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Effective task scheduling, which is essential for achieving high performance in a heteroge-
neous multiprocessor system, remains a challenging problem despite extensive studies. In
this article, a heuristic-based hybrid genetic-variable neighborhood search algorithm is
proposed for the minimization of makespan in the heterogeneous multiprocessor schedul-
ing problem. The proposed algorithm distinguishes itself from many existing genetic algo-
rithm (GA) approaches in three aspects. First, it incorporates GA with the variable
neighborhood search (VNS) algorithm, a local search metaheuristic, to exploit the intrinsic
structure of the solutions for guiding the exploration process of GA. Second, two novel
neighborhood structures are proposed, in which problem-specific knowledge concerned
with load balancing and communication reduction is utilized respectively, to improve both
the search quality and efficiency of VNS. Third, the proposed algorithm restricts the use of
GA to evolve the task-processor mapping solutions, while taking advantage of an upward-
ranking heuristic mostly used by traditional list scheduling approaches to determine the
task sequence assignment in each processor. Empirical results on benchmark task graphs
of several well-known parallel applications, which have been validated by the use of
non-parametric statistical tests, show that the proposed algorithm significantly outper-
forms several related algorithms in terms of the schedule quality. Further experiments
are carried out to reveal that the proposed algorithm is able to maintain high performance
within a wide range of parameter settings.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

As a most promising approach to meet the rising computational requirements, parallel processing approach poses a num-
ber of problems not encountered in traditional sequential processing [9,23], the most important of which is the multipro-
cessor scheduling issue. In general, an originally large program can be decomposed into a set of smaller tasks prior to
parallel processing. These smaller tasks almost always have dependencies representing the precedence constraints, in which
the results of other tasks are required before a particular task can be executed. Hence, the goal of a task scheduling algorithm
is typically to schedule all the tasks on the given number of available processors so as to minimize the overall length of time
required to execute the entire program, namely makespan, without violating precedence constraints. Based on various
characteristics of the decomposed tasks to be scheduled and the multiprocessor system, as well as the availability of a priori
information regarding the processing time, the multiprocessor scheduling problem can be categorized into many different
classes [12,29]. In this article, only the static scheduling problem is addressed, in which all information needed for
. All rights reserved.

Xu).

http://dx.doi.org/10.1016/j.ins.2010.10.001
mailto:xuhua@mail.tsinghua.edu.cn
http://dx.doi.org/10.1016/j.ins.2010.10.001
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


568 Y. Wen et al. / Information Sciences 181 (2011) 567–581
scheduling, including task processing times, data dependencies, and communication costs between dependent tasks, are
known before program execution.

Given the NP-complete complexity for searching an optimal solution in its general form [40], the multiprocessor
scheduling problem remains an open field in spite of extensive studies. Traditional scheduling research focused on the heu-
ristic-based algorithms, an important class of which is the so-called list scheduling algorithms [29,38]. The basic idea of list
scheduling consists in maintaining an ordered list of tasks by assigning priority for each task according to some greedy heu-
ristics. Tasks are then selected in the order of their priorities and the highest-priority ready task is removed from the list to
be assigned to a processor which allows the earliest start time. Traditional list scheduling algorithms usually assume a
homogeneous multiprocessor system in which all processors are of the same processing ability and fully connected
[2,41], while recent studies have been diverted to task scheduling for heterogeneous multiprocessor systems where the exe-
cution time of a task may vary among different processors [38]. The heuristic-based scheduling algorithms are always effi-
cient since they narrow the search down to a very small portion of the solution space by means of greedy heuristics.
However, due to the greedy nature, heuristic-based approaches are not likely to produce consistent results on a wide range
of problems, especially when the complexity of the scheduling problem increases.

In attempts to obtain schedules of better quality, many well-known metaheuristics, including genetic algorithm (GA)
[1,6,8,21,33,37,42], artificial immune system (AIS) [44], ant colony optimization (ACO) [5], particle swarm optimization
(PSO) [34], simulated annealing (SA) [26], tabu search (TS) [36], and variable neighborhood search (VNS) [32], have been
adopted. Generally, metaheuristics can be divided into trajectory methods (also named local search heuristics) and popula-
tion-based methods. Population-based methods deal with a set of solutions in every iteration of the algorithm while trajec-
tory methods only deal with a single solution [3]. As one of the most studied population-based methods, GA shows robust
performance with various scheduling problems, for it has a powerful global exploration ability of concurrently tracking a set
of solutions. Plenty of empirical results demonstrate that GA-based methods always outperform traditional heuristic-based
scheduling algorithms regarding the schedule quality [6,21,42]. However, GA usually takes more computing efforts to locate
the optimal in the region of convergence [42], owing to the lack of local search ability. On the other hand, the trajectory
method, such as VNS [10], has shown its potential in exploiting the promising regions in the search space with high quality
solutions. Nevertheless, it is still prone to premature convergence traps due to the limited exploration ability. Thus, it’s a
natural choice to consider the hybridization of metaheuristics, also named memetic algorithm (MA) in some literatures
[27], which has recently been applied to solve scheduling problems [4].

The approach proposed in this article is largely inspired by the fact that each type of scheduling technique has its own
strengths and weaknesses while appearing that they are complementary to each other. This paper attempts to present a no-
vel heuristic-based hybrid genetic-variable neighborhood search (GVNS) algorithm for solving the heterogeneous multipro-
cessor scheduling problem, which improves upon the standard GA in three aspects. First, the proposed algorithm
incorporates GA and VNS to obtain a balance between the exploration and exploitation of the search space, which is crucial
to the success of metaheuristics. Next, two common scheduling strategies, load balancing and communication reduction, are
utilized in our proposed neighborhood structures in VNS, which further improves the local search efficiency. Finally, unlike
many existing GA approaches which directly use GA to evolve the priorities of the tasks that in turn determine the final sche-
dule solution, the proposed GVNS restricts the use of GA and VNS to find optimal task-processor mapping while leaving the
task sequence assignment to an upward-ranking heuristic originally used in HEFT [38], a list scheduling algorithm.

In the next section, a formal statement of the studied heterogeneous multiprocessor scheduling problem is provided. Sec-
tion 3 introduces some existing related researches on the multiprocessor scheduling problem. Section 4 presents the various
features of the proposed GVNS. The benchmark problems, parameter settings, experimental results and analysis are ex-
plained in Section 5. Finally, conclusions and suggestions for future research are drawn in Section 6.
2. Problem formulation

The static multiprocessor scheduling problem is typically given by two inputs: a multiprocessor system in which tasks
can be solved and a parallel program to be computed. Generally, the target multiprocessor system is composed of a network
of processors, each of which has a local memory so that inter-processor communications rely solely on message-passing [29].
In this paper, the studied multiprocessor system model is assumed to be with the following characteristics: (1) heteroge-
neous; (2) non-preemptive; (3) fully connected network; (4) communication links with uniform bandwidth; (5) task dupli-
cation is NOT allowed; (6) each processor has an independent I/O unit that allows for communication and computation to be
performed simultaneously.

Meanwhile, the parallel program is typically decomposed into smaller tasks with precedence constraints, which are de-
scribed as a directed acyclic graph (DAG). In general, a DAG G = (V,E) consists of a set V of v nodes and a set E of e edges. A
node in the DAG represents a decomposed task, which must be executed sequentially without preemption in the same pro-
cessor. Hereafter, the terms node and task will be used interchangeably. The computation cost of a particular task ni 2 V on
the processor pj is denoted as wi,j. Each edge ei,j 2 E represents precedence constraints between task ni and nj, which means
that the result of task ni has to be transmitted to task nj before task nj starts its execution. Each edge ei,j 2 E is associated with
a nonnegative weight ci,j representing the communication cost between the interdependent tasks ni and nj. Note that the real
communication cost is equal to zero when the interdependent pair of tasks are assigned to the same processor. The source
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node of an edge is called the predecessor while the sink node is called the successor. The task with no predecessor is called the
entry task while the task with no successor is called the exit task.

Assume that there is a task graph with T tasks to be assigned to a multiprocessor system with P processors. Given a partial
schedule solution, considering scheduling the highest-priority ready task ni on the processor pj, its earliest start time TEST(-
ni,pj) can be defined as
TEST ni; pj

� �
¼max Tavail pj

� �
; Tready ni;pj

� �� �
; ð1Þ
where Tavail(pj) is the time when processor pj is available to the execution of the task ni. It can be defined as
Tavail pj

� �
¼ max

nk2exe pjð Þ
TAFT nkð Þf g; ð2Þ
where exe(pj) denotes the set consisting of all the tasks that have already been scheduled on the processor pj while TAFT(nk)
represents the actual finish time when the task nk actually finishes its execution. Moreover, Tready(ni,pj) in Eq. (1) denotes the
time when all the data needed for the execution of task ni have been transmitted to the processor pj, which can be defined as
Tready ni; pj

� �
¼ max

nk2pred nið Þ
TAFT nkð Þ þ ck;i

� �
ð3Þ
where TAFT(nk) has the same meanings as in Eq. (2) and pred(ni) denotes the set consisting of all the immediate predecessors
of the task ni. Note that ck,i equals to 0 if the task nk has been scheduled to the same processor pj.

Given that the task ni is allocated on the processor pj with non-preemptive processing approach, its earliest finish time
TEFT(ni,pj) can be defined as
TEFT ni;pj

� �
¼ TEST ni;pj

� �
þwi;j; ð4Þ
where wi,j represents the execution time of the task ni on the processor pj.
After the task ni is explicitly scheduled on the processor pj, the TEST(ni,pj) and TEFT(ni,pj) are assigned to TAST(ni) and TAFT(ni)

respectively. The overall schedule length of the entire parallel program, namely makespan, is the largest finish time among all
tasks, which is equivalent to the actual finish time of the exit node nexit.
makespan ¼max
ni2V

TAFT nið Þf g ¼ TAFT nexitð Þ: ð5Þ
A simple nine-node task graph with communication cost of each edge is shown in Fig. 1(a). The computation cost matrix
consisting of computation costs of each node on different processors is detailed in Fig. 1(b). One sample schedule of the task
graph is illustrated in Fig. 1(c), which achieves a makespan of 106 by allocating four available processors.

3. Related work

In general, the static multiprocessor scheduling problem is an NP-complete problem [40], except for three simplified
cases [7,22,35]. Over the last decade, various scheduling approaches have been proposed, which can be classified into two
main categories, deterministic and non-deterministic.

Deterministic algorithms are based on heuristics extracted from developers’ intuitions, the most representative of which
are the so-called list scheduling algorithms [2,24,28,29,38]. As to the heterogeneous multiprocessor scheduling problem,
HEFT algorithm proposed by Topcuoglu et al. [38] uses an upward-ranking heuristic for the task priority calculation, in which
the information of average execution cost of a task is utilized. It selects the task with the highest upward rank value at each
step and assigns the selected task to the processor that minimizes the earliest finish time with an insertion-base approach.
Simulation results indicate that HEFT outperforms the other list scheduling algorithms in terms of both schedule quality and
computational cost.

In contrast to deterministic algorithms, non-deterministic algorithms incorporate metaheuristic in the search process,
which show robust performance on a variety of optimization problems. Many famous metaheuristic, such as GA
[19,30,39], AIS [31,44,46], ACO [5], PSO [34], SA [26], TS [36], and VNS [10] have been successfully applied to a broad range
of scheduling problems. Nevertheless, to trade off better performance in terms of schedule quality, non-deterministic algo-
rithms always have much higher computational cost.

As a population-based method originally developed in [19], GA features itself by a chromosome encoding for solution rep-
resentation and some genetic operators inspired by the nature selection mechanism, which has attracted plenty of attentions
in the field of multiprocessor scheduling [6,8,21,42,45]. Wu et al. [42] develop an incremental GA (IGA) approach to multi-
processor scheduling, in which the population contains not only individuals representing feasible solutions but also those
corresponding to infeasible ones. This approach eliminates the need for special genetic operators or repair mechanisms to
ensure the validity of evolved individuals. Experimental results show that IGA has a robust performance for both homoge-
neous and heterogeneous multiprocessor scheduling problems. Bonyadi et al. [6] propose a bipartite GA (BGA), each part of
which is based on different genetic schemes. The first part is used to find an adequate sequence of tasks while the second one
is used to search for the best match processors. BGA is claimed to generate satisfactory results with at least 10% less itera-
tions compared to IGA.



Fig. 1. Illustration of task scheduling in heterogeneous multiprocessor system without task duplication.
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On the other hand, VNS is a simple but effective trajectory metaheuristic firstly proposed in [32]. The principle of VNS
involves using two or more neighborhood structures and systematically changing the neighborhood within a local search
process. Unlike many other metaheuristics, the basic scheme of VNS and its extensions requires few and sometimes no
parameters. This simplicity promotes the development of VNS in both its methods and applications [18]. Davidović et al.
[10] firstly apply VNS heuristics to multiprocessor scheduling with communication delays. Their approach uses several
neighborhood structures analogous to the well-known ones used in solving the travelling salesman problem (TSP). However,
the totally random search strategies used in these neighborhood structures reduce the efficiency of VNS.

There also exist some reported works on the hybridization of both deterministic and non-deterministic algorithms for
multiprocessor scheduling [16,44]. Yu in [44] proposes an AIS-based algorithm for task scheduling in heterogeneous multi-
processor systems, in which the scheduling process is separated into two phases, task-processor mapping and task sequence
assignment. A heuristic similar to HEFT is adopted to take charge of the task sequence assignment. Empirical study on bench-
mark task graphs demonstrates that the AIS-based algorithm can deliver schedule solutions with better quality than HEFT.

4. The proposed algorithm

This section presents a detailed description of the proposed GVNS algorithm, including the whole algorithmic flow and
various features borrowed from GA, VNS and list scheduling heuristics.

4.1. Framework

The algorithmic flow of the proposed GVNS is depicted in Fig. 2. The optimization process begins with initializing the pop-
ulation of GA based on a randomized procedure. After the population initialization, every schedule solution represented by



Fig. 2. Flowchart of the proposed GVNS.
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each individual undergoes a heuristic-based task priority calculation (to be discussed in Section 4.3). Following the task pri-
oritization, the population is evaluated and ranked with makespan being the fitness of each individual. A set of genetic oper-
ators, including binary tournament selection, random-one-point crossover, and flipping mutation, is then performed on the
evaluated population. Thereafter, the population is sampled in order to select a subset consisting of individuals for VNS ini-
tialization. The local search procedure of VNS (to be detailed in Section 4.5) is then applied to each individual in the selected
subset. Finally, the results from both GA and VNS are combined and some replacement strategies are introduced to update
the population. The evolution process is repeated until the stopping criterion is satisfied.

4.2. Encoding of solutions

The population in GVNS consists of a group of individuals and each individual represents a candidate assignment solution
to the given scheduling problem. Each solution is encoded as a string of integers while each integer in the string represents
the index of the processor to which a task is assigned. Suppose that the multiprocessor scheduling problem consists of a mul-
tiprocessor system with P available processor and a parallel program with T tasks. Moreover, it is assumed that each task has
a unique ID ranging from 1 to T while each processor has a unique index ranging between 1 and P. The ith integer of each
string represents the index of the processor to which the task ti is assigned. Fig. 3 shows the encoding of a solution corre-
sponding to the schedule in Fig. 1(c).

This position-independent encoding mechanism implies the separation of task-processor mapping and task order assign-
ment, which compose the two main phases of our proposed scheduling approach. The GA and VNS are used to evolve the
Fig. 3. Encoded solution of the schedule given in Fig. 1(c).
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task-processor mapping solutions, which ensure the exploration of search space. Meanwhile, a list scheduling heuristic is
used to calculate task priorities in each processor, which guarantees the feasibility of every evolved solution. Unlike some
existing GA-based approaches where invalid solutions may also be contained in the evolving population (e.g., IGA [42]), this
encoding mechanism helps improve the efficiency of the proposed algorithm.

4.3. Heuristic-based task priority calculation

Given an encoded solution, in which each task is allocated to a distinct processor, the formation of the final schedule still
requires the determination of the task order assignment on each processor. Then the overall schedule length is calculated to
evaluate the fitness of the individual in GA. Intuitively, the priority of a given task should grow with its criticality to the po-
tential reduction of makespan, while the calculation of makespan should take into account both the completion time of the
task itself and completion time of the tasks that depend on it. The former can be easily calculated while the latter can not be
accurately evaluated until the execution order of all the successor tasks is determined. Inspired by the HEFT in [38], an up-
ward-ranking heuristic is applied to estimate the priority of each task. The upward rank of a task ti, rank(ti) is defined recur-
sively as follows:
rankðtiÞ ¼
wi;pðtiÞ; if succðtiÞ ¼ ;;
wi;pðtiÞ þ max

tj2succðtiÞ
rci;j þ rank tj

� �� �
; if succðtiÞ–;;

8<
: ð6Þ
where p(ti) denotes the index of the processor to which the task ti is allocated, wi;pðtiÞ denotes the computational cost of the
task ti on the processor p(ti), succ(ti) denotes the set of immediate successors of task ti, and rci,j denotes the real communi-
cation cost between task ti and task tj, which is further defined in Eq. (7):
rci;j ¼
ci;j; if pðtiÞ – pðtjÞ;
0; if pðtiÞ ¼ pðtjÞ;

�
ð7Þ
By means of the heuristic-based method above for task priority calculation, a task with the largest upward rank among all
the ready tasks is always chosen to be performed first.

Although both use the notation of upward rank to determine the task priority, there are some subtle differences between
the proposed approach and HEFT. First, as the encoded solution, in which each task has been assigned to a distinct processor,
is given before the priority calculation, the proposed approach can take advantage of the execution time on the specified pro-
cessor instead of the average among various processors. For the same reason, the proposed approach is able to give the real
communication cost between dependent tasks while HEFT assumes that the communication cost always exists even though
they may be assigned to the same processor. Hence, it is believed that our proposed approach will give a more accurate esti-
mation of the task priorities.

4.4. Diversification using GA

The basic algorithm of the GA is the same as a classic GA [19]. Details specific to the proposed approach are described
below.

4.4.1. Population initialization
The initial population is initialized with randomly generated population_size individuals. Each individual consists of an

encoded solution, in which each task is randomly assigned to a processor. In addition, it is assumed that the order of tasks
obeys the topological sort of the task graph, which can be easily implemented by performing a topological sorting before task
ID assignment.

4.4.2. Fitness calculation and selection
Rather than the roulette wheel selection, which is usually incorporated with some scaling technique, the binary tourna-

ment selection, an ordinal selection scheme, is adopted in our approach. Thus, the makespan of a given solution can be di-
rectly used as its fitness. Since tasks have been prioritized by the upward-ranking heuristic, the procedure described in
Section 2 can be directly applied to calculate the makespan of a given schedule solution.

4.4.3. Crossover
Recall that each individual consists of a string of integers with each integer representing the processor to which the cor-

responding task is assigned. Crossover exchanges substrings between two individuals, which allows GA to explore new solu-
tions while still retaining some structured parts of previously discovered solutions. Random one-point crossover operator is
used in the proposed algorithm, in which a crossover point is randomly chosen for both parents. The segments to the right of
the crossover point are exchanged to form two offspring. Fig. 4 exemplifies a random crossover operation. The crossover rate
crossover_rate indicates the probability that a pair of parents will undergo crossover. Moreover, parents that do not crossover
may still undergo mutation.
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4.4.4. Mutation
The mutation rate mutation_rate gives the probability that an integer of the string will be changed, which means that the

corresponding task is allocated to another processor. As a result, the expected number of mutations per individual is equal to
the mutation rate multiplied by the string length of an individual. The mutation operator is crucial to preventing GA from
premature convergence.

4.5. Intensification using VNS

Generally, GAs have been proven to be very good at shuffling the solution space but fail to intensify the search in prom-
ising regions. However, hybridization with local search methods may conquer this weakness and lead to powerful search
schemes. Hence, VNS is adopted by our proposed approach to balance global exploration and local exploitation during
the evolutionary process. The main steps of VNS in our proposed approach is described in Algorithm 1. As the essential factor
of VNS, the two proposed neighborhood structures (i.e., line 2), which deal with both load balancing and communication
reduction issues, will be detailed in Sections 4.5.2 and 4.5.3, respectively.

Algorithm 1: Algorithmic flow of VNS in the GVNS

1. Initialize the subset of the population subpop to undergo the local search process of VNS
2. Select the set of neighborhood structures Nk (k = 1,2,3, . . . ,kmax)
3. for each individual x in the subpop do
4. repeat
5. k 1
6. while k 6 kmax do
7. Shaking: Randomly generate a solution x0 from the kth neighborhood of x
8. Local search: Apply some local search method with x0 as the initial solution. The local optimum obtained is

denoted as x00

9. Move or not: If x00 is better than the incumbent, move there x x00, and set k 1; otherwise set k k + 1
10. end while
11. until the termination condition is met
12. end for
13. Combine subpop with the offspring from GA
4.5.1. Initialization
Since the local search procedure is computationally intensive, the VNS algorithm is only applied to a subset of the pop-

ulation selected from the offspring, to which the crossover and mutation operators have been applied, using a random sam-
pling technique. The sampling rate sampling_rate indicates the probability that an individual will be chosen to be a candidate
for VNS.

4.5.2. Neighborhood structure of load balance
The effectiveness of VNS heavily depends on the switching of neighborhood structures in the shaking phase. Interestingly,

it is observed that the best value for the parameter kmax is often two [17]. Rather than the simply randomized neighborhood
structures used in [10], two novel targeted neighborhood structures are proposed in our VNS algorithm, in which two com-
mon scheduling strategies, load balancing and communication reduction, are utilized. Specifically, some problem-specific
knowledge is introduced into these neighborhood structures for guiding the search process towards more promising regions
of the search space as well as improving the searching efficiency. The neighborhood structure presented in this section is
concerned with load balancing while the next section describes the one with communication reduction.
Fig. 4. Random one-point crossover operation illustration.
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The LoadBalance neighborhood structure is designed to deal with the load balancing issue. The scheduling information
used in this neighborhood structure is that which processor in a given schedule has the heaviest computation load. Let
Tcomp(pi) denote the computation load of processor pi, then it can be defined as follows:
TcompðpiÞ ¼
X

nk2exeðpiÞ
wk;i ð8Þ
where exe(pi) denotes the set containing all the tasks scheduled to the processor pi and wk,i denotes the execution time of the
task nk on the processor pi.

Let pcomp denote the processor with the largest Tcomp. If there are two or more processors with the same Tcomp, randomly
choose one to break the tie. A node allocated in pcomp is then randomly chosen to be transferred to another randomly selected
processor. The computation process of LoadBalance neighborhood structure is depicted in Algorithm 2.

Algorithm 2: GenerateRandomNeighborhoodofLoadBalance (s)

1. for each processor pi in the solution s do
2. TcompðpiÞ  

P
nk2exeðpiÞwk;i

3. end for
4. Choose the processor pcomp with the largest Tcomp

5. Randomly choose a node nrandom from exe(pcomp)
6. Randomly choose a processor prandom different from pcomp

7. Reallocate the node nrandom to the processor prandom

8. Encode and reschedule the changed solution s0

9. return s0

The instinct rationale behind LoadBalance neighborhood structure is that balancing load among various processors usu-
ally helps minimizing the makespan, especially when most tasks are allocated to only a few processors. Moreover, in the
real-world distributed computing environment, unbalanced schedule always leads to insufficient utilization of the comput-
ing resources, which reduces the potential throughput.

4.5.3. Neighborhood structure of communication reduction
The CommReduction neighborhood structure concerns the communication reduction issue. The scheduling information

used in this neighborhood structure is that which processor in a given schedule spends most time in inter-processor commu-
nications and idle waiting. Let Tcomm(pi) denote the communication overhead of processor pi, then it can be defined as follows:
TcommðpiÞ ¼ TAFTðpiÞ � TcompðpiÞ; ð9Þ
where Tcomp(pi) is defined in Eq. (8) while TAFT(pi) denotes the actual finish time of the processor pi, which can be formally
defined as follows:
TAFTðpiÞ ¼ max
nk2exeðpiÞ

TAFTðnkÞ ð10Þ
Let pcomm denote the processor with the largest Tcomm. If there are two or more processors with the same Tcomm, use ran-
dom choice to break the tie. Then a predecessor node of the nodes allocated in pcomm, which itself is not executed in pcomm,
will be randomly chosen to be scheduled to pcomm. Algorithm 3 describes the computation process of CommReduction neigh-
borhood structure.

Algorithm 3: GenerateRandomNeighborhoodofCommReduction (s)

1. for each processor pi in the solution s do
2. Tcomm(Pi) TAFT(Pi) � Tcomp(Pi)
3. end for
4. Choose the processor pcomm with the largest Tcomm

5. Set the candidate set empty, cand ;
6. for each node ni in the set exe(pcomm) do
7. Calculate the set pred(ni) including all the predecessor nodes of ni

8. Update pred(ni) with pred(ni) pred(ni) � exe(pcomm)
9. cand cand + pred(ni)

10. end for
11. Randomly choose a node nrandom from cand
12. Reallocate the node nrandom to the processor pcomm

13. Encode and reschedule the changed solution s0

14. return s0



The underlying intuition of CommReduction neighborhood structure is that reducing communication overhead and idle

waiting time of processors always results in a more effective schedule, especially given a relatively high unit communication
cost. It is noticeable that in the shaking phase of the developed VNS, LoadBalance is always applied before CommReduction.

4.5.4. Local search
Since there are two variations of neighborhood structures used in our VNS, a specific local search is proposed for each

neighborhood structure. Given a specific neighborhood structure, the local search can be simply summarized as finding
the best neighborhood of the initial solution.

The reason why a thorough local search process is not performed can be explained as follows. Since VNS is hybridized
with GA in our proposed algorithm, the local search process in VNS will proceed with the evolutionary process of GA. Seen
from the entire evolutionary process, various steps, each of which is committed in the local search process of one generation,
are merged to form a trajectory in the search space. Hence, from the view of efficiency, there is no need to perform a through-
out search process in each generation, which may in turn result in a premature convergence.

4.5.5. Termination condition
Dual termination criteria are used in the VNS algorithm. The first one confines the upper bound of the local search iter-

ations to 20 while the second one sets the maximum number of iterations without improvement to 3. Given either criterion
is satisfied, the local search process of VNS will stop.

4.6. Replacement strategy and stopping criterion

After genetic operators and local search process are applied to generate the offspring, a replacement strategy is used to
combining the current generation and offspring for reproduction. In the proposed GVNS, the current generation and offspring
are merged and sorted in order of increasing makespan. Then the first populations_size solutions are selected to form the new
generation.

The same stopping criterion as IGA in [42] is used in our proposed GVNS. A maximum number are chosen to be the upper
bound of evolving generations.

5. Experimental details

In this section, the comparative evaluation of our proposed GVNS and several related algorithms given in Section 3 is pre-
sented. First, the benchmark task graphs used for performance evaluation are described. Next, the comparison metric and
parameter settings used in the comparative study are given. Finally, the experimental results of various algorithms are pre-
sented, on which some non-parametric statistical tests are conducted.

5.1. Test bed

In order to test the performance of the proposed GVNS algorithm, task graphs that capture the representations and fea-
tures of three well-known parallel applications, including the Gauss–Jordan elimination (GJ) [15], the Laplace equation sol-
ver (L) [41] and the fast Fourier transformation (FFT) [43], are treated as the benchmark problems. Rather than the number of
tasks, a new parameter, matrix size m, is used to build the task graphs. Fig. 5(a)–(c) depict the task graphs of the Gauss–Jor-
dan elimination, the Laplace equation solver, and the fast Fourier transformation having a metric size of 5, 3, and 4 respec-
tively. As the graph structure remains the same with different matrix sizes, the total number of nodes in the task graph of
Gaussian–Jordan elimination, Laplace equation solver, and fast Fourier transformation is equal to (m2 + m)/2, m2, and
mlog2m + 2m � 1 respectively.
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Fig. 5. Sample task graphs of three well-known applications.



Table 1
Parameter values for the benchmark problems.

Parameter Value

Matrix size of applications {6,9,12} For Gauss–Jordan elimination
{4,6,8} For Laplace equation solver
{4,8,16} For Fast Fourier transformation

CCR value {0.25,0.50,1.00, 2.00}

The number of processors {2,4,8}
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Each task graph is tested with different settings of communication to computation ratio (CCR) and processor number.
Note that in our proposed approach the communication costs between different independent pairs of nodes are the same.
For instance, if the CCR is 0.25 with the average computation cost set to be 40, the communication cost between two depen-
dent tasks, if they are assigned to different processors, is 10. In addition, ten data configurations are randomly generated for
each test case. The computation time of each task on each processor varies among the ten configurations while following
Poisson distributions, just as those in AIS [44].

The parameters of our benchmark problems are summarized in Table 1. The benchmark task graphs with various metric
sizes will be abbreviated as FFT-4, FFT-8, FFT-16, GJ-6, GJ-9, GJ-12, L-4, L-6, and L-8, respectively in the following sections.

5.2. Comparison metric and parameter setting

The performance comparisons of the algorithms are based on the metric, speedup, which is also used in [38,44]. The
speedup value for a given schedule is computed by dividing the sequential execution time by the makespan of parallel exe-
cution. It can be defined as follows:
Table 2
Parame

Para

Popu
Num
Selec
Cros
Mut
Cros
Sam
speedup ¼ serial length
makespan

; ð11Þ
where serial_length is computed by assigning all tasks to a single processor that minimizes the cumulative of the computa-
tion costs. It can be defined as follows:
serial length ¼min
pj2P

X
ni2V

wi;j

( )
ð12Þ
where wi,j denotes the execution time of the task ni on the processor pj.
In general, fine-tuning the parameters for every problem separately will give better outcomes. However, here we only aim

to show the suitability of GVNS to solve the scheduling problems and the same parameter values are thus used to solve all
problems. Besides, as we will see in Section 5.5, the proposed GVNS shows robust performance within a wide range of
parameter settings. To sum up, the parameter settings used in the proposed GVNS and other algorithms in comparison
are summarized in Table 2. Unless otherwise specified, the following values are used in our comparative evaluation.

5.3. Experimental results

The performance of the proposed algorithm is compared with those of the other four state-of-art scheduling algorithms,
including HEFT in [38], VNS in [10], AIS in [44], and IGA in [42]. GVNS, HEFT, VNS and AIS prohibit task duplication while IGA
allows task duplication. For each data configuration of each task graph, the average of the best speedups obtained over 50
runs is computed for GVNS, VNS, AIS, and IGA, while HEFT, a deterministic algorithm, is run only once. The results of ten data
configurations are further averaged in each task graph. The experimental results of all the benchmarks are summarized in
Table 3. The best result obtained in each test case is marked in bold font. In the IGA column of this table, the symbol – de-
notes that for the corresponding test cases, the IGA algorithm finds no valid solution after 3000 generations in all 50 runs,
ter settings used in the proposed GVNS.

meter GVNS AIS IGA VNS

lation size 400 400 400 –
ber of generations 3000 3000 3000 3000
tion operator Binary tournament Roulette wheel Binary tournament –

sover operator Random one-point – Random one-point –
ation rate 0.02 0.1 0.005 –
sover rate 0.8 – 0.8 –
pling rate 0.1 0.1 – –



Table 3
Average speedups for the all the benchmark task graphs.

Task CCR p = 2 p = 4 p = 8

Graph GVNS AIS VNS IGA HEFT GVNS AIS VNS IGA HEFT GVNS AIS VNS IGA HEFT

GJ-6 0.25 1.95 1.93 1.89 1.77 1.84 2.99 2.72 2.70 2.65 2.66 3.37 2.96 2.86 3.30 2.74
0.50 1.90 1.88 1.84 1.72 1.79 2.74 2.47 2.45 2.47 2.43 2.90 2.61 2.51 2.81 2.39
1.00 1.81 1.79 1.66 1.65 1.51 2.13 2.01 1.95 2.05 1.89 2.14 2.03 1.94 2.11 1.85
2.00 1.66 1.61 1.47 1.47 1.31 1.75 1.56 1.47 1.63 1.37 1.72 1.49 1.38 1.67 1.27

GJ-9 0.25 2.10 2.01 1.96 – 1.90 3.52 3.02 3.08 – 3.14 4.65 3.70 3.86 2.90 4.01
0.50 2.08 1.99 1.94 – 1.89 3.31 2.82 2.90 – 2.97 3.99 3.25 3.33 2.80 3.39
1.00 2.03 1.93 1.87 – 1.79 2.80 2.44 2.51 – 2.56 3.01 2.60 2.60 2.16 2.60
2.00 1.91 1.79 1.72 – 1.64 2.25 1.87 1.84 – 1.80 2.37 1.86 1.82 1.65 1.76

GJ-12 0.25 2.15 2.01 1.97 – 1.93 3.95 3.27 3.42 – 3.57 5.75 4.28 4.71 – 5.14
0.50 2.14 2.00 1.95 – 1.88 3.78 3.12 3.29 – 3.45 5.04 3.86 4.20 – 4.53
1.00 2.11 1.97 1.91 – 1.84 3.44 2.82 2.96 – 3.11 3.92 3.20 3.35 – 3.50
2.00 2.06 1.89 1.82 – 1.76 2.88 2.25 2.34 – 2.41 3.01 2.33 2.37 – 2.40

L-4 0.25 1.81 1.76 1.64 1.62 1.51 2.15 2.04 1.98 2.05 1.91 2.14 1.99 1.92 2.16 1.84
0.50 1.68 1.68 1.61 1.57 1.52 1.88 1.76 1.74 1.85 1.71 1.88 1.70 1.68 1.88 1.64
1.00 1.52 1.52 1.38 1.38 1.24 1.59 1.44 1.39 1.54 1.34 1.58 1.35 1.33 1.57 1.30
2.00 1.24 1.23 1.20 1.24 1.16 1.27 1.12 1.10 1.26 1.07 1.26 1.00 1.06 1.26 1.10

L-6 0.25 1.95 1.88 1.84 – 1.79 2.84 2.43 2.50 – 2.56 3.14 2.63 2.63 2.81 2.64
0.50 1.91 1.83 1.78 – 1.72 2.54 2.18 2.24 – 2.29 2.65 2.24 2.29 2.21 2.34
1.00 1.80 1.69 1.64 – 1.57 2.07 1.77 1.81 – 1.82 2.10 1.74 1.78 1.82 1.82
2.00 1.58 1.44 1.40 – 1.37 1.64 1.31 1.37 – 1.42 1.61 1.23 1.33 1.27 1.41

L-8 0.25 2.03 1.90 1.89 – 1.86 3.29 2.68 2.83 – 2.96 4.01 3.11 3.18 – 3.22
0.50 1.99 1.86 1.83 – 1.80 3.00 2.45 2.60 – 2.74 3.37 2.69 2.74 – 2.77
1.00 1.93 1.76 1.73 – 1.69 2.48 2.07 2.17 – 2.25 2.60 2.12 2.13 – 2.15
2.00 1.79 1.55 1.54 – 1.53 2.00 1.53 1.67 – 1.80 1.99 1.49 1.58 – 1.66

FFT-4 0.25 1.97 1.92 1.84 1.79 1.75 2.80 2.55 2.46 2.48 2.37 2.89 2.61 2.42 2.84 2.23
0.50 1.92 1.88 1.79 1.69 1.69 2.35 2.22 2.15 2.28 2.05 2.45 2.24 2.09 2.53 1.92
1.00 1.72 1.70 1.64 1.72 1.57 1.82 1.77 1.70 2.02 1.61 1.84 1.74 1.67 2.17 1.59
2.00 1.46 1.40 1.25 1.54 1.10 1.50 1.39 1.32 1.74 1.23 1.49 1.30 1.27 1.77 1.22

FFT-8 0.25 2.03 1.99 1.92 – 1.85 3.56 3.10 3.04 2.81 2.97 4.74 3.78 3.87 4.04 3.94
0.50 2.01 1.96 1.90 – 1.82 3.35 2.91 2.92 – 2.92 4.07 3.36 3.29 3.62 3.22
1.00 1.96 1.90 1.82 – 1.73 2.94 2.56 2.56 1.91 2.54 3.16 2.75 2.73 3.08 2.71
2.00 1.86 1.80 1.74 – 1.67 2.46 2.02 2.01 2.01 1.99 2.48 2.02 2.03 2.37 2.04

FFT-16 0.25 2.16 2.02 1.99 – 1.95 4.12 3.54 3.58 – 3.61 6.88 5.27 5.74 – 6.18
0.50 2.15 2.01 1.98 – 1.94 4.09 3.44 3.46 – 3.47 6.40 4.90 5.38 – 5.84
1.00 2.13 1.99 1.96 – 1.92 3.90 3.26 3.31 – 3.35 5.70 4.28 4.68 – 5.06
2.00 2.09 1.95 1.91 – 1.88 3.51 2.88 3.03 – 3.16 4.37 3.32 3.63 – 3.94
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while the italic numbers imply that for these corresponding test cases not every run of IGA is able to find a valid solution and
the average values are calculated only from those runs that do find valid solutions.

It is obvious that our proposed GVNS consistently outperforms HEFT,VNS, and AIS in all the test cases. With the scale of
the scheduling problem increasing (e.g. larger number of processors or tasks), the gap becomes more remarkable. Taking GJ-
21 with CCR set to 0.25 and processor number set to 2 as an example, GVNS achieves an average speedup of 1.95, which is
only 6% better than the speedup of 1.84 generated by HEFT. When the number of processors rises to 8, the average speedup
obtained by GVNS becomes 3.37, which improves upon the 2.74 of HEFT by almost 23%. This trend implies that the proposed
GVNS has an increased ability to explore a larger solution space.

On the other hand, it is notable that GVNS is able to deliver better schedule solutions than IGA in all the test cases except
for those of FFT application with a large CCR value (e.g. ratio of 2.0) or a large number of processors (e.g. 8 processors). This
result is consistent with several existing works [2,42], in which task duplication heuristics are described to have particular
advantage over other methods with higher communication costs. Besides, a larger number of processors provide more com-
puting resources for taking advantage of the task duplication heuristic to further reduce the potential communication over-
heads. However, IGA has its own weaknesses due to a lack of effective search ability given a larger solution space. When the
number of tasks exceeds 36 (e.g. task graph of L-6), IGA rarely finds a valid schedule solution after 3000 generations.

5.4. Significance tests

In order to find significant differences among the results obtained by the proposed GVNS and the other three related algo-
rithms, including AIS, VNS, and HEFT (since IGA is not able to deliver valid solutions in every test case, it is excluded from the
investigation), statistical analysis is necessary. Since the obtained results may present neither normal distribution nor homo-
geneity of variance, we consider the use of non-parametric tests according to the recommendations made in [11,14]. Specif-
ically, the Friedman test [13], as well as the Iman–Davenport test [25], is employed to check whether there are significant
differences in the scheduling performance among the four algorithms. If statistically significant differences exist, then we
can proceed with the Holm method [20] as a post hoc test, in which our proposed GVNS (used as the control method) is com-
pared against the remaining ones. A level of significance a = 0.05 is used in all the statistical tests.

We first compute the average rank of each algorithm in all the 108 test cases, the results of which are shown in Table 4.
Then the Friedman test and the Iman–Davenport test are employed, which both reject the null hypothesis of equivalent per-
formance. Table 5 presents the results, which validate the existence of significant differences among the performance of all
the scheduling approaches.

Further, the Holm’s method is performed as a post hoc test to calculate the adjusted p-values (APVs), which takes into
account that multiple tests are conducted. The results are shown in Table 6. Since Holm’s procedure rejects all hypotheses,
it could be safely concluded that the control algorithm (the proposed GVNS) is statistically better regarding scheduling qual-
ity than the remaining methods, with a significant level of 0.05.

5.5. Parameter sensitivity analysis

Given a fixed population size, the performance of GVNS mainly depends on the parameter settings of mutation rate,
crossover rate, and sampling rate. A throughout sensitivity analysis of these three parameters is performed to find that
Table 4
Average speedup Friedman rankings.

Algorithm GVNS AIS VNS HEFT

Ranking 1.0185 2.7546 2.9861 3.2407

Table 5
Results of Friedman’s and Iman–Davenport’s tests, a = 0.05.

Method Statistic value p-Value Hypothesis

Friedman 197.2917 1.0447E�10 Rejected
Iman–Davenport 166.6047 2.2204E�16 Rejected

Table 6
Results of Holm’s method (GVNS is the control algorithm).

i Algorithm z p-Value a/i APV Hypothesis

3 HEFT 12.6491 1.1315E�36 0.0167 3.3945E�36 Rejected
2 VNS 11.1997 4.0896E�29 0.025 8.1792E�29 Rejected
1 AIS 9.8821 4.9770E�23 0.05 4.9770E�23 Rejected



Fig. 6. Results of parameter sensitivity analysis in the proposed GVNS.

Y. Wen et al. / Information Sciences 181 (2011) 567–581 579
our proposed GVNS is able to maintain robust performance within a wide range of parameter settings. Both the average
speedup with 95% CI and the maximum speedup achieved in 50 runs over all the test cases are computed. Due to space
limitations, only the results of the GJ-9 task graph are reported, with CCR set to 1.0 and processor number set to 8.
Since mutation rate and crossover rate mainly impact the performance of GA, the hybridized VNS is disabled during the
investigation of the two parameters.
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The impact of mutation rate is investigated firstly, with crossover rate fixed to 1.0. Fig. 6(a) depicts the experimental re-
sults, which reveal that the algorithm performance shows slight difference with mutation rate varying from 0.02 to 0.2, ex-
cept for the frontier point 0.

Thereafter, the sensitivity analysis of crossover rate is performed with mutation rate set to 0.1. The simulation results
depicted in Fig. 6(b) indicate that the crossover rate has little impact on the search quality.

Finally, the sampling rate used in the initialization of VNS is examined with mutation rate set to 0.1 and crossover rate set
to 1.0. The simulation results is illustrated in Fig. 6(c). It appears that the algorithm performance fluctuates very slightly
while the computational cost of the algorithm increases sharply with the increasing sampling rates. Hence, a sampling rate
as low as 0.1 is sufficient to guarantee search quality while maintaining high search efficiency.
6. Conclusion and future study

In this paper, a novel hybrid metaheuristic-based approach for solving task scheduling problem in the heterogeneous
multiprocessor system has been proposed by means of incorporating GA with both VNS and an heuristic extracted from tra-
ditional list scheduling algorithms. Generally, our approach expands upon a traditional GA in two aspects. First, by means of
hybridizing the global searching ability of the GA with the local improvement ability of the VNS, the balance between the
exploration and exploitation of search space is enhanced. Second, problem-specific scheduling information is introduced
to the neighborhood structures in the VNS for further improving the algorithm efficiency by guiding the local search towards
a more promising region in the search space. In addition, task scheduling in our approach is separated into two phases of
task-processor mapping and task priority determination. Our algorithm restricts the use of the GA and the VNS to evolve
task-processor mapping solutions while taking advantage of an upward-ranking heuristic which improves upon HEFT for
task priority calculation.

The performance of our proposed approach is compared with four related algorithms, HEFT, AIS, VNS and IGA, on the
benchmark problems extracted from three well-known parallel applications. The experimental results show that our pro-
posed algorithm consistently outperforms the other four algorithms in terms of schedule quality, with the exception that
the task duplication-based IGA algorithm achieves the highest quality in several test cases with a high CCR value. Some
non-parametric statistical tests for multiple comparison, including Friedman test, Iman–Davenport test and Holm’s method
as post hoc procedure, are conducted to validate the statistical significance of the performance difference. Finally, a compre-
hensive parameter sensitivity analysis is carried out to reveal that the proposed GVNS is able to maintain a high performance
within a wide range of parameter settings. In addition, it appears that a partial sampling of the population (as low as 10%)
used for VNS initialization is sufficient to guarantee the search quality.

In future research, the performance of the proposed approach can be tested using the data obtained from real distributed
computing environment. Incorporating task duplication heuristic to further improve the schedule quality, especially given a
high CCR value or a fine-grained task graph, is also considered, as well as parallelizing our proposed approach to improve the
algorithm efficiency.
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