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Automation for the identification of plants, based on imaging sensors, in agricultural crops represents an
important challenge. In maize fields, site-specific treatments, with chemical products or mechanical
manipulations, can be applied for weeds elimination. This requires the identification of weeds and crop
plants. Sometimes these plants appear impregnated by materials coming from the soil (particularly
clays). This appears when the field is irrigated or after rain, particularly when the water falls with some
force. This makes traditional approaches based on images greenness identification fail under such situa-
tions. Indeed, most pixels belonging to plants, but impregnated, are misidentified as soil pixels because
they have lost their natural greenness. This loss of greenness also occurs after treatment when weeds
have begun the process of death. To correctly identify all plants, independently of the loss of greenness,
we design an automatic expert system based on image segmentation procedures. The performance of this
method is verified favorably.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Problem statement

Machine vision is an excellent sensor, which is being currently
incorporated in autonomous tractors, for treatments over site-spe-
cific areas in a larger field (Davies, Casady, & Massey, 1998). Focus-
ing on maize fields, one of the most important treatments is weeds
killing, where plants (weeds and crops) must be identified as a pre-
vious step. Different methods and strategies for plant identification
have been applied in different works (Burgos-Artizzu, Ribeiro, Tel-
laeche, Pajares, & Fernández-Quintanilla, 2009; Guerrero, Pajares,
Montalvo, Romeo, & Guijarro, 2012; Guijarro et al., 2011; Montalvo
et al., 2012; Onyango & Marchant, 2003; Tellaeche, Burgos-Artizzu,
Pajares, & Ribeiro, 2008b; Tellaeche, Burgos-Artizzu, Pajares, Ribe-
iro, & Fernández-Quintanilla, 2008a). López-Granados (2011)
makes a revision of methods where plant identification is a key step
in the process. Most existing strategies address the problem of
green identification under the assumption that plants display a high
degree of greenness, but they do not consider the fact that plants
may have lost their degree of greenness for different reasons.

Indeed, maize is an irrigated crop, which is also unprotected
from the rainfall. When the layer of water is abundant or its fall
on the ground is relatively strong, soil materials (particularly clays)
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impregnate the vegetative cover, particularly those parts close or
near to the soil. In this case, the green spectral component of pixels
belonging to the plants is masked by the dominant red spectral
component coming from materials existing in the soil; Fig. 1 dis-
plays an image where this appears clearly in the middle central
part of the image and also at the ends of the leaves in the maize
that are oriented toward the soil. Fig. 2 displays similar occur-
rences at the bottom part (center and right). This makes methods
based exclusively on the greenness identification, i.e. plant cover-
age based on the computation of vegetation indices, fail under such
situations. Indeed, soil and masked plants are both identified as
soil.

In Guerrero et al. (2012) we have already addressed this problem
by applying a learning approach based on support vector machines.
As all learning strategies, this method requires a training phase
where samples are conveniently provided for estimating the re-
quired parameters (support vectors), and then the posterior deci-
sion phase is highly dependent of the samples supplied, i.e. from
the images which have been used for training. Moreover, the learn-
ing phase requires a certain number of images previously selected.

We propose a new automatic method based on several sequen-
tial stages, where the linking of these stages and the image seg-
mentation processes, applied at each stage, are based on the
application of the human expert knowledge. This leads to the de-
sign of the proposed expert system, gaining an important advan-
tage with regard to the one described in Guerrero et al. (2012)
because no training is required and it can be directly applied to
the unique image under processing becoming independent from
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Fig. 1. Original image where weeds in the middle central part appear masked.

Fig. 2. Original image where weeds in the bottom central and right part appear
masked.
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other images, which are to be selected. One of the processes in-
volved into two different stages is image thresholding, based on
the Otsu’s method, which is self-adjustable, dealing well with
images captured under different conditions such as sunny or clou-
dy days, affecting illumination variability, (Tian & Slaughter, 1998);
they are typical situations in agricultural images coming from out-
door environments. The design of this automatic expert system
makes the main contribution of this paper.

Additionally, because this system is designed to identify plants
that have lost the greenness, it can be applied to evaluate the treat-
ment effectiveness. Indeed, as mentioned before, some site-specific
Fig. 3. Original image captured after the application of herbicide two days ago
(weeds in the central inter crop rows are evolving to a dry stage). The field has also
received direct rainfall.
treatments are intended to kill weeds in maize crops, when weeds
are in the dying process, before reaching dry completely; they also
have lost their greenness, compared to their healthy state. The pro-
posed expert system can be used for identifying such plants and
hence the treatment effectiveness.

Fig. 3 displays at its central inter-row crop, weeds evolving to-
ward a dry stage after the chemical treatment with herbicide ap-
plied two days ago. This image has also received direct rainfall
and some parts are impregnated with materials coming from the
soil as before.

1.2. Revision of methods

Several strategies have been proposed for segmenting crop can-
opy images, specifically oriented towards green segmentation:

(1) Visible spectral-index based, including the excess green
index (ExG, Ribeiro A., Barroso J., & M. C., 2005; Woebbecke,
Meyer, von Bargen, & Mortensen, 1995), the excess red index
(ExR, Meyer, Hindman, & Lakshmi, 1998), the color index of
vegetation extraction (CIVE, Kataoka, Kaneko, Okamoto, &
Hata, 2003), the excess green minus excess red index (ExGR,
Neto, 2004) and the vegetative index (VEG) described in
Hague, Tillet, and Wheeler (2006), which is designed to cope
with the variability of natural daylight illumination. ExG,
ExGR, CIVE and VEG have been applied under a combined
form in Guijarro et al. (2011) gaining in performance with
respect to their individual application. All these approaches
need to fix a threshold for final segmentation, i.e. to discrim-
inate between plants and other parts (soil,sky).

(2) Specific threshold-based approaches, including dynamic
thresholding. Generally, these techniques assume a two-
class problem where plants and soil are to be identified. Reid
and Searcy (1987) estimate a decision function under the
assumption that the classes follow Gaussian distributions.
The Otsu’s method (Otsu, 1979) is also applied considering
a bi-class problem (Ling & Ruzhitsky, 1996; Shrestha, Stew-
ard, & Birrell, 2004). These algorithms are applied to gray
images. Gebhardt, Schellberg, Lock, and Kaühbauch (2006)
apply also thresholding for segmentation transforming the
images from RGB to gray scale intensity. This algorithm
was later improved using local homogeneity and morpho-
logical operations in Gebhardt and Kaühbauch (2007). Kirk,
Andersen, Thomsen, and Jørgensen (2009) apply a combina-
tion of greenness and intensity derived from the red and
green spectral bands and compute an automatic threshold
for a two-class problem assuming two Gaussian probability
density functions associated to soil and vegetation respec-
tively; this procedure requires the previous estimation of
an angle to rotate the hypothetical greenness axis. Meyer
and Camargo-Neto (2008) have applied the automatic Otsu’s
thresholding method for binarizing ExG and the normalized
difference index (NDI), where a comparison is established
against the segmentation obtained from ExGR determining
that in this last case, a value of zero suffices for the thresh-
old, therefore the Otsu’s method is not required. Guijarro
et al. (2011) and Burgos-Artizzu, Ribeiro, Guijarro, and Paj-
ares (2011) have applied the statistical mean value of the
transformed image obtained with the vegetation indices
instead of automatic thresholding such as Otsu. They justify
its choice because Otsu’s method gives a threshold value
higher than the mean and produces infra-segmentation, i.e.
some plants are not conveniently identified.

(3) Learning-based, Meyer, Camargo-Neto, Jones, and Hindman
(2004) have applied unsupervised approaches, including
fuzzy clustering, for segmenting regions of interest from
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ExR and ExG. Tian and Slaughter (1998) proposed the envi-
ronmentally adaptive segmentation algorithm (EASA) for
detecting plants through a supervised learning process.
Ruiz-Ruiz, Gómez-Gil, and Navas-Gracia (2009) applied the
EASA under the HSI (hue-saturation-intensity) color space
to deal with the illumination variability. Zheng, Zhang, and
Wang (2009) and Zheng, Shi, and Zhang (2010) use a super-
vised mean-shift algorithm under the assumption that the
segmentation of green vegetation from a background can
be treated as a two-class segmentation problem; the class
separability is validated through a neural network and the
Fisher linear discriminant respectively, the color spaces used
were RGB, LUV and HSI. Guerrero et al. (2012) apply Support
vector machines as the learning strategy applied with iden-
tical purpose that the one proposed in this paper.

1.3. Motivational research of the proposed strategy

The above methods are intended for plant identification
through their greenness, based on the accentuation of the green
color (Meyer & Camargo-Neto, 2008), but their effectiveness drops
when the green spectral component becomes less important in fa-
vor of the red one as occurs in our case. Based on the images we
call unmasked plants to the ones where the green spectral compo-
nent is dominant and masked plants to these that have lost green-
ness in favor of the red spectral component.

Based on the above and considering a gray image containing
information about the greenness, we could view the problem as
a three-clustering approach, where the goal is to identify three
classes, from the histogram of the gray image, by computing two
thresholds. Demirkaya, Asyali, and Sahoo (2008) have proposed
an iterative method for this pourpose. The histogram is divided
into three regions with two pseudo-random thresholds and both
thresholds are dinamically adjusted based on the inter-class mean
values until no more adjustements are required. The main draw-
back of this approach is that in this kind of images, the histogram
does not display three well separated classes and this method pro-
vides two thresholds which are not valid for solving satisfactorily
our problem, as we will see later.

Thus, the idea is to apply an automatic strategy for image seg-
mentation similar to that a human expert would apply to a similar
problematic situation where the images contain classes which
identify masked and unmasked plants due to different facts. This
reasoning or knowledge, based on several stages, is the kernel of
the proposed expert system. Each stage is designed for a given pur-
pose and specific image segmentation approaches are applied for
achieving the goal at each stage.

1.4. Paper organization

This paper is organized as follows. In Section 2 we explain the
design of the proposed automatic expert system with its stages
and the corresponding image procedures associated. In Section 3
the performance of the proposed strategy is evaluated and finally
in Section 4, the most relevant conclusions are extracted.
2. Expert system design

2.1. Reasoning for knowledge extraction

Based on a logical expert reasoning, the proposed expert system
is designed according to the modular architecture displayed in
Fig. 4. It contains three stages, which are sequentially linked to
form the expert system as a whole. Each stage contains the re-
quired automatic image processing modules.
(1) Stage 1: Unmasked plants do not offer any difficulty in their
distinction, they are to be extracted at this first stage.

(2) Stage 2: Masked plants and soil remain together, the next
step consists in their separation, this is carried out by iden-
tifying those pixels, with a certain degree of greenness,
which are associated to masked plants. The remainder ones
are considered as belonging to the soil.

(3) Stage 3: Based on the assumption that pixels belonging to
plants are grouped together forming patches and they rarely
appear isolated, a procedure to remove small patches and
isolated pixels is to be applied.

2.2. Automatic image processing modules

Following the three previous stages, at each stage a sequence of
image processing techniques are applied for automatic purposes,
they are outlined in the graphic displayed in Fig. 4, being grouped
and linked conveniently.

(1) Stage 1, combination of vegetation indices and application a
first Otsu thresholding: given an original input image in the RGB col-
or space, we apply the following normalization scheme, which is
usually applied in agronomic image segmentation (Gée, Bossu,
Jones, & Truchetet, 2008),

r ¼ Rn

Rn þ Gn þ Bn
; g ¼ Gn

Rn þ Gn þ Bn
; b ¼ Bn

Rn þ Gn þ Bn
ð1Þ

where R, G and B are the normalized RGB coordinates ranging from
0 to 1 and are obtained as follows:

Rn ¼
R

Rmax
; Gn ¼

G
Gmax

; Bn ¼
B

Bmax
ð2Þ

where Rmax = Gmax = Bmax = 255 for our 24-bit color images.
Vegetation indices to be combined are computed as follows (see

references above in Section 1.2),

Excess green : ExG ¼ 2g � r � b ð3Þ

Color index of vegetation extraction

CIVE ¼ 0:441r � 0:811g þ 0:385bþ 18:78745 ð4Þ

Vegetative VEG ¼ g

rab1�a ;with a set to 0:667 as in

Hague et al:ð2006Þ ð5Þ

Based on Guijarro et al. (2011) the above three indices are combined
to obtain the resulting value COM as follows,

COM ¼ wExGExGþwCIVECIVEþwVEGVEG ð6Þ

where wExG, wCIVE and wVEG are the weights for each index, repre-
senting their relative relevance in the combination. Guijarro et al.
(2011) provide the four weight values participating in the combina-
tion, because in this work we have excluded the ExGR index, the
weight values for the three indices are proportionally recalculated,
i.e. wGExG ¼ 0:36; wGCIVE ¼ 0:47 and wGVEG ¼ 0:17.

The resulting combined image COM, is linearly mapped to range
into [0,1], after which is thresholded by applying the Otsu’s meth-
od, obtaining a binary image, where white pixels identify un-
masked plants, i.e. plants not contaminated due to materials
coming from the soil. The green spectral component of these pixels
is dominant with respect the red and blue ones.

(2) Stage 2, select black pixels and apply a second Otsu threshold-
ing: once pixels are identified as unmasked plants, the remainder
pixels in COM are extracted; they are assumed to belong to soil
and masked plants, these last are now our interest. The histogram
obtained from pixels belonging to soil and masked plants, is thres-
holded by applying again Otsu. After this second thresholding two



Fig. 4. Expert system architecture.
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kinds of pixels are identified, those belonging exclusively to soil,
debris and different materials and those belonging to masked
plants. These last ones together with those identified previously
as unmasked pixels form the final binary image or segmented im-
age, according to the scheme in Fig. 4. When the method is applied
for evaluating the effectiveness in the post-treatment process, all
pixels identified after the second thresholding are those belonging
to plants affected by the treatment, which have already started
their dying process.

(3) Stage 3, morphological operations and identification of masked
and unmasked plants: once the image has been binarized, the fol-
lowing three morphological operations are applied in the order ex-
pressed below:

(a) Opening: To remove small patches.
(b) Majority: A pixel is set to zero if five or more pixels in its 3x3

neighborhood are zeros.
(c) Cleaning: To remove isolated pixels resulting from the above

two operations, white pixels surrounded by black pixels.

Once the full process is finished, according to the three stages,
we obtain the final segmented image, where both unmasked and
masked plants are identified. Therefore we have sufficient knowl-
edge about their distribution in the field, which was the objective
of this work.

3. Results

The images used for this study were acquired with a HPR817
digital camera device in four different days in April/May 2007.
All acquisitions were spaced by five/six days. A set of them were
obtained in a pre-treatment phase after the field was artificially
watered and also when the field received different amounts of
rainfall, Figs. 1 and 2, described in the introduction, are two repre-
sentative images of this set. A second set of images was acquired in
a post-treatment phase after applying a dose of herbicide; in this
phase weeds have started its decease process, Fig. 3. Because of
the difference of the days, different groups of images were ac-
quired under different illumination conditions. This circumstance
does not affect the performance of the proposed process because
all image processing methods are independent of this circum-
stance; particularly the Otsu’s method which is relative to each im-
age histogram. Therefore it is not required any further study with
regard to lighting conditions. This represents also another advan-
tage with regard learning-based methods (Guijarro et al., 2011).
This is an additional justification for the choice of proposed expert
system.

These digital images were captured under perspective projec-
tion containing only soil and plants, i.e. without panoramic sky.
They were stored as 24-bit color images with resolutions of
800 � 600 pixels, and saved in RGB (Red, Green and Blue) color
space in the JPG format. The expert system was implemented in
Matlab R2009a (The Mathworks., 2012) and the images were pro-
cessed with its Image Processing Toolbox.

A set of 230 images were captured and processed, from which
180 contain masked plants (SET-1) and 50 were captured for
post-treatment evaluation (SET-2). Of course, all images contain
unmasked plants.

The kernel of the proposed Automatic Expert System (AES) con-
sists in the identification of masked and unmasked plants based on
the histogram separation into three classes and two thresholds;
hence we focus our analysis on the study of the two thresholds ob-
tained in stages 1 and 2 through the Otsu’s method to the COM im-
age. The performance of AES is compared with the double
thresholding approach proposed in Demirkaya et al. (2008) (DEM).

With respect images in SET-1, we base the analysis on the im-
age displayed in Fig. 1, which is a representative element of this
set. This is because all the images on this set behave similarly with
respect to the AES. Fig. 5(a) displays the COM gray image obtained
from image in Fig. 1; Fig. 5(b) displays its corresponding histogram
ranging in [0,255], i.e. the original values in COM are multiplied by
255. In the basis of the histogram appear four identifiers, a, b, c and
d, indicating four thresholds; a and c are the ones obtained by AES
in stages 2 and 1, respectively; b and d are the ones obtained by
DEM. Table 1 displays the four values for each approach (SET-1).

Fig. 6(a) displays the binary image obtained with threshold c,
see histogram in Fig. 5(b) and Table 1 for SET-1. White pixels are
identified as unmasked pixels at the first stage of the AES and



Fig. 5. (a) Image obtained from Fig. 1 by applying the COM vegetation index; (b) histogram for the image in (a) with four thresholds.

Table 1
Thresholds values obtained by AES and DEM for SET-1 and SET-2.

Thresholds AES DEM

a c b d

SET-1 83.00 111.99 97.13 139.94
SET-2 87.01 117.98 104.09 146.93
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labeled in red, Fig. 6(b). Now, considering black pixels in the binary
image, they are processed according to the image processing pro-
cedures defined in stages 2 and 3 in the AES; the threshold a is ob-
tained at stage 2, which allows the identification of masked plants,
labeled as blue in the image of Fig. 6(b). Fig. 6(c) displays the la-
beled pixels obtained by DEM with thresholds d (unmasked plants
in red) and b (masked plants in blue).

Based on the labels displayed in Fig. 6(b) and (c) we can see that
DEM identifies a smaller number of unmasked plants than AES;
also AES identifies patches of masked plants that are not identified
by DEM. Elliptical and circular lines in Fig. 6(c) identify relevant
parts and patches verifying the above assertions. The best perfor-
mance obtained by AES is explained considering the thresholds
values from the histogram. Indeed, un-masked plants are extracted
Fig. 6. (a) Binary image obtained with threshold c in Table 1 from image in Fig. 1, contain
and masked (blue) plants obtained by AES; (c) segmented image identifying unmasked (r
to color in this figure legend, the reader is referred to the web version of this article.)
with thresholds c and d, Table 1; because d is greater than c, DEM
identifies less number of unmasked plants, which are posteriorly
labeled as masked plants. Also, because b is greater than a and both
thresholds are related to masked plants, some of these last plants
are not identified by DEM. From the histogram in Fig. 5(b) we
ing masked and unmasked plants; (b) segmented image identifying unmasked (red)
ed) and masked (blue) plants obtained by DEM. (For interpretation of the references



Fig. 7. (a) Image obtained from Fig. 3 by applying the COM vegetation index; (b) histogram for the image in (a) with four thresholds.
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can see that there is not clear class separation, this means that
clear thresholds cannot be assigned, but AES gets better thresholds
than DEM judging by the results. At this point, it is worth mention-
ing that the use of the statistical mean value as threshold, applied
in Guijarro et al. (2011) and Burgos-Artizzu et al. (2011) is not
appropriate for our problem because the mean value is always less
than the threshold obtained with Otsu and most masked plants
and also soil plants are identified as unmasked.

Images in SET-2 contain weeds patches which have started the
drying process as a result of a previous treatment. The image dis-
played in Fig. 3 is a representative element of this set, where we
can see important weeds patches in the central inter-row crops,
which appear affected by the treatment, but still there are small
patches preserving a relative high degree of greenness, i.e. this
means that they are unaffected by the treatment. Fig. 7(a) displays
Fig. 8. (a) Binary image obtained with threshold c in Table 1 from image in Fig. 3, contain
and masked (blue) plants by AES; (c) segmented image identifying unmasked (red) and m
this figure legend, the reader is referred to the web version of this article.)
the resulting image obtained by the application of the COM vege-
tation index to the image in Fig. 3; Fig. 7(b) displays its correspond-
ing histogram ranging in [0,255] with identifiers similar to those
above for the thresholds. Table 1 displays the four values for each
approach (SET-2).

Unlike the previous histogram, this is bimodal, where threshold
c is the one used in AES for obtaining the binary image displayed in
Fig. 8(a) and also to identify unmasked plants, which are labeled in
red, Fig. 8(b). Threshold d is used in DEM for identifying also un-
masked plants, Fig. 8(c). Many pixels belonging to unmasked plants
are identified by AES but not by DEM, this can be explained be-
cause threshold c divides the histogram into two parts coinciding
better than d with the two modal regions. Moreover, all weeds
patches identified by DEM are affected by the treatment, elliptical
lines in Fig. 8(c), when in fact they are not. Discussions above are
ing masked and unmasked plants; (b) segmented image identifying unmasked (red)
asked (blue) plants obtained by DEM. (For interpretation of the references to color in



Table 2
Averaged spectral RGB components for unmasked and masked plants obtained by AES, DEM and SVM.

Spectral RGB components AES DEM SVM

R G B R G B R G B

Unmasked pixels 129.6 135.5 96.6 131.3 143.5 99.1 130.4 136.1 98.1
Masked pixels 146.1 142.9 111.1 147.8 144.7 109.3 147.0 143.6 112.0

Table 3
Percentage of successes obtained by AES, DEM and SVM for SET-1 and SET-2.

% Successes AES DEM SVM

SET-1 93.4 86.2 93.1
SET-2 91.8 85.3 89.9
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applicable to all images in SET-2, i.e. they all display similar behav-
ior with respect to both AES and DEM approaches.

Considering all pixels labeled as unmasked and masked plants
for SET-1 and SET-2, we have computed the averaged values for
the three RGB spectral components from the original images. These
values are obtained for AES and DEM and also for the Support Vec-
tor Machines (SVM) approach in Guerrero et al. (2012), obtaining
the values displayed in Table 2.

Results in Table 2 display that the green spectral component for
unmasked plants is always greater than the red one for the three
approaches (AES, DEM and SVM). This means that greenness is
clear on these plants, as expected. On the contrary the green spec-
tral component is less than the red one in a small amount for
masked plants. This verifies and supports the initial hypothesis.

In order to assess the validity of the proposed AES and to deter-
mine its performance as compared to DEM and SVM, we have ran-
domly selected the 20% from each one of the two sets of images
analyzed (SET-1 and SET-2). Each image was visually analyzed by
an expert to identify weeds and crop plants. The human visual
observation is carried out for each image guided by the segmented
image through the approach proposed in this paper. The expert
concentrates his major effort in identifying the most troubled
plants, i.e. those we call masked plants or plants already affected
by the treatment. Incorrect assignments are manually marked, cor-
rected or removed, generating new-segmented images, which are
considered as ground-truth. Table 3 displays the percentage of suc-
cesses obtained for the three approaches.

From results in Table 3 we can see AES outperforms DEM and
SVM. This behavior is explained on the fact that thresholds ob-
tained by DEM behave as explained before. Moreover, SVM re-
quires training and although in our experiments we obtain
similar results than AES, this could vary, getting worse, depending
on whether samples used for training becomes insufficient; AES is
free of this circumstance, i.e. it is a desirable approach for solving
the problem of identifying masked and unmasked plants in out-
door images coming from maize fields.

4. Conclusions

We propose a new automatic expert systems for image segmen-
tation in maize fields. It is based on three consecutive stages where
the main underlying idea is the successive application of automatic
image processing tasks mapping the expert knowledge.

The expert system is able to identify plants (weeds and crops)
when they have been contaminated with materials coming from
the soil, due to artificial irrigation or natural rainfall. It is also valid
for monitoring post-treatments; this is based on the assumption
that weeds, after chemical or mechanical treatments, must initiate
a progressive degradation expressed by the loss of the greenness
displayed during the pre-treatment stage. The damage in the crop,
when it occurs, can also be analyzed based on the same criterion
because of loss of greenness.

In addition once green plants are identified, the remainder parts
belong to the soil and cover a number of ecologically relevant cat-
egories (Luscier, Thompson, Wilson, Gorham, & Dragut, 2006), thus
the proposed expert system could be extended to deal with the
analysis of soil materials.

The expert system has been designed with an open architecture,
so that in the future be possible to replace or add new modules,
being of particular interest to study new automatic thresholding
methods (Avci & Avci, 2009) or add a knowledge-base for improv-
ing image segmentation based on the accumulated knowledge
(Gonzalez-Andujar, 2009).
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