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Abstract— We present a method for automated segmentation
of the vasculature in retinal images. The method produces
segmentations by classifying each image pixel assselor non-
vessel based on the pixel's feature vector. Feature vectors are
composed of the pixel's intensity and continuous two-dimesional
Morlet wavelet transform responses taken at multiple scale. The
Morlet wavelet is capable of tuning to specific frequenciesthus
allowing noise filtering and vessel enhancement in a singldep.
We use a Bayesian classifier with class-conditional probality
density functions (likelihoods) described as Gaussian miwres,
yielding a fast classification, while being able to model copiex
decision surfaces and compare its performance with the lirer
minimum squared error classifier. The probability distribu tions

are estimated based on a training set of labeled pixels ob-

tained from manual segmentations. The method’s performane
is evaluated on publicly available DRIVE [1] and STARE [2]
databases of manually labeled non-mydriatic images. On the
DRIVE database, it achieves an area under the receiver opetiag
characteristic (ROC) curve of 0.9598, being slightly supeor than
that presented by the method of Staakt al. [1].

Index Terms— Fundus, Morlet, pattern classification, retina,
vessel segmentation, wavelet.

I. INTRODUCTION

(a) Inverted green channel of
non-mydriatic fundus image.

(b) Pre-processed image with ex-
tended border. The original im-
age limit is indicated for illustra-
tion.

Fig. 1. Fundus image pre-processing for removing undesioeder effects.

to the blood vessel patterns can prevent major vision loss as
early intervention becomes possible [5], [6].

To provide the opportunity for initial assessment to be
carried out by community health workers, computer based

O PTIC fundus (Fig[I(&)) assessment has been wid{halysis has been introduced, which includes assessment of
used by the medical community for diagnosing vashe presence of microaneurysms and changes in the blood
cular and non-vascular pathology. Inspection of the rétingow/vessel distribution due to either vessel narrowingneo

vasculature may reveal hypertension, diabetes, artéginsts,
cardiovascular disease and stroke [3]. Diabetic retirfopas

plete occlusions or new vessel growth [7]-[9].
An automatic assessment for blood vessel anomalies of the

a major cause of adult blindness due to changes in bloggkic fundus initially requires the segmentation of thesets
vessel structure and distribution such as new vessel growthm the background, so that suitable feature extractioh an

(proliferative diabetic retinopathy) and requires labas anal-

processing may be performed. Several methods have been

ysis from a specialist [4]. Endeavoring to reduce the effegkyeloped for vessel segmentation, but visual inspectizh a

of proliferative diabetic retinopathy includes obtainiagd

evaluation by receiver operating characteristic (ROC)yeis

analyzing images of the optic fundus at regular interva1sushows that there is still room for improvement [10], [11].
as every six months to a year. Early recognition of changgs aqdition, it is important to have segmentation algorighm

(©?2006 IEEE. Personal use of this material is permitted. Hewgvermis-
sion to reprint/republish this material for advertisingppomotional purposes
or for creating new collective works for resale or redisitibn to servers or
lists, or to reuse any copyrighted component of this worktireoworks must
be obtained from the IEEE.

This work was supported by CNPq (131403/2004-4, 300722/%8d
474596/2004-4), FAPESP (99/12765-2), the Australian &tieh Association
and the CSU CosS.

J. Soares, J. Leandro, and R. Cesar-Jr. are with the lestifuflathematics
and Statistics - University of Sao Paulo - USP, Brazil (élendjoao, jleandro,
cesat @vision.ime.usp.br).

H. Jelinek is with the School of Community Health, CharlearSUniver-
sity, Australia (e-mail: hjelinek@csu.edu.au).

M. Cree is with the Department of Physics and Electronic Eeeiing,
University of Waikato, Hamilton, New Zealand (e-mail: c@waikato.ac.nz).

that do not critically depend on configuring several paramset
so that untrained community health workers may utilize this
technology. These limitations of the state-of-the-arbathms
have motivated the development of the framework described
here, which only depends on manually segmented images.
Many different approaches for automated vessel segmenta-
tion have been reported. The papers [12]-[18] present hesse
tracking methods to obtain the vasculature structure,galon
with vessel diameters and branching points. Tracking ct&si
of following vessel center lines guided by local informatio
usually trying to find the path which best matches a vessel
profile model. The use of deformable models also shows
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promising results in [19]-[22]. In [2], [23], [24], matchedthe adoption of the Morlet wavelet in our proposed framework

filters are used to emphasize blood vessels. An improvementhis work is organized as follows. The databases used

is obtained in [2] by a region-based threshold probing @fr tests are described in Subsectlon1l-A. Subseckion] 11-B

the matched filter response. Multithreshold probing isdiye presents our segmentation framework based on supervised

applied to the images in [25]. A non-linear filter that enhesic pixel classification. In Subsectid@II-C the feature getiera

vessels by exploiting properties of the vessel profiles is iprocess is described, including the 2-D CWT and Morlet

troduced in [26]. Along this line is the use of mathematicalavelet. Our use of supervised classification and the lassi

morphology filtering in [27], [28], coupled with curvaturetested are presented in Subsectignlll-D. ROC analysis for

evaluation. In [29], multi-scale curvature and border dét@ performance evaluation is described in Subsedion II-E and

are used to drive a region growing algorithm. results are presented in Sect[an IIl. Discussion and ceiaru
Supervised methods for pixel classification have been showie in Sectiof V.

in [1], [30], [31]. In [30], feature vectors are formed by

gray-scale values from a window centered on the pixel being

classified. A window of values is also used in [31], but Il. MATERIALS AND METHODS

the features used are a principal component transformation

of RGB values and edge strength. In [1], ridge detection. Materials

is used to form line elements and partition the image into ) o ]
patches belonging to each line element. Pixel features are Nere are different ways of obtaining ocular fundus images,

then generated based on this representation. Many featfg§" @s with non-mydriatic cameras, which do not require
are presented and a feature selection scheme is used to s&figdilation of the eyes through drops, or through angiogram
those which provide the best class separability. using fI_uoresceln as a traqer [5]. We have tested our met_hqu

Previously, we have shown promising preliminary resul@ @ngiogram gray-level images and colored non-mydriatic
using the continuous wavelet transform (CWT) [32], [33fMages [32], [34]. Here, our methods are tested and evaluate
and integration of multi-scale information through supeed ©n two publicly available databases of non-mydriatic immage
classification [34]. Here we improve on those methods usi@§d corresponding manual segmentations: the DRIVE [1] and
a Bayesian classifier with Gaussian mixture models as cla3¥*RE [2] databases.
likelinoods and evaluate performances with ROC analysis. The DRIVE database consists of 40 images (7 of which
ROC analysis has been used for evaluation of segmentatR§gsent pathology), along with manual segmentations of the
methods in [1], [2], [25] and comparison of some of the cite#essels. The images are captured in digital form from a Canon
methods in [10], [11]. CR5 non-mydriatic 3CCD camera 4i° field of view (FOV).

In our approach, each pixel is represented by a featutBe images are of siz&68 x 584 pixels, 8 bits per color
vector including measurements at different scales takem fr channel and have a FOV of approximatelf0 pixels in
the continuous two-dimensional Morlet wavelet transfofime ~ diameter. The images are in compressed JPEG-format, which
resulting feature space is used to classify each pixel hgreitis unfortunate for image processing but is commonly used in
avessebr non-vessepixel. We use a Bayesian classifier withSCr€€ning practice.
class-conditional probability density functions (likediods)  The 40 images have been divided into a training and test
described as Gaussian mixtures, yielding a fast classificat Set, each containing 20 images (the training set has 3 images
while being able to model complex decision surfaces amdth pathology). They have been manually segmented by three
compare its performance with the linear minimum squareﬂ)servers trained by an ophthalmologist. The images in the
error classifier. training set were segmented once, while images in the tést se

Originally devised for suitably analyzing non-stationand were segmented twice, resulting in sets A and B. The observer
inhomogeneous signals, the time-scale analysis took ptaceof sets A and B produced similar segmentations. In set A,
accomplish unsolvable problems within the Fourier framéd2.7% of pixels where marked as vessel, against 12.3% vessel
work, based on the continuous wavelet transform (CWTfr set B. Performance is measured on the test set using the
The CWT is a powerful and versatile tool that has beesegmentations of set A as ground truth. The segmentations
applied to many different image processing problems, frofi set B are tested against those of A, serving as a human
image coding [35] to shape analysis [36]. This success abserver reference for performance comparison.
largely due to the fact that wavelets are especially suetédnl The STARE database consists of 20 digitized slides captured
detecting singularities (e.g. edges and other visual feaju by a TopCon TRV-50 fundus camera &i° FOV. The slides
in images [37], extracting instantaneous frequencies, [88J were digitized t0700 x 605 pixels, 8 bits per color channel.
performing fractal and multi-fractal analysis. Furthemmahe The FOV in the images are approximatéB0 x 550 pixels in
wavelet transform using the Morlet wavelet, also oftennref@  diameter. Ten of the images contain pathology. Two obssrver
to as Gabor wavelet, has played a central role in increasing ananually segmented all images. The first observer segmented
understanding of visual processing in different contextenf 10.4% of pixels as vessel, against 14.9% vessels for thadeco
feature detection to face tracking [39]. The Morlet wavelatbserver. The segmentations of the two observers are fairly
is directional and capable of tuning to specific frequenciedifferent in that the second observer segmented much more of
allowing it to be adjusted for vessel enhancement and noige thinner vessels than the first one. Performance is cadput
filtering in a single step. These nice characteristics natgiv with the segmentations of the first observer as ground truth.



B. General framework analysis of localized properties and singularities [38EIsas

The image pixels of a fundus image are viewed as objedf blood vessels in the present case. _
represented by feature vectors, so that we may apply &tatist AmMong se\_/eral available analyz_mg wavelets, for instance,
classifiers in order to segment the image. In this case, ti# 2-D Mexican hat and the optical wavelet, we chose the
classes are considered, i¥esselx non-vessebixels. The 2-D Morlet wavelet for the purposes of this work, due to
training set for the classifier is derived by manual segmelts directional selectiveness capability of detectingeoted
tations of training images, i.e. pixels segmented by haed 4gatures and fine tuning to specific frequencies [38], [40].
labeled avesselhile the remaining pixels are labeledrasn- This latter property is especially important in filtering tou
vessel This approach allows us to integrate information frorf® background noise of the fundus images. The 2-D Morlet
wavelet responses at multiple scales in order to distimgui¢avelet is defined as:
pixels from each class. 1
Y (x) = exp(jkox) exp (—§|Ax|2)
C. Pixel features

When the RGB components of the non-mydriatic imagddheres = v—T and A = diage~'/%,1],e > 1is a2 x 2
are visualized separately, the green channel shows the t%ggonal matrix that defines the anisotropy of the filter, it®

vessel/background contrast (F[g. 1(a)), whereas, the ned glongation in any desired direction [38]. The Morlet watele

blue channels show low contrast and are very noisy. Thezefor a?‘”a"y a complex exponennal modulated Gaussian, evher
tis a vector that defines the frequency of the complex

the green channel was selected to be processed by the wavgﬂa X
as well as to compose the feature vector itself, i.e. thergre%xponem'al' i ,

channel intensity of each pixel is taken as one of its feature & have set the parameter t@, making the filter elongated
For angiograms, the wavelet is applied directly to the gra@'d ko = [0,3], i.e. a low frequency complex exponential

level values, which are also used to compose the featlyith few significant oscillations, as shown in Fid. 2. These
vectors. two characteristics have been chosen in order to enable the

1) Pre-processingin order to reduce false detection of thdransform to present stronger responses for pixels asedcia

border of the camera's aperture by the wavelet transform, Wi{h the blood vessels. _ _
iterative algorithm has been developed. Our intent is tooren  OF €ach considered scale value, we are interested in the re-
the strong contrast between the retinal fundus and the megRP°NSe with maximum modulus over all possible orientaions
outside the aperture (see Fig. 1). €.
The pre-processing algorithm consists of determining the
pixels outside the aperture that are neighbors to pixelgéns

the aperture and replacing each of their values with the Mean s the Morlet wavelet transform is computed for

value of their neighbors inside the aperture. This processs' anning fromd up to 170 degrees at steps b degrees and

repeated and can be seen as atrtificially increasing the LR maximum is taken (this is possible becalfig(b, 6, )| =

msgd? thetﬁperturti, ats_ shO\:cvr;hm F@I(t?'t ‘ ¢ Ty (b, 6 + 180,a)|). The maximum modulus of the wavelet
elore the application of the wavelet ransiorm 10 Noff,,ofqrm over all angles for multiple scales are then tas®n

mydriatic images, we invert the green channel of the ima wel feat Mo (b is sh in Ei f — 9 and
so that the vessels appear brighter than the background. g§:e4 Si{;l(;rses. v(b,a) is shown in FigLB fora an

2) Wavelet transform feature§he notation and definitions 3) Feature normalizationGiven the dimensional nature of

in this section follow [40]. The real plan x R is denoted the features forming the feature space, one must bear in mind

2
asg& ' Hzgdl_ﬂle VeCL“;rz are r_epresented as tb?jld letters, it this might give rise to errors in the classification s
X, b € R*. L€ f_e_ € an Image represented as a Squaly yne ynits chosen might affect the distance in the feature
integrable (i.e. finite energy) function defined oRt. The space
continuous wavelet transforffi, (b, 6, ) is defined as: A strategy to obtain a new random variable with zero mean
and unit standard deviations, yielding, in addition, disien-
Ty (b, 0, a) = 0;1/21/1/1*(a717‘_9(x—b))f(x)d2x less features, is to apply the normal_transformation to the
a feature space. The normal transformation is defined as [36]:

where Cy, ¢, b, § and a denote the normalizing constant,

My(b,a) = m9aX|T¢(b,9,a)| Q)

analyzing wavelet, the displacement vector, the rotatinglea 0 = Vi
and the dilation parameter (also known as scale), resgdgtiv i
1* denotes the complex conjugate ©f where v; is the i** feature assumed by each pixel; is

Combining the conditions for both the analyzing wavelahe average value of thé" feature ands; is the associated
and its Fourier transform of being well localized in the timstandard deviation.
and frequency domain plus the requirement of having zeroWe have applied the normal transformation separately to
mean, one realizes that the wavelet transform providesal loeach image’s feature space, i.e., every image’s featucedpa
filtering at a constant raté}dﬂ, indicating its great efficiency normalized by its own means and standard deviations, tgglpin
as the frequency increases, i.e. as the scale decreasss. fbhicompensate for intrinsic variation between images (e.qg.
property is what makes the wavelet effective for detectiod aillumination).
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(@) My (b, 2). (b) My (b, 4).

Fig. 3. Maximum modulus of Morlet wavelet transform over kesg
. My (b, a) (Eq.d), for scale values af = 2 anda = 4 pixels. The remaining
(a) Surface representation of the real part. parameters are fixed at= 8 andko = [0, 3)].

We recallBayes rule
p(v|Ci)P(Ci)
p(v)

where p(v|C;) is the class-conditional probability density
function, also known as likelihood?(C;) is the prior proba-
bility of classC;, andp(v) is the probability density function
of v (sometimes called evidence).

To obtain a decision rule based on estimates from our
training set, we applyBayes ruleto Eg.[2, obtaining the
(b) Real part. (c) Imaginary part. equivalent decision rule:

P(Cilv) = ®3)

Fig. 2. Different representations for the 2-D Morlet wave(e ;) with . .
parameters = 8 andko = [0, 3]. DecideC; if p(v|C1)P(Cy) > p(v|C2)p(Cs);
otherwise, decid€

We estimateP(C;) asN;/N, the ratio of clasg samples in
the training set. The class likelihoods are described asatfin
Supervised classification has been applied to obtain thembinations of Gaussian functions:
final segmentation, with the pixel classes definedCas=
{vessel pixels and C; = {non-vessel pixe}s In order to .
obtain the training set, several fundus image have been man- p(vICi) = ZP(VU’OZ')PJ'
ually segmented, allowing the creation of a labeled trajnin 7=l
set into classeg’; and C, (see SubsectioRTlJA). Due to wherek; is the number of Gaussians modeling likelihogd
the computational cost of training the classifiers and the is the weight of Gaussiap and eachp(v|j, C;) is a d-
large number of samples, we randomly select a subset of #imnensional Gaussian distribution.
available samples to use for actually training the classifie For each clasg, we estimate theé;; Gaussian parameters
We will present results for two different classifiers, désed and weights with the Expectation-Maximization (EM) algo-
below. rithm [41]. The EM algorithm is an iterative scheme that
1) Gaussian mixture model Bayesian classifis¥e have guarantees a local maximum of the likelihood of the training
achieved very good results using a Bayesian classifier data.
which each class-conditional probability density funot{tike- GMNMs represent a halfway between purely nonparametric
lihood) is described as a linear combination of Gaussiamd parametric models, providing a relatively fast classifon
functions [41], [42]. We will call this theGaussian mixture process at the cost of a more expensive training algorithm.

D. Supervised classification for segmentation

ki

model(GMM) classifier. 2) Linear minimum squared error classifielie have also
The Bayes classification ruléor a feature vectow can be tested the linear minimum squared error classifier [41]],[42
stated in terms of posterior probabilities as denoted LMSE. Linear classifiers are defined by a linear

decision functiory in the d-dimensional feature space:

DecideC; if P(C1|v) > P(Cs|v);

otherwise, decid€’, 2) g(v) = w'v +wp 4



wherev is a feature vectory is the weight vector andy We have tested our methods on the DRIVE and STARE
the threshold. databases with the following settings. The pixel featurssdu
The classification rule is to decidg; if g(v) > 0 andC, for classification were the inverted green channel and its
otherwise. To simplify the formulation, the threshalg) is maximum Morlet transform response over angles (b, a)
accommodated by defining the extenddd+ 1)-dimensional (Eq.[) for scales: = 2,3, 4, 6 pixels (see Subsectidn Il}C).

vectorsv’ = [vI,1]T andw’ = [wT,wo]T, so thatg(v) = For the DRIVE database, the training set was formed by
wTv'. pixel samples from the 20 labeled training images. For the

The classifier is determined by finding’ that minimizes STARE database, leave-one-out tests where performed, i.e.
the sum of error squaresriterion: every image is segmented using samples from the other 19

images for the training set. Due to the large number of pjxels

N in all experiments, one million pixel samples where randoml
J(w') = Z(yi - VQTW/)Q chosen to train the classifiers. Tests were performed wéh th
i=1 LMSE and GMM classifiers. For the GMM classifier, we vary
where N is the total number of training samples, is the the numberk = k, = k, of vesseland non-vesselGaussians
extended*” training sample, ang; its desired output. modeling each class likelihood.

The criterion measures the sum of squared errors between

the true output of the classifiev/f w’) and the desired output . RESULTS
(y;). We have arbitrarily sey; = 1 for v; € C; andy; = —1 lllustrative segmentation results for a pair of images from
for v; € Cs. each database (produced by the GMM classifier with 20),
Let us define along with the manual segmentations, are shown in Fls. 4
and®.
viT Y1 For the DRIVE database, the manual segmentations from
\ Y2 set A are used as ground truth and the human observer
V= : Y= . performance is measured using the manual segmentatians fro
r ' set B, which provide only one true/false positive fractiairp
VN Yn appearing as a point in the ROC graph (Elg. 6). For the STARE
Minimizing the criterion with respect tev’ results in: database, the first observer's manual segmentations ade use
as ground truth, and the second observer’s true/falseiymsit
VIV)W = VTy = w' = (VIV) v Ty fraction pair is plotted on the ROC graph (Fig. 7). The closer

an ROC curve approaches the top left corner, the better the

In comparison to the GMM classifier, the LMSE classiperformance of the method. A system that agreed completely
fier has a much faster training process, but is restricted With the ground truth segmentations would yield an area unde
the sense that it is linear, while GMMs allow for complexhe ROC curveA, = 1. However, note that the second sets
decision boundaries. However, as we will show, the resuleé manual segmentations do not produce perfect true/false
obtained using LMSE are comparable to those using GMMggsitive fractions, for the manual segmentations evathate
representing a reasonable trade-off. disagree on some of the pixels with the manual segmentations
used as ground truth. Thus, the variance between observers
can be estimated, helping to set a goal for the method's
performance.

The performances are measured using receiver operatinghe areas under the ROC curves,] are used as a single
characteristic (ROC) curves. ROC curves are plots of trmeeasure of the performance of each method and are shown in
positive fractions versus false positive fractions fory#ag Tablell for GMM classifiers of varying: and for the LMSE
thresholds on the posterior probabilities. A pair formedaby classifier. For comparison with the manual segmentatioes, w
true positive fraction and a false positive fraction is fddt also measure the accuracies (fraction of correctly claskifi
on the graph for each threshold value (as explained below)xels) of the automatic and manual segmentations. Note tha
producing a curve as in Figgl 6 afid 7. The true positithe accuracy andi, values for the GMM classifier increase
fraction is determined by dividing the number of true pesis  with k. The ROC curves for the DRIVE and STARE databases
by the total number of vessel pixels in the ground truthroduced using the GMM classifier with = 20, as well as
segmentations, while the false positive fraction is the bem performances for human observers, are shown in Eigs. Bland 7.
of false positives divided by the total number of non-vessel We note that the EM training process for the GMMs is
pixels in the ground truth. In our experiments, these foati computationally more expensive ds increases, while the
are calculated over all test images, considering only pixatlassification phase is fast. On the other hand, LMSE is very
inside the FOV. fast for both training and classification, but produces poor

For the GMM classifier, the ROC curve is produced bgesults, as seen in Tatle I.
varying the threshold on the posterior pixel probabilitisse
Eq.[3), while the LMSE ROC curve is produced varying the IV. DISCUSSION AND CONCLUSION
thresholdw, on the projection of the feature vectors on the The Morlet transform shows itself efficient in enhancing
discriminant vector (see ERI 4). vessel contrast, while filtering out noise. Informationnfro

E. Experimental evaluation



(a) Posterior probabilities.

(e) Posterior probabilities. (f) Segmentation. (g) Set A. (h) Set B.

Fig. 4. Results produced by the GMM classifier with= 20 and manual segmentations for two images from the DRIVE @atbThe top row results are
for the image shown in Fid_T{a).

(e) Posterior probabilities. () Segmentation. (g) First observer. (h) Second observer.

Fig. 5. Results produced by the GMM classifier with= 20 and manual segmentations for two images from the STARE dsa¢abThe top row images
originate from a pathological case, while the bottom onégirmate from a normal case.
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Fig. 6. ROC curve for classification on the DRIVE databasengighe
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the second set of manual segmentations. The methodihas 0.9598.
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Fig. 7. ROC curve for classification on the STARE databasegushe
GMM classifier with k& = 20. The point marked afl corresponds to the
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second observer’s manual segmentations. The methodihas 0.9651.

RESULTS FOR DIFFERENT CLASSIFICATION METHODS AND HUMAN
OBSERVER A, INDICATES THE AREA UNDER THEROC CURVE, WHILE
THE ACCURACY IS THE FRACTION OF PIXELS CORRECTLY CLASSIFIED

TABLE |

Database

Classification Method

DRIVE

STARE

Az

Accuracy

Az

Accuracy

LMSE
GMM, k=1
GMM, k=5
GMM, k£ =10
GMM, k =15
GMM, k=20

2nd. observer

0.9520 | 0.9280
0.9250 | 0.9217
0.9537 | 0.9431
0.9570 | 0.9454
0.9588 | 0.9459
0.9598 | 0.9467

0.9473

0.9584 | 0.9362
0.9394 | 0.9239
0.9609 | 0.9430
0.9627 | 0.9450
0.9648 | 0.9470
0.9651| 0.9474

0.9349

Morlet transforms at different scales, which allows the-seg
mentation of vessels of different diameters, are intedrate
through the use of the statistical classifiers presente@ Th
LMSE classifier shows a reasonable performance with a fast
classification and training phase, while the GMM classifis h

a computationally demanding training phase, but guarardgee
fast classification phase and better performance.

The classification framework demands the use of manual
labelings, but allows the methods to be trained for differen
types of images (provided the corresponding manual segmen-
tations are available), possibly adjusted to specific canoer
lighting conditions and are otherwise automatic, i.e.uat]
ment of parameters or user interaction is not necessaryr&Ve a
studying the use of training sets composed of a small portion
of the image to be segmented. Using this approach, a semi-
automated fundus segmentation software may be developed,
in which the operator only has to draw a small portion of the
vessels over the input image or simply click on several gixel
associated with the vessels. The remaining image would then
be segmented based on the partial training set. This approac
is interesting since it requires a small effort from the @per,
which is compensated by the fact that image peculiarities ar
directly incorporated by the classifier.

It is curious to note that, on the STARE database, the
accuracy of the method is higher than that of the second
observer (Tabl&l ). The second observer’s manual segmenta-
tions contain much more of the thinnest vessels than the first
observer (lowering their accuracy), while the method nigdi
by the first observer, is able to segment the vessels at aasimil
rate. However, the ROC graph (FIg. 7) still reflects the highe
precision of the second observer, due to some difficultieado
by the method, as discussed below.

It is possible to use only the skeleton of the segmentations
for the extraction of features from the vasculature. Depend
on the application, different evaluation methods becomeamo
appropriate [43]. For example, the evaluation of the skelet
would not take into account the width of the vessels, but
could measure other qualities such as the presence of gaps
and detection of branching points. Another interestingnfor
of evaluation would be directly through an application, lsuc
as in detection of neovascularization by means of analysis a
classification of the vessel structure [33]. A major diffiguh
evaluating the results is the establishment of a reliabbe g
truth [44]. Human observers are subjective and prone tagrro
resulting in large variability between observations. Thils
is desirable that multiple human-generated segmentatens
combined to establish a ground truth, which was not the case
in the analysis presented.

Though very good ROC results are presented, visual inspec-
tion shows some typical difficulties of the method that muest b
solved by future work. The major errors are in false detectio
of noise and other artifacts. False detection occurs in some
images for the border of the optic disc, haemorrhages and
other types of pathologies that present strong contraso,Al
the method did not perform well for very large variations in
lighting throughout an image, but this occurred for only one
image out of the 40 tested from both databases. This could
possibly be solved by including intra-image normalization



in the pre-processing phase [45]. Another difficulty is thpi]
inability to capture some of the thinnest vessels that arelypa
perceived by the human observers.

Another drawback of our approach is that it only takes
into account information local to each pixel through imag?l
filters, ignoring useful information from shapes and stioes
presentin the image. We intend to work on methods addressjng)
this drawback in the near future. The results can be slightly
improved through a post-processing of the segmentatians fo
removal of noise and inclusion of missing vessel pixels s
in [34]. An intermediate result of our method is the intepsit
image of posterior probabilities, which could possibly &f#n
from a threshold probing as in [2] or region growing schemes.

Automated segmentation of non-mydriatic images provid€s!
the basis for automated assessment by community health
workers. Skeletonized images of the vessel pattern of the]
ocular fundus can be analyzed mathematically using naaline
methods such as global fractal [33] and local fractal [7]lana
ysis based on the wavelet transform thus providing a numeyig]
indicator of the extent of neovascularization. Our ongoing
work aims at applying the shape analysis and classificatigg;
strategies described in [33] to the segmented vessels geddu

by method described in this work. (1]
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