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Learning using privileged information (LUPI) is a machine learning paradigm which aims at improving
classification by taking advantage of information that is only available at training time —not at test time.
SVM+ is an SVM-based implementation of LUPI. Despite this paradigm has potential interest for many
applications, both LUPI and SVM+ have been scarcely explored up to date. In this work we report our
effort in reproducing some results in the SVM+ literature and explore some practical issues of SVM+.
The main finding is that just using randomly generated features as privileged information may perform
similarly to using sensible (i.e. meaningful a priori) privileged information, at least in some problems.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Learning using privileged information (LUPI) [1,2] is a recently
proposed machine learning paradigm that draws inspiration from
human teaching–learning. The paradigm builds on the observation
that good human teachers, besides examples, provide students
with other relevant information. This information is not available
to the students when they face novel, real-world situations, but as-
sists them in building better models during their training. LUPI
aims at mimicking this behaviour in the computational world by
extending the traditional setting of supervised learning.

Under the conventional supervised machine learning frame-
work, a set of m examples xi 2 X � Rn and their class labels
yi 2 Y � Z; ðX; yÞ ¼ fðxi; yiÞg

m
i¼1, are provided at training stage from

which a model is built for predicting the class label y 2 Y for a new
input x 2 X . LUPI extends this paradigm by considering that addi-
tional privileged information zi 2 Z � RnZ will be available for each
training example i. That is, the training set will be
ðX;Z; yÞ ¼ fðxi; zi; yiÞg

m
i¼1. The goal is to learn classification schemes

h : X ! Y that utilise all the available information (i.e. both privi-
leged Z and regular X) during the training stage, and can perform
classification during the test stage using only the regular data X .
Very little work has been performed within the LUPI paradigm.
After its formulation for Support Vector Machines (SVM) [1,2],
namely SVM+, LUPI has been considered in the setting of unsuper-
vised learning [3], and some benefits have been reported in its
application in the financial field [4]. The relation between
SVM+ and multi-task learning has been studied [5]. Better optimi-
sation methods for SVM+ have been explored [6,7], as well as the-
oretical analysis about the conditions for faster learning rates in
privileged empirical risk minimisation (ERM) with respect to regu-
lar ERM [8]. However, more research is required both in the theo-
retical and practical sides of LUPI for a better understanding of its
nature as well as its possibilities and limitations. This work intends
to take a step forward in this direction, by focusing on the practical
side of SVM+.

Conceptually, the main idea behind LUPI is that leveraging the
privileged information can boost the performance earlier (i.e. with
fewer training instances). Examples of this privileged information
are, e.g., [2]: 3D structures of proteins, which is an advanced tech-
nical information which is hard and time consuming to obtain; fu-
ture information which can be available at training, but obviously
not at test time; and human-derived poetic description of digits. In
all these cases, the privileged information comes only as the result
of costly human or computational efforts, and one cannot (easily)
afford to have this privileged information for all but a few training
instances, or it is completely impossible to have it for actual test
examples (e.g. future information). However, during the course of
our study of the LUPI paradigm, the following question arose: what
if random features are used instead of sensible (i.e. meaningful a
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priori) privileged information? This is the main issue discussed in
this work. Other practical aspects are explored such as the relative
performances of SVM and SVM+ with different trade-offs of the
sizes of the validation and training sets.
2. SVM+ formulation

Briefly, for regular SVM, the optimisation problem in its dual
form is defined as

max
a

Xm

i¼1

ai �
1
2

Xm

i;j¼1

aiajyiyjKðxi;xjÞ; s:t:
Xm

i¼1

yiai ¼ 0; 0 6 ai 6 C;

ð1Þ

where ai are Lagrange multipliers, Kð�; �Þ is the kernel function, and
C is the regularisation parameter. For SVM+, the problem is formu-
lated as [2]:

max
a;b

Xm

i¼1

ai�
1
2

Xm

i;j¼1

aiajyiyjKðxi;xjÞ�
1

2g
Xm

i;j¼1

ðaiþbi�CÞðajþbj�CÞKzðzi;zjÞ;

ð2Þ

subject to
Pm

i¼1ðai þ bi � CÞ ¼ 0;
Pm

i¼1yiai ¼ 0, and ai;bi P 0. In this
case, Kzð�; �Þ is the kernel in the Z space, bi are Lagrange multipliers,
and g is an additional regularisation parameter. In both cases, the
decision function f ðxÞ takes place in the X space,
f ðxÞ ¼

Pm
i¼1yiaiKðxi;xÞ, and a correcting function is also required

in the SVM+. Two kernels, Kð�; �Þ and Kzð�; �Þ, are used in SVM+, each
measuring the similarity in different spaces. Although only Kð�; �Þ
takes part in the decision function, both kernels are coupled
through the a’s, since these coefficients are in all the terms in (2)
and in the decision function as well. Since this formulation includes
the SVM solution as a particular case, SVM+ can either use the priv-
ileged information when found helpful through Kzð�; �Þ, or resort to
the SVM solution otherwise [2].
3. Experimental work

We first indicate in Section 3.1 the experimental methodology
common to all the experiments performed. The following sections
report the details and results with SVM and SVM+ for three
problems related to computer vision: two of them (Sections 3.2
and 3.3) are taken from Vapnik et al.’s work [2,7] and another
one (Section 3.4) is proposed here. A final toy synthetic example
(Section 3.5) is used for subsequent discussion (Section 4).

3.1. Experimental methodology

Features
Experiments were performed with two types of privileged

information: the proposed genuine privileged information on the
one hand, and synthetically generated random features on the
other. We tested with both, class separable, and non-separable ran-
dom features. In the class-separable case, features were uniformly
generated by taking the feature values in disjoint ranges for each
class, i.e. zij 2 ½yi � d; yi þ d�, with zij denoting the j-th feature of
vector zi, and d was chosen to allow class separability per feature
(in all the experiments below, we set d ¼ 0:4). The number of
random features used was the same as in the genuine case. In
the non-separable case, the features were uniformly taken from a
normalised range, i.e. zi 2 ½0;1�. The three SVM+ versions using
these three different sources of privileged information are referred
to as SVM+ (with genuine privileged information), SVM+Rsep

(with random but separable features) and SVM+Rnon-sep (with fully
random, non separable features). We may use SVM+ to refer to any
of these versions and SVM+R to any of the two versions with ran-
dom features.
Classifiers and evaluation protocol
We used the efficient implementation of SVM provided by the

LIBSVM 3.16 [9], and an SVM+ implementation built on LIBSVM.
Two models, X�SVM+ and dSVM+, have been proposed [2]. X�SVM+
applies SVM+ directly on the available privileged information and
regular data, whereas dSVM+consists of two stages: first, SVM is
applied on the regular information alone; second, SVM+ is applied
using as privileged information the deviation values of the
SVM trained in the first stage. Since the interest of our study is
exploring the role played by random features as opposed to genu-
ine privileged information, any of the two models can be used. We
chose X�SVM+ since it is somehow simpler and easier to use.

Following Vapnik and Vashist [2], we chose to use a radial-
basis function (RBF) as the kernel function for both the regular
and the privileged information spaces, defined as Kðx;x0Þ ¼
expð�ckx� x0k2Þ. This leads to four parameters to be tuned when
executing the code to train the learner: the penalty parameters C
and Cz, and c and cz for the RBF kernels in the X and Z spaces,
respectively. Notice that only C and c are required for SVM

whereas all the four are required for SVM+. Although Cz does not
appear in the general formulation (2), it is a required parameter
for the optimisation functions used by the particular SVM+ imple-
mentation used. To choose their optimal values, a coarse-to-fine
grid search was performed over a validation set. First, a coarse grid

search was made over the series C;Cz 2 2i : i 2 f�5;�3; . . . ;11g
n o

,

and c; cz 2 2j : j 2 f�15;�13; . . . ;3g
n o

. Once the optimal values for

i and j were found, î; ĵ, a fine search focused on the range

f̂i� 1:0; î� 0:8; . . . ; îþ 1:0g for î and equivalently for ĵ.
3.2. Hand-written digits classification

Description
The popular MNIST dataset [10] consists of grey-scaled, scanned

images of hand-written digits (from 0 to 9). Although each digit in
this dataset is 28� 28 pixels, Vapnik and Vashist [2] resized them
to 10� 10 pixels to make the problem harder. They defined a
binary classification problem by considering only the digits 5 and
8, Y ¼ f5;8g, and considered three disjoint sets: training, valida-
tion, and test, with 100, 4002, and 1866 examples each, respec-
tively. As privileged information, a 28-dimensional feature vector
obtained from a poetic description [1,2] of each of the 100 training
digits was used. We used the data files as available at [11]. The
training and validation sets provided were balanced while the test
set was slightly biased towards digit 8 with a proportion
0:52 : 0:48.
Experimentation
Since no indication is provided in [2] about how data was pro-

cessed, several approaches were tested: performing no processing
at all, scaling the data so that the features were in a given range,
normalising the features individually to zero mean and unit vari-
ance, and normalising each feature vector so that each one had unit
length. The results with some of these approaches were far from
those reported in [2], while the latter was the option which was
closer and yielded the best ones, and it is thus the one used to re-
port our results. Notice that this normalisation does not assure
complete separability of the originally random separable data. Fol-
lowing [2], twelve repetitions were made over each training size,
each repetition using a different random sample from the provided
training set, and we made sure each sample was class-balanced.
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Fig. 1. Error rates of SVM, SVM+, and SVM+R for the problem of hand-written
digits recognition (Section 3.2).

42 C. Serra-Toro et al. / Pattern Recognition Letters 42 (2014) 40–46
Results
Fig. 1 shows the averaged error rates obtained when reproduc-

ing the experiments (solid lines), as well as the results reported
by Vapnik and Vashist [2] (dashed lines), traced from Fig. 5(a) in
their paper. It can be observed that SVM is outperformed by every
SVM+ version, even by the ones using random features as privi-
leged information. The statistical significance of the differences in
error rates is assessed with paired t-tests (right-tailed to check for
the error of the compared algorithm being lower than the error
for the baseline algorithm). Results, given in Table 1, confirm this
observation and also reveal that, except for one training size
(m ¼ 60), SVM+ does not perform significantly better than SVM+R.

We wondered whether the large amount of examples used for
validation was a requirement for SVM+ to perform well, and thus
we repeated the experiments with a validation set a quarter this
size (i.e. mv ¼ 1002 instead of mv ¼ 4002). The error rate increased
in an absolute difference of about 0.5 percentage units for both
SVM and SVM+, but SVM+ still outperformed SVM. This suggests
Table 1
Significance results of paired t-tests for different SVM and SVM+ comparisons for differen

Problem (Section) m (or m) SVM+ vs. SVM SVM+R

Digits (3.2) 40 0.000⁄⁄⁄ 0.000⁄

50 0.002⁄⁄⁄ 0.023⁄

60 0.005⁄⁄⁄ 0.048⁄

70 0.001⁄⁄⁄ 0.002⁄

80 0.001⁄⁄⁄ 0.036⁄

90 0.000⁄⁄⁄ 0.005⁄

Objects (3.3) 50 0.067⁄ 0.029⁄

100 0.077⁄ 0.517
150 0.791 0.945
200 0.999 0.989

Actions (3.4) 26:8 0.068⁄ 0.154
54:2 0.130 0.065⁄

163:8 0.062⁄ 0.093⁄

274:0 0.870 0.594
383:6 0.620 0.793
493:2 0.751 0.606

Bananas (3.5) 50 0.000⁄⁄⁄ 0.000⁄

70 0.000⁄⁄⁄ 0.000⁄

90 0.002⁄⁄⁄ 0.017⁄

100 0.000⁄⁄⁄ 0.012⁄

150 0.000⁄⁄⁄ 0.074⁄

200 0.302 0.511

⁄ p-value < 0:1.
⁄⁄ p-value < 0:05.
⁄⁄⁄ p-value < 0:01.
that smaller validation sets are possible to keep enjoying the ben-
efits of SVM+.

After this observation, a natural and interesting question was
whether part of the available validation set could be used for train-
ing SVM and whether this could outperform SVM+. Notice that
increasing the training set for SVM+ is not always so easy: in this
problem, for instance, additional human expert effort would be re-
quired to produce the poetic description of every new digit. In order
to explore a variety of trade-offs between the sizes of the training
and validation sets, we tested with an increasing number of training
instances so that m ¼ 90þ f10;20; . . . ;100g, and a varying size mv

of the validation set, with mv 2 f50;100;200; . . . ;900;1000;
1500;2000g. The extra examples used for training were taken from
the first half of the original validation set, while the second half was
retained to extract the validation subsets used. Results, averaged
over 12 repetitions, are shown in Fig. 2 (for the sake of clarity, only
results for a subset of the sizes of the validation sets are shown). As
expected, performance improves with increasing size of the train-
ing and the validation sets. As a relevant example (highlighted in
Fig. 2), just adding 50 training examples (m ¼ 90þ 50 ¼ 140) suf-
fices for SVM to outperform SVM+ with a validation set as small
as 400 examples. It is worth stressing that we are using as a base-
line/reference the SVM+ trained with 90 examples and tuned with
the original full validation set with 4002 instances. If the smaller
validation sets used for SVM are also used for SVM+, its perfor-
mance degrades (e.g. see SVM+ with mv ¼ 1002 in Fig. 2) and
and therefore SVM outperforms SVM+ even earlier (if using a smal-
ler training set) or faster (if using a smaller validation set). Further-
more, even if random features can be obtained for free and used as
‘‘privileged’’ information, the significantly higher cost of training
and validating with SVM+ (e.g. up to four parameters have to be
tuned, as discussed in Section 3.1) may not compensate with re-
spect to the computationally lighter SVM.

3.3. Visual object classification

To further assess the effect of random features in SVM+, we also
tried to reproduce the results reported in [7] over a dataset gener-
ated from the ESP on-line game [12].
t training sizes m. The p-values have been rounded to three decimal places.

sep vs. SVM SVM+Rnon-sep vs. SVM SVM+ vs. SVM+Rnon-sep

⁄⁄ 0.000⁄⁄⁄ 0.934
⁄ 0.000⁄⁄⁄ 0.472
⁄ 0.043⁄⁄ 0.005⁄⁄⁄
⁄⁄ 0.001⁄⁄⁄ 0.473
⁄ 0.003⁄⁄⁄ 0.114
⁄⁄ 0.002⁄⁄⁄ 0.398
⁄ 0.182 0.500

0.812 0.010⁄⁄⁄

0.656 0.766
0.960 0.966

0.164 0.368
0.188 0.408
0.190 0.231
0.389 0.914
0.767 0.361
0.263 0.924

⁄⁄ 0.000⁄⁄⁄ 0.000⁄⁄⁄
⁄⁄ 0.000⁄⁄⁄ 0.085⁄
⁄ 0.088⁄ 0.085⁄
⁄ 0.000⁄⁄⁄ 0.070⁄

0.003⁄⁄⁄ 0.051⁄

0.053⁄ 0.799



Fig. 2. Performances of SVM and SVM+ for the digits recognition problem
(Section 3.2). SVM is tested with varying sizes of the training and validation sets,
whereas SVM+ (horizontal lines) are taken as baseline.
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Fig. 3. Error rates of SVM, SVM+, and SVM+R for the problem of tagged images
classification using the ESP2 experiment (Section 3.3).
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Description
The ESP dataset consists of real-world images with descriptive

textual tags manually associated to them through the aforemen-
tioned game. It was intended for its use in an auto-annotation
problem [13], but in [7] it is used as a binary classification task.
Images in the dataset are tagged with a subset of a tag set T . The
classification goal is to discriminate images tagged with t1 2 T
from those tagged with t2 2 T ;Y ¼ f0;1g. Thus, tags are only used
to create the classes and as privileged information for LUPI. We
used the features and tags used in [13], available at [14]. As X fea-
tures [7], the concatenation of DenseHue, DenseSift, Harri-
sHue, and HarrisSift, extracted from the raw images, were
used, resulting in n ¼ 2200 features. The privileged information
associated to each training image was a binary vector in which
each feature indicated whether a certain tag was used to describe
the image, i.e. zi 2 f0;1gnZ , with nZ ¼ T n ft1; t2gj j ¼ 266.
Experimentation
Three experiments using ESP are reported in [7]: ESP1

(t1 ¼‘‘fish’’, t2 ¼‘‘horse’’), ESP2 (t1 ¼‘‘bird’’, t2 ¼‘‘horse’’), and
ESP3 (t1 ¼‘‘bird’’, t2 ¼‘‘fish’’). A test set of 100 examples is reported
in [7], but no explicit split for the training, validation and test sets
are provided. Thus, we created a test set of 100 examples and a val-
idation set of 250 examples for each subproblem (ESP1, ESP2, and
ESP3), all of them class-balanced. A balanced training set of 250
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Fig. 4. Error rates of SVM, SVM+, and SVM+R for the problem of human action recognit
Z = FFW. The plot has been split into two with different scales for better visualisation.
examples was created, from which twelve balanced subsets were
randomly sampled for sizes m 2 f50;100;150;200g. Although
training sets of sizes f100;200;300;400g are reported in [7], we
found impossible to create an appropriate balanced validation set
when using training sets that large (e.g. for ESP2, when m ¼ 400
then mv ¼ 52 only). Regarding data preprocessing, we tried several
schemes, as we did in the hand-written recognition problem (Sec-
tion 3.2), and, for the ESP problem, the use of the raw features
without any normalisation performed the best.

Results
For the sake of brevity, we consider only the ESP2 experiment;

SVM+ performed somehow better in ESP3, and worse in ESP1.
Fig. 3 shows the averaged error rates obtained when reproducing
the experiments (solid lines), and those reported in [7] (dashed
lines). Despite our efforts, we could not reproduce the error rates
reported in [7], neither for SVM nor for SVM+. However, some sta-
tistical difference in performance between SVM+ or SVM+R and
SVM are found in a few cases when using a low number of training
examples (Table 1).

3.4. Action recognition

We also explored SVM+ in the context of human action
recognition. The main purpose here was to test the role of random
20 30 40 50 60 70 80 90

Percentage of training data

SVM, X=SFD
SVM+, X=SFD, Z=FFW
SVM+Rsep, X=SFD, Z=FFW

SVM+Rnon−sep, X=SFD, Z=FFW

ion using a subset of the Weizmann dataset (Section 3.4) and and features X = SFD,
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features, and how easy/difficult may be to define successful genu-
ine (non-random) privileged information.
Description
We used the frame descriptor proposed in [15] since it includes

different visual cues (shape and motion) as well as temporal
summaries (past and future information). The richness of this
descriptor lends itself to be used in the context of LUPI so that
one feature subset can be regarded as regular data and other subset
as privileged information.

We used the well-known Weizmann dataset [16], which con-
sists of videos of 9 different subjects performing 10 different com-
mon actions each (e.g. running, walking, jumping, etc.). As a proof
of concept, we chose to discriminate only between two ‘‘in place’’
actions (i.e. subjects do not translate horizontally): jack (jumping
while waving both the arms and the legs) and pjump (jumping
while keeping the arms and the legs vertical and close to the body
and without moving them). Here, Y ¼ f4;6g. We used the features
already computed and available at [17] for the Weizmann and
other datasets.
Experimentation
To generate the validation, training, and test sets for this data-

set, we randomly assigned the subjects to disjoint sets of training
(4 subjects), validation (2 subjects), and test (3 subjects). As in
the previous experiments, the training set was used to sample a
number of subsets with an increasing size of 5%, 10%, 30%, . . .,
90% of the total number of training examples. For each size, 9 dif-
ferent subsets were randomly created. We repeated this procedure
5 times, yielding different random assignments of the subjects to
each set. The validation and test sets were fixed for each repetition,
having an averaged number of examples per assignment of
mv ¼ 318:2 and mt ¼ 381:4 each, respectively. The sampling
retained the original proportion of frames of each action. Action
classification was performed on a per-frame basis.

The regular features chosen were the single-frame descriptor
(SFD), i.e. the concatenation of shape and optical flow (216 features
altogether). As privileged information, we used the future-frame
window (FFW) corresponding to the 10 principal components of
the SFD of the 5 frames after the current 5-frame time window.
We found that no normalisation was required for these features
for SVM to perform well, hence no normalisation was either
applied when using SVM+.
Results
Results (Fig. 4, Table 1) indicate that SVM is outperformed by

SVM+ and SVM+Rsep only when using some of the smallest sizes
for training. Therefore, although the use of future events could be
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expected to be high quality privileged information, SVM+ seems
not to generally benefit from this information in this case, and
the use of random features provide similar or better performance.
This experiment suggest that finding information to be success-
fully used as privileged is not straightforward; therefore, some
uncommon and currently not well-defined desirable properties in
the data are required.
3.5. Synthetic dataset

We tested with the ‘‘bananas’’ dataset generated using the
PRTools [18] toolbox. Two pairs of bananas were generated, each
pair with r ¼ 1:0 and r ¼ 1:5 as measures of class overlap (prob-
lem difficulty). From the data generated, 1500 examples were ta-
ken as a pool test set, 400 as training set, and 2000 as validation
set in each case, all of them balanced. Tests were performed with
m 2 f50;70;90;100;150;200g, and mv 2 f1000;1500g, with no
data preprocessing. In this case, Y ¼ f1;2g. For each training size,
12 repetitions were performed.
Results
As privileged information for SVM+, our first and only choice

turned out to work well: we used a 2-dimensional vector with
the closest Euclidean distances from a given instance to each of
the bananas’ generative spines. As an illustration of the results
(to be discussed in Section 4), the decision boundaries for the case
in which r ¼ 1 and mv ¼ 1500 are given in Fig. 5, and the statistical
differences are reported in Table 1.
4. Remarks

Improving generalisation

Previous results suggest that SVM+ not only is able to leverage
the privileged information, but the proposed optimisation ends up
‘‘pushing’’ the usual capabilities of SVM a bit further and get a
higher generalisation ability even when the ‘‘privileged’’ informa-
tion is not necessarily such.

This effect on generalisation ability can be illustrated in a con-
trolled setting such as the well-known 2-banana synthetic problem
(Section 3.5). The decision boundaries found (Fig. 5(a)–(c)) by
SVM+ are somehow better defined and more in the middle of
the bananas’ spines than in SVM case, suggesting a better general-
isation ability of SVM+ even with random features as privileged
information (SVM+R).

This phenomenon might be related to noise injection procedures
which are known to be able to reduce overfitting in neural networks
[19,20]. These techniques differ in many respects to LUPI and
SVM+, and are therefore out of the scope of this paper. However,
we still briefly explored this issue with a simple noise injection ap-
proach applied to training data with the conventional SVM, which
was tested on the digits (Section 3.2) and bananas (Section 3.5)
problems. To this end, noise was injected by generating k new in-
stances for each original training instance and perturbing these
new instances on a per-feature basis, with Gaussian noise with
standard deviation ri ¼ 0:05 � ri, with ri being the range of values
of the i-th feature in the training set. Results (Figs. 5(d) and 6) reveal
that noise injection may improve the SVM performance, but lag be-
hind SVM+, either with privileged information or random features.
This suggests that noise injection with SVM has a similar regulari-
sation effect, but is less powerful than SVM+ can be.

One possible direction for gaining insight into the role of random
features within LUPI or SVM+ is by modelling the regular features,
the privileged information, and the class labels as random variables
within the information theory (IT) [21]. Since IT is classifier-inde-
pendent, it may provide a nice framework for such a study; indeed,
it has previously been used in the context of formally analysing
decision and pattern recognition problems (e.g. [22–24]).

Work relevance

The findings of our study can be of relevance to practitioners
and researchers in machine learning under any of the following
profiles: (1) engineers wanting to apply SVM+ on particular real-
world problems; (2) researchers interested in exploring the LUPI
paradigm on classifier models other than SVM-based; and (3) the-
oreticians seeking formal and rigorous justification of these phe-
nomena, and their extent and limitation. We believe all of these
people can benefit from being aware of the results reported in this
work.
5. Conclusions

LUPI and SVM+ are theoretically attractive and potentially use-
ful in many problems; however, we have identified some issues
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that might affect its applicability in practise. From our experi-
ments, the following conclusions can be drawn:

� The performance of SVM+ seems to rely on a delicate relation-
ship between the regular data and the privileged information.
Additionally, it has been shown that just randomly generated
features may play a key role as privileged information, at least
in some problems. Thus, considering random features as privi-
leged information seems to be not only a reasonable first choice,
but also a baseline for genuine privileged information to be
compared with.
� If the size of the validation set is traded off for a bigger training

set, SVM is likely to be advantageous over SVM+ in terms of
both computational and classification performances. This could
be important in, for instance, problems where the privileged
information is costly or difficult to obtain with respect to pro-
ducing additional regular training examples.
� Whether SVM+ outperforms SVM may critically depend on

experimental details such as data preprocessing, dataset split-
ting, validation protocol, parameter ranges and search proce-
dure, etc.
� Some useful and clear design guidelines not existing yet would

be much required, in particular regarding when and how can
one envisage useful privileged information for a given problem.
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