasses
or scarves per subject per Session) in Sessions 1 and 2 for
testing. Table VII lists the results by competing methods.
Clearly, the RRC methods achieve much better results than
SRC, GSRC, and CESR. Interestingly, CESR works well in
the case of Sunglasses disguise but poor in the case of Scarves
disguise, while GSRC the reverse. In addition, the average
improvements of RRC_L1 over SRC, GSRC, and CESR are
respectively 21.4%, 28%, and 7% on sunglasses, and respec-
tively 62.3%, 9.3%, and 55.5% on scarf. In this experiment,
RRC_L1 is slightly better than RRC_L2 on sunglasses, with
RRC_L2 slightly better than RRC_L1 on scarf.

10
2

10
310

-2

10
-1

10
0

10
1

10
2

Log of feature dimension

Lo
g 

of
 s

ec
on

ds

CESR
RRC_L2

RRC_L1

SRC_l
SRC_A
SRC_H

0 200 400 600 800 1000 1200
0.8

0.85

0.9

0.95

Feature dimension

R
ec

og
ni

tio
n 

ra
te

SRC_l
SRC_A
SRC_H
CESR
RRC_L2

RRC_L1

(a)                            (b) 

Fig. 7. Running time and recognition rates obtained by competing meth-
ods under different feature dimensions in FR without occlusion. [SRC_l:
SRC(�1_ls), SRC_A: SRC (ALM), SRC_H: SRC (Homotopy)].

D. Running Time Comparison

Apart from recognition rate, computational expense is also
an important issue for practical FR systems. In this section,
the running time of the competing methods, including SRC,
GSRC, CESR, RRC_L2, and RRC_L1, is evaluated using two
FR experiments (without occlusion and with real disguise).
The programming environment is Matlab version 7.0 a. The
desktop used is of 3.16 GHz CPU and with 3.25 G RAM.
All the methods are implemented using the codes provided
by the authors. For SRC, we adopt l1_ls [55], and two fast
l1-minimization solvers, ALM [59] and Homotopy [65], to
implement the sparse coding step.

The first experiment is FR without occlusion on the AR
database, whose experimental setting is the same as that in
Section IV-B but with various down-sampled face features
(i.e., 12×8, 21×15, 33×24, 42×30, and 62×45). Fig. 7
compares the running time [Fig. 7(a)] and recognition rates
Fig. 7(b) of the competing methods under various feature
dimensions. From Fig. 7(a), it can be seen that RRC_L2,
CESR and SRC (Homotopy) have obvious faster speed than
other methods. RRC_L1 is also much more efficient than SRC
(l1_ls), the slowest one.

With the feature of 792 (33×24) dimensions, RRC_L2,
CESR, RRC_L1, SRC (l1_ls), SRC (ALM) and SRC (Homo-
topy) take 0.257, 0.330, 1.450, 8.551, 0.377 and 0.199 sec-
onds, respectively. RRC_L1 achieves the best recognition
rates followed by RRC_L2, as shown in Fig. 7. Although
CESR is also fast, its recognition rates are lower than other
methods. It can be concluded that compared to SRC and
CESR, RRC_L2 has good recognition rate with much less or
comparable computation expense, while RRC_L1 has much
higher recognition rate.

The second experiment is FR with real face disguise. The
experimental settings are described in Section IV-C. The dic-
tionary has 800 training samples with size 83×60 in Test 1,
and 400 training samples with size 42×30 in Test 2. The
recognition rates have been reported in Table VI (for Test 1)
and Table VII (for Test 2). Table VIII lists the average compu-
tational expense and recognition rates of different methods on
Test1 and Test 2. Clearly, RRC_L2 has the least computation
time, followed by CESR and RRC_L1. SRC has rather high
computation burden even with fast solvers such as ALM and
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TABLE VIII

AVERAGE RUNNING TIME (SECONDS) OF COMPETING METHODS IN FR WITH REAL FACE DISGUISE.

THE VALUES IN PARENTHESIS ARE THE AVERAGE RECOGNITION RATE

Method Test 1-Sunglass Test 1-Scarf Test 2-Sunglass Test 2-Scarf
CESR [37] 2.50 (99.0%) 3.61 (42.0%) 0.45 (87.2%) 0.47 (29.4%)
SRC(l1_ls) 662.15 (87.0%) 727.14 (59.5%) 38.23 (73.3%) 47.73 (22.5%)
SRC(ALM) 35.99 (84.5%) 36.45 (58.5%) 2.34 (72.4%) 2.35 (21.7%)
SRC (Homotopy) 13.98 (65.0%) 13.73 (37.5%) 3.56 (60.0%) 3.59 (17.3%)
GSRC [18] 119.32 (93.0%) 118.05 (79.0%) 12.95 (66.2%) 12.49 (75.5%)
RRC_L1 8.70 (100%) 8.62 (97.5%) 2.06 (94.2%) 2.04 (84.8%)
RRC_L2 2.17 (99.5%) 2.04 (96.5%) 0.23 (91.5%) 0.23 (86.0%)
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Fig. 8. Recognition performance versus τ in estimating δ of RRCs weight
function.

Homotopy, which is because an additional identity matrix is
utilized to code occlusion. For the recognition rate, SRC’s
performance is the worst, and CESR also has rather bad
recognition rate in FR with scarf in each test. GSRC solved
by l1_ls has lower time cost than SRC (l1_ls) but still very
slow. Considering both the recognition rate and running time,
RRC_L1 and RRC_L2 are the best ones. RRC_L1 gets the
highest recognition rates in almost all cases, at the same
time with faster speed than SRC and GSRC. RRC_L2 is the
fastest one in all case, at the same time with the second best
performance (e.g., in the Test 2 of FR with scarf, 63.5%,
10.5% and 56.6% higher than SRC(l1_ls), GSRC, and CESR
in average).

E. Parameter Discussion

In this section, we discuss the effect of parameter δ in RRC
on the final recognition rate. As described below Eq. (14)
and in Section IV-A, the parameter δ is a key parameter to
distinguish inliers or outliers (if the residual’s square of a pixel
is larger than δ, its weight will be less than 0.5; otherwise, its
weight is bigger than 0.5). In our implementation, we use the
parameter τ to estimate δ, as described in Eq. (24). Hence,
it is necessary to discuss the selection of τ . Here we take
the experiment with various level random pixel corruption
(experimental settings are described in Section IV-C1) as an
example to discuss the selection of τ for RRC. Fig. 8 plots
the recognition rates of RRC_L1 versus different values of τ
for 0%, 30%, 60%, and 90% pixel corruption. It can be seen
that for moderate corruption (i.e., 0%∼60%), RRC_L1 could
get very good performance (i.e., more than 95%) in a broad
range of τ . For all percentages of pixel corruption, the best
performance could be achieved when τ = 0.5. It shows our
proposed RRC method is easy to tune and is more robust to

occlusion. Usually the domain of τ could be set as [0.5, 0.8].
It is reasonable because at least 50% samples should be trusted
when there are large percent of outliers.

V. CONCLUSION

This paper presented a novel robust regularized coding
(RRC) model and an associated effective iteratively reweighted
regularized robust coding (IR3C) algorithm for robust face
recognition (FR). One important advantage of RRC is its
robustness to various types of outliers (e.g., occlusion, corrup-
tion, expression, etc.,) by seeking for an approximate MAP
(maximum a posterior estimation) solution of the coding
problem. By assigning adaptively and iteratively the weights
to the pixels according to their coding residuals, the IR3C
algorithm could robustly identify the outliers and reduce their
effects on the coding process. Meanwhile, we showed that the
l2-norm regularization is as powerful as l1-norm regularization
in RRC but the former has much lower computational cost.
The proposed RRC methods were extensively evaluated on FR
with different conditions, including variations of illumination,
expression, occlusion, corruption, and face validation. The
experimental results clearly demonstrated that RRC outper-
forms significantly previous state-of-the-art methods, such as
SRC, CESR and GSRC. In particular, RRC with l2-norm
regularization could achieve very high recognition rate but
with low computational cost, which makes it a very good
candidate scheme for practical robust FR systems.
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