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Abstract—To avoid failure and achieve higher availability,
replication scheme is now widely used in distributed Cloud
storage systems [25]. However, most of them only statically
replicate data on some randomly chosen nodes for a fixed
number of times and it is obviously not enough for more
reasonable resource allocation. Moreover, query load for Web
application is highly irregular. It throws us into a dilemma
to always maintain maximum number of replicas in case of
explosive query load outburst or save resources with fewer
replicas at the expense of performance. In this paper, we present
a Resilient, Fault-tolerant and High-efficient global replication
algorithm (RFH) for distributed Cloud storage systems. RFH
is especially efficient facing ‘flash crowd’ problem. Each data
partition is represented by a virtual node. Each virtual node
itself decides whether to replicate, migrate or suicide by
weighing up the pros and cons. It is based on the evaluation
of traffic load of all nodes, and selects among physical nodes
with the most traffic (traffic hub) to replicate or migrate
on. After that, it takes into account blocking probability to
achieve quicker response and better load balance performance.
Extensive simulations have been conducted and the results
have demonstrated that the proposed scheme RFH outperforms
the main existing algorithms (the request-oriented algorithms
[16] [5], the owner-oriented algorithms [7] [11] [12] [13] and
the random algorithms [4] [21] [22] in terms of high replica
utilization rate, high query efficiency and reasonable path length
at a low cost while maintaining high availability.

Index Terms—Data replication, Distributed Cloud storage,
Fault-tolerance, High-efficient.

I. INTRODUCTION

Distributed Cloud storage is now widely used by Cloud
service providers, such as Amazon S3, Google, App iCloud
and DropBox. Based on Cloud storage e-commerce platforms,
these companies serve thousands of millions customers using
tens of thousands of servers located distributed in many
datacenters world widely. However, hardware failure, power
failure and network failure [1] in current datacenters are
becoming more and more frequent as storage capacity scales
up [23]. To avoid access failure and data loss caused by
these failures, or by natural disasters, such as earthquake or
tornado which may destroy a whole datacenter, replication
scheme is widely employed by Cloud storage systems, such as
Amazon Dynamo, to guarantee its reliability and availability
by replicating data partitions across different datacenters.
Nevertheless, to the best of our knowledge, most of the

current Cloud storage systems replicate each data item at a
fixed number of physically distinct nodes in a static way,
without taking replication cost and geographical diversity

into account. More importantly, all of them never consider
design from a traffic-based angle. For example, hot spot
change, flash crowd, lookup skew and load imbalance are
also important factors that impact customer’s experience and
raise a problem for replication scheme. On the one hand, it is
reported by Amazon that a Service Level Agreement (SLA)
should guarantee a response within 300ms for 99.9% of its
requests a peak client load of 500 requests per second [4].
Given that the slightest outage will impact customers’ trust and
has significant financial consequences, a system should be built
to provide all customers with a good experience, rather than
just the majority. On the other hand, “Slashdot effect” indicates
that the query rate for Web application data is highly irregular.
If a hot partition and its replicas receive too many requests at a
time, they could become overloaded and consequently cannot
response to the clients within time limit. But if a partition
is seldom accessed or a hot partition is cooled down as time
passes by, too many replicas of it will become a waste of
resource and causes maintenance overhead. A new replication
algorithm is in dire need to address these problems. Therefore,
we propose RFH, a resilient, fault-tolerant global replication
algorithm, which can flexibly replicate data according to
changing query load, with high efficiency.
Clearly, to achieve high availability while maintaining low

replication cost, it is better to choose a different datacenter
close to the primary partition owner to replicate on. We call it
owner-oriented. The advantage is relatively lower replication
cost and consequently lower replication failure possibility.
However, the lookup path length and response time cannot
be significantly reduced, especially when most of the large
amount of queries is from far away continents. Another
method is request-oriented, which encourages replicating data
on datacenters near to the requesters with the highest query
rate. This method is able to reduce lookup path length dramat-
ically and consequently improve query efficiency. However,
it cannot guarantee replica utilization rate since those other
requesters will have a lower chance to access these replicas.
Moreover, query interest for Web application data varies dra-
matically. It can cause a massive increase in traffic within a few
minutes, and it can also pass into silence after peak time. So
the replicas remained close to the requesters become useless.
Even if migration and suicide functions can be employed to
dynamically relocate or kill these replicas, the migration cost
or the re-replication cost are high, let alone the possible failure
rate that will increase with the distance.
To address the above issues, in this paper, we propose a
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Resilient, Fault-tolerant and High-efficient global replication
algorithm (RFH) for Cloud storage systems. The RFH algo-
rithm is a better way to address this challenge, which can
achieve high replica utilization rate, high query efficiency and
reasonable path length at a low cost while maintaining high
availability. Rather than owner-oriented or request-oriented,
it replicates data on nodes with the most forwarding traffic,
such as conjunction nodes of many necessary routing paths.
We call it traffic-oriented. Unlike request-oriented method, its
replicas can serve for most requesters, resulting in higher
utilization rate. To deal with query interest variance, RFH
employs flexible migration scheme together with replication
algorithm to dynamically change replica number and location
to meet different needs. It also adopts suicide function to
reclaim resources in time. At the meanwhile, it can achieve
quicker response by reducing lookup path length compared
to other three algorithms. The concept of virtual ring and
virtual node is put to use in the RFH algorithm. A virtual
ring is consist of a ring of virtual nodes based on consistent
harshing [24]. A virtual node itself can decide whether to
replicate, migrate or suicide according to the RFH algorithm
decision agent. The advantage is that each node is highly
independent and node join and departure only impacts its
immediate neighbors.
The rest of the paper is organized as follows: In Section II,

the design and analysis for our RFH replication algorithm are
presented from various aspects. Section III shows experimental
performance results of the RFH algorithm in comparison with
other main existing algorithms under a variety of metrics.
Finally, we conclude this paper and propose the future works
in Section V.

II. RFH REPLICATION ALGORITHM

In this section, we will describe the proposed RFH algo-
rithm. First, we discuss main problems involved in replication
requirement for Cloud Storage systems. Then, we give out
the design and analysis of the RFH algorithm from various
aspects.

A. Problem and strategies
Unpredictable query rate, especially under massive increase

at an explosive speed, raises a great challenge to Cloud storage
systems. For example, in Fig. 1, there are 10 datacenters in
different countries of different continents. Datacenter A holds
a hot partition, which is frequently requested by many clients
from different locations, and 80% of the queries are from the
clients near to datacenters I, J and H. Many Cloud storage
systems, such as Amazon Dynamo, employ distributed key-
value store, which will replicate data at the N-1 clockwise
successor nodes [4]. Although adjacent in node ID space, these
replicas are actually randomly chosen considering geographi-
cal location. In Fig. 1, replicas will be distributed to any other
datacenters with a random manner.
If with an owner-oriented manner, the coordinator will

consider maximizing availability while minimizing replication
cost. Replication cost relates to partition size si, failure rate fi,
replication bandwidth bi and distance di, between the source

Fig. 1. Client Requests in Global Distributed Cloud Storage System

and the destination. Thus replication cost ci is defined as:

ci =
di.fi.si

bi
(1)

To measure availability, each physical node (i.e., storage
hosts or servers in a rack) has a label of the form “continent-
country-datacenter-room-rack-server” in order to identify its
geographical location [5]. For example, in Fig. 1, a server
located in Datacenters A is possibly labeled as “NA-USA-
GA1-C01-R02-S5”. We measure availability level according
to geographical diversity. If two servers are in different dat-
acenters, they are of the highest availability level, Level 5.
If two servers are in the same datacenter, but different rooms,
their availability level is 4. Correspondingly, the lowest level is
Level 1, which means the two replicas are in the same server.
Thus, in Fig. 1, replicas will be placed on B and C, which are
in the same country of A, or it will replicate on D, which is in
the same continent of A, with relatively low replication cost
but high availability. Migration function is employed when
higher availability versus cost can be obtained.
If with a request-oriented manner, it will choose among

datacenters closest to the clients, where most of the queries
come from. As mentioned above, 80% of the queries are from
clients near Datacenters I, J and H. Thus, in Fig. 1, Datacenters
H, I and J, which are the closet to the query clients, become
replication preference. It will randomly choose a node among
the top 3 ones to replicate on. The migration process is started
when another node without any replica joins in the list of the
top 3.
The RFH algorithm, which employs a traffic-oriented man-

ner, chooses a server in datacenters with the most forwarding
traffic to replicate on. In Fig. 1, it prefers to replicate on
datacenters D and F, which are in necessary routing paths of
many queries from the clients to the hot partition holder A,
consequently shoulder most traffic. The condition of migration
or suicide is also based on traffic load, which will be further
discussed in the following.

B. Partitioning and Routing
We employ the similar partitioning algorithm as it’s in

Amazon Dynamo. The partitioning scheme of RHF is built
using a variant of consistent hashing [6]. Data is dynamically
partitioned or stripped over the set of storage hosts or physical
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nodes in the system. A ring topology, which is treated as a
fixed circular space, is employed as the output range of a
hash function. A ring consists of several virtual nodes. Each
node is assigned a random value within the hashing space
to represent its position. A physical node hosts an amount
of virtual nodes within its capacity limit, such as maximum
disk storage and processing speed. However, instead of a
coordinator node, a virtual node itself can decide to whether
to replicate, migrate or suicide according to RFH decision
tree described in Section II-E. Apparently, the advantage is
that node join or departure, failure or recovery only affects its
immediate neighbors, and keep other nodes unaffected. Note
that maintaining data consistency is not the focus of this work.
Routing is similar to Oceanstore [7] in RHF. Entities are

free to reside on any physical node. Every physical server
manages the routing table of all its virtual nodes. The routing
layer of RFH is built on top of IP and provides additional
functionality. The routing protocol messages are labeled with a
destination ID. It routes messages directly to the closest node
which has the desired ID and matches the prefix. A virtual
node periodically calculates its traffic load, replication storage
capacity and bandwidth for a replica. If it’s overloaded by its
traffic and has enough storage and bandwidth capacity, it will
add its replication request and other information, such as its
ID, holder ID and IP address to the tail of the received query,
and forward it to the next hop. The cost of routing is O(log n).
To avoid a huge amount of manual input for widely distributed
nodes, we employ automatic address configuration for Data
Center networks [2]. It can automatically configures Data
Centers within seconds, including traditional Data Centers and
BCube [3].

C. Traffic determination
Given that the RFH algorithm is traffic-oriented, we should

first discuss query and traffic. Query is different from traffic.
Query is the request information that a client sends to request
for a certain data partition. In the routing process, a forwarded
query will generate some traffic which is different according
to different routing algorithms. Here, we only calculate valid
traffic that routes directly to the destination, not including for-
warding information to all its neighbors. From every requester
j to the holder of partition Bi, there’s a routing path, and the
set of all nodes in this path is denoted as Aij , and

Aij =
{
Nk|Nk is at the routing path from Ni to Nj

}
.

For each virtual node, the processing capacity is limited.
And for each physical node, the number of virtual nodes
holding a certain replica varies. So if the query load is out
of its capacity, the rest of the queries that cannot be handled
will be forwarded to the next physical node. During a unit
time epoch t, suppose that the processing capacity of node
Nk for a replica of Bi is Cikl, 0 < l < mik, and mikt is
the number of total replicas of partition Bi that are now in
physical node Nk. Let trijkt represent the traffic load of node
Nk for partition Bi and it’s from requester j. Node Nk′ is the
node immediate before Nk in the routing path, so its traffic,
processing capacity and total replica number is trijk′t, Cik′l
and mik′t respectively. Thus,

trijkt =
{

trijk′t −
∑mik′t

l=0 Cik′l trijk′t >
∑mik′t

l=0 Cik′l
0 trijk′t ≤

∑mik′t
l=0 Cik′l

= max(0, trijk′t −
∑mik′t

l=0 Cik′l).
(2)

If node Nk′ is not the first node in a given routing path,
let Nk′′ represents the node before Nk′ . So the traffic of node
Nk′ can be given as:

trijk′t =
{

trijk′′t −
∑mik′′t

l=0 Cik′′l trijk′′t >
∑mik′′t

l=0 Cik′′l
0 trijk′′t ≤

∑mik′′t
l=0 Cik′′l

= max(0, trijk′′t −
mik′′t∑
l=0

Cik′′l).

(3)
Thus, based on (2) and (3), we can reach

trijkt = max(0, trijk′t −
mik′t∑
l=0

Cik′l)

= max
(
0,max(0, trijk′′t −

mik′′t∑
l=0

Cik′′l) −
mik′t∑
l=0

Cik′l
)

= . . .

= max
(
0, . . . , max(0, trijjt −

mijt∑
l=0

Cijl)
)
.

(4)
For simplicity and without losing generality, we regard

queries closest to datacenter j as from requester j. We define
the number of queries for a partition Bi, during a unit time
period T, from requester j, as qijt. Assume that Nkx is any
node before Nk in the routing path, so Nkx ∈ Aij . The
processing capacity and replica number of node Nkx are mikx

and Cikxl(0 < l < mikx) respectively. Because,

trijjt = qijt, (5)

trijkt can be given as:

trijkt = max
(
0, . . . , max(0, trijjt −

mijt∑
l=0

Cijl)
)

= max(0, qijt −
∑

kx∈Ajk

mikxt∑
l=0

Cikxl).
(6)

For each node Nk, it may be at the routing path from
requester j to the holder of partition Bi, or it may not. Thus,
the probability that it’s at the path is pijk. The value of pijk

is either 1 or 0, say
pijk ∈ {

0, 1
}
.

Correspondingly, during period t, for partition Bi, the traffic
of a forwarding or a host node Nk is denoted as trikt.
Therefore, the traffic of node Nk for partition Bi is given
as:

trikt =
N∑

j=1

trijkt.pijk. (7)

We replace trijkt with (20), then we get:

trikt =
N∑

j=1

max(0, qijt −
∑

kx∈Ajk

mikxt∑
l=0

Cikxl).pijk (8)

522



The system average query for partition Bi during epoch t is:

qit =

∑N
j=1 qijt

N
. (9)

In order to compensate for steep changes of the query rate,
we take historical data into account and use a smoothing factor
α. The average system query is then presented as:

qit = α.qi(t−1) + (1 − α).qit, 0 < α < 1 . (10)

We also use the same smoothing factor for traffic evaluation.
So,

trikt = α.trik(t−1) + (1 − α).trikt, 0 < α < 1 . (11)

For the holder of partition Bi, if its traffic is larger than β
times of the average system query, it is regarded as overloaded,
i.e.:

triit ≥ β.qit, β > 1 . (12)

For a forwarding node, if its traffic is larger than γ times
of the average system query, it is regarded as overloaded and
is marked as traffic hub node, i.e.:

trikt ≥ γ.qit, γ > 1 . (13)

D. Availability lower limit
Query rate is changing in Web applications. Sometimes the

query rate is very large and the system is overloaded, but it
may be not that crowded at some other times. However, the
minimum availability should still be satisfied for the sake of
good user experience. Suppose that fi is the failure probability
of a virtual node, which is the ith replica of an original node
j. And rj is its replica number. According to [8], to obtain
the expected availability Aexpect, the minimum replica number
rmin should satisfy the following inequation:

1 −
m∑

j=1

(−1)j+1Cj
m(

rj∏
i=1

)j ≥ Aexpect. (14)

For a given minimum expected availability requirement, we
can get the minimum replica number, say rmin. For example,
if the system requires a minimum availability of 0.8 and the
failure probability is 0.1, then the minimum replica number is
2 according to this inequation.

E. RFH decision tree
Based on traffic determination, we discuss how the RFH al-

gorithm works, in this subsection. Fig. 2 gives out the decision
tree of RFH algorithm. Every node is self-organized. They
replicate, migrate or choose to suicide with a decentralized
manner. For each epoch, every node calculates availability
according to (14). If the minimum availability is not reached
for a primary partition holder, it will replicate to its most
forwarding nodes, even if all the nodes are not overloaded.
If the minimum availability is reached, but there’s still too
much traffic, it will force the scheme to start relieving load.
Besides availability, query and traffic are also calculated during
each epoch. Query is calculated according to (9) and (10).
For a node holding an original partition, if its traffic satisfies
condition (12), it’s regarded as overloaded and then enters a
status waiting for replication request from other nodes. For a

node not holding an original partition, if the traffic value can
satisfy condition (13), it will be regarded as a traffic hub. It will
send a replication request with its ID, traffic value and other
needed information, to the partition holder along the routing
path. Once the node holding the original partition receives
requests from traffic hubs, it will choose a node among the
3 nodes with the largest amount of traffic. In the next step,
if there’s any replica of it is not at these three nodes, it will
check the migration condition according to (16) and sends a
migration request to the node holding this replica. Otherwise,
it will replicate to the chosen traffic hub node.

Fig. 2. Decision tree of the RFH algorithm

Query rate is always changing, so some replicas may
become rarely visited. To maintain these replicas is time-
consuming and may increase failure rate. To avoid mainte-
nance overhead and resource waste, for a node holding a
replica, if the traffic load is very light, say

trikt ≤ δ.qit, (15)

It will calculate the availability without itself. If the min-
imum availability is still satisfied without it, it will commit
suicide.
In migration process, to guarantee enough benefit and avoid

failure, a threshold of benefit is set to determine whether to
migrate or not. It’s given below:
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trij − trik ≥ μ.tri, (16)

here, tri is the average traffic load of all nodes, which is for
partition Bi.

tri =

∑N
j=1 trij

N
. (17)

Among the physical nodes in the same datacenter, RHF
chooses a node with the lowest blocking probability. Let’s
assume λi is the arrival rate of Poisson process. τi is the
average service time of a node i, and ci is the upper processing
limit of it. According to [10], the blocking probability BPi

is defined as follows:

BPi =
(λiτi)ci

ci!

[
ci∑

k=0

(λiτi)k

k!

]−1

. (18)

This model is a M/G/ci model. In each epoch, each
physical node i leverages its computational ability and also
records query information. It calculates the average value of
λi and τi and then gets blocking probability BPi periodically.
The value of BPi will be piggybacked into a replication
request if there’s any. A virtual node will choose a node which
has the lowest value of BPi to replicate or migrate. Thus,
it can dynamically balance workload among all the physical
nodes.
Another condition that a virtual node can choose a server is

no less than its disk storage limit. If the current storage rate of
a server is the upper limit, any replication or migration request
will not be allowed. Certainly, on the virtual node side, it will
not choose a crowded server either. This condition is given as:

Si < φ. (19)

By default, the storage upper limit φ is set as 70%. Based
on these two conditions, the RFH algorithm can achieve
good load balance performance which will be shown in the
experimental section.

F. Facing flash crowd
Web application query is highly irregular. There’re mainly

two types of query surge. The first one is query location
changes. For example, in Fig. 1, most of the queries for
a certain partition may first come from Tokyo, Japan, near
Datacenter I, and then become very few. At the same time,
queries for the same partition, which come from Beijing,
China, is keeping increasing. After a short period of time, most
of the queries is from Beijing, China, near Datacenter H. In
this case, it has little impact on the RFH algorithm, which is
traffic-oriented, because the traffic hub nodes are still D and
E, replicas on which can still serve for most queries. Also,
it has little impact on the owner-oriented algorithm, because
replication decision is made according to availability versus
cost. Higher availability cannot be obtained by increasing
traffic or queries, so the owner-oriented algorithm will not
be affected. However, replicas have to migrate or be added
to H according to the request-oriented algorithm, resulting in
relatively low efficiency and high cost.
The second type of query surge is that the popularity of a

partition changes over time. For example, a hot partition in
Datacenter A may become cool while another cool partition

in Datacenter E becomes hot. For simplicity and without loss
of generality, we suppose that most of the queries is from
Beijing, China, near Datacenter H. For the request-oriented
algorithm, the replicas of a former hot partition will become a
waste of resource remaining on H, because of low utilization
rate. For the owner-oriented algorithm, the performance counts
on the location of the hot partition holder and Cloud network
deployment. The replication cost of the holder that has limited
number of neighbors is larger than that with more and close
neighbors. The RFH algorithm can adapt the replica number
according to changing traffic. If a partition becomes hot, more
replicas will be replicated to meet the need of service, or
replicas will migrate to achieve higher utilization. Otherwise,
unwanted replicas will commit suicide to save resources.

G. Replica utilization rate
Replica utilization rate is a good criterion to measure the

performance of replication algorithm. The more the replicas
are, the less workload each one might shoulder, and the less the
collapse probability may occur. However, too many replicas
will result in low utilization rate and a waste of resource. Our
proposed algorithm can satisfy service need with fewer repli-
cas than other existing algorithms, so that the replica utilization
rate is higher. Another factor impacts replica utilization rate
is the placement of these replicas. If some replicas are in
a location that is seldom visited by queries, the utilization
rate is obviously lower. But if all or most of the replicas
are in key locations, such as traffic hub, they will be fully
utilized. The RFH algorithm place its replicas in conjunctions
of many necessary routing paths, which definitely results in
more hitting chances, and consequently higher utilization rate.
This can be seen in our experiments, which will be further
discussed in the following experimental section.
Now let’s analyze replica utilization rate of the random

algorithm, the owner-oriented algorithm, the request-oriented
algorithm and the proposed RFH algorithm. During epoch t,
trijkt represents the traffic value of node Nk for partition Bi

and it’s from requester j. Suppose that the processing capacity
of node Nk for a replica of Bi is Cikl, 0 < l < mikt, andmikt

is the total replica number of partition Bi in node Nk. Thus,
replica utilization rate of a replica on node Nk is denoted as

Uiklt, and

Uiklt =

⎧⎪⎨
⎪⎩

0 trikt ≤
∑l−1

n=0 Cikn
trikt−

∑ l−1
n=0 Cikn

Cikl

∑l−1
n=0 Cikn < trikt <

∑l
n=0 Cikn

1 trikt ≥
∑l

n=0 Cikn

= min(1,max(0,
trikt −

∑l−1
n=0 Cikn

Cikl
)).

(20)

And the average replica utilization rate in epoch t is:

U t =
∑N

i=1

∑N
k=1

∑mikt

l=1 Uiklt∑N
i=1

∑N
k=1 mikt

. (21)

Because
trikt =

N∑
j=1

max(0, qijt −
∑

kx∈Ajk

mikxt∑
l=0

Cikxl).pijk

=
N∑

j=1

pijk.max(0, qijt −
∑

kx∈Ajk

mikxt∑
l=0

Cikxl),
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then we get

Uiklt = min(1,max(0, C−1
ikl .(trikt −

l−1∑
n=0

Cikn)))

= min

⎡
⎣1,max

⎡
⎣0, C−1

ikl .
N∑

j=1

pijk.max (0, qijt

= −
∑

kx∈Ajk

mikxt∑
l=0

Cikxl

⎞
⎠−

l−1∑
n=0

Cikn

⎤
⎦
⎤
⎦ .

(22)
Replace Uiklt in (21), for average replica utilization rate U t,
we get:

U t =

⎧⎨
⎩

N∑
i=1

N∑
k=1

mikt∑
l=1

min

⎡
⎣1,max

⎡
⎣0, C−1

ikl .

⎛
⎝ N∑

j=1

pijk.

max(0, qijt −
∑

kx∈Ajk

mikxt∑
l=0

Cikxl) −
l−1∑
n=0

Cikn

⎞
⎠
⎤
⎦
⎤
⎦
⎫⎬
⎭

( N∑
i=1

N∑
k=1

mikt

)−1

.

(23)
Replica utilization rate decreases with the increase of replica

number, so replica number should be constrained in order to
achieve higher utilization rate. Furthermore, with the same
replica number and other parameters, if a replica could be
in a physical node that belongs to more routing paths, there’ll
be more chances for the value of the parameter pijk to be 1,
not 0. From (23), we can learn that if the parameter pijk has
more chances be 1, then the value of U t will be larger with
the same replica number. Thus, the average utilization rate of
all replicas is higher. Therefore, the replica utilization rate of
RFH is higher than other three algorithms.

H. Load imbalance

Load balance is very important for replication algorithm.
The goal of replication is to avoid data loss by backing up,
and also to obtain quicker response by splitting workload
using parallel processing. If a physical node holding a replica
shoulders too much load while others are idle, this node may
become too busy to response quickly. Thus, all the efforts
of replication are in vain. To achieve better load balance
performance, a virtual node that migrates or is replicated to a
certain datacenter will choose a physical node with the lowest
blockibility probability according to (18). And this is also for
a consideration of quicker response.
To measure load balance, we assume that the workload of

each virtual node is li, thus the average workload of the system
is:

l =
∑n

i=1 li
n

. (24)

Standard deviation is employed, and hence, the load imbalance
Lb is denoted as:

Lb =

√∑n
i=1 (li − l)2

n
. (25)

Put (24) into this formula, Lb is then given as:

Lb =
[ n∑

i=1

(li −
n∑

j=1

lj .n
−1)2.n−1

]1/2

. (26)

Obviously, the lower the value of Lb is, the better the load
balance performance can be achieved.

III. PERFORMANCE EVALUATION
A. Experiment setup
We assume a simulated Cloud storage environment similar

to Fig. 1. It consists of 10 datacenters geographically dis-
tributed in different countries, different continents. Three of
them are in America, two of them are in Canada, and two
are in Swiss. The rest three are in China and Japan. Initially,
each datacenter contains one room and there are two racks in
each room. For each rack, it consists of 5 servers, or physical
nodes. Each server has a fixed storage capacity, and it has
a fixed bandwidth and processing capacity to serve a certain
number of queries in each epoch. It also has fixed replication
and migration bandwidth capacities. However, for every server,
their capacities are different from each other, according to their
own physical condition and other settings. Data are stripped
into partitions, which are managed by virtual nodes. The size
of every data partition is 512KB. At each epoch, the number of
generated queries follows a Poisson distribution with a mean
rate λ, which may vary to meet different needs. The detailed
setting of environment and parameters can be seen in Table I.

TABLE I
ENVIRONMENT AND PARAMETERS SETTING

Parameter Default value
Max server storage capacity 10GB
Server storage rate limit 70%
Replication bandwidth 300MB/epoch
Migration bandwidth 100MB/epoch

Epoch 10 seconds
Queries per epoch Poisson(λ = 300)

Partitions 64
Partition size 512K
Failure rate 0.1

Minimum availability 0.8
α 0.2
β 2
γ 1.5
δ 0.2
μ 1

Besides experiment with random and even query rate, we
test our proposed algorithm under flash crowd, and compare
its performance with other algorithms. There are four stages in
the flash crowd setting. Each stage lasts a quarter of the whole
time. In the first stage, 80% of queries are from areas near
datacenters H, I and J. And then dramatic change happens.
80% of all queries are near datacenters A, B and C, in the
second stage. It moves to the areas near E, F and G in the
third stage, and then becomes random and even distributed in
the last stage.

B. Replica utilization rate
This experiment is to test the replica utilization rate under

different algorithms. Fig. 3(a) illustrates average replica uti-
lization rate in each epoch with random query setting. We can
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observe that the random algorithm has the lowest utilization
rate, while the RFH algorithm has the highest rate. Because
it replicates on nodes which have the most traffic, its replicas
can be fully utilized. The replica utilization rate of the request-
oriented algorithm is lower than the traffic-oriented one, but
it’s higher than the owner-oriented and the random algorithm.
It replicates on nodes mostly near to frequent requesters, so its
replica utilization rate is relatively high. However, obviously, it
cannot handle flash crowd well, which we can see in Fig. 3(b).
Fig. 3(b) demonstrates replica utilization rate of all four al-

gorithms under flash crowd setting. The random algorithm has
the lowest utilization rate, as it’s under random query setting.
The request-oriented algorithm achieves poorer performance
than that it’s under random query setting. The replica utiliza-
tion rate is lower than that of the owner-oriented algorithm.
But worse was to follow, when query changes dramatically,
after the 100th epoch, it decreases very obviously. The replica
utilization rate drops from about 70% to below 10%, and
becomes the lowest of all four algorithms. The reason is that
the request-oriented algorithm replicates data on datacenters H,
I and J during the first 100 epoch, because most of the queries
are near these three datacenters. However, when queries move
to other areas, these replicas on datacenters H, I and J have
less opportunity to be reached. Although, after adjusting for
a long period of time, the replica utilization rate increases,
but it’s still very low. The owner-oriented algorithm and the
traffic-oriented algorithm, apparently, have better performance
dealing with flash crowd. They both don’t drop at the first
query change. For the owner-oriented algorithm, it chooses
some nodes near to the ones holding original partition, but not
in the same datacenter, so that it can achieve high availability
while maintaining relatively low replication cost. Thus, the
replica utilization rate of the owner-oriented algorithm counts
on network topology a little bit. Ideally, if a node replicates a
partition on all its neighbors, all queries for this partition will
definitely meet a replica before it reaches the partition holder
node. Therefore, the replica utilization rate would be high.
For the RFH algorithm, it achieves the best performance

under flash crowd. The replica utilization rate decreases only
once, when the “traffic hub” changes. It’s because RFH
replicates data on those nodes with the most traffic. So if those
nodes change in a condition under which a large amount of
queries changing in a very short period of time, the rate will
drop with it. But it adjusts very quickly, and the rate increases
sharply resulting in almost the same good performance as
initial.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Epoch

R
ep

lic
a 

ut
ili

za
tio

n 
ra

te

 

 

Request
Owner
Random
RFH

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2

Epoch

R
ep

lic
a 

ut
ili

za
tio

n 
ra

te

 

 

Request
Owner
Random
RFH

(a) (b)
Fig. 3. Replica utilization rate: (a) Under random query. (b) Under flash
crowd.

C. Replication cost
This experiment is to test the replica number and corre-

sponding replication cost under two different settings - the
random query setting and the flash crowd setting. Fig. 4(a)
and Fig. 4(b) illustrate replica number and average replica
number per partition, respectively, under random query. To
meet the need of the same query workload, the random
algorithm has over 500 replicas and has to replicate about
8 times for a partition in average, which achieves the worst
performance among all the algorithms. The owner-oriented
algorithm performs better than the random algorithm, with
about 300 in total and 4.5 in average. The request-oriented
algorithm has the best performance with both the lowest total
replica number and average number. The curve of the RFH
algorithm is quite close to the request-oriented algorithm’s,
but a little higher. It can address the workload with about
250 replicas in total and each partition has about 4 replicas in
average. However, under flash crowd, its performance remains
almost the same good as it’s under random query, which can
be seen in Fig. 4(c) and Fig. 4(d). In the meanwhile, the
rest three algorithms, apparently, have to adapt to changing
query with more replicas. This result shows that the RFH
algorithm has good performance in replica number and has
good adaptability under flash crowd especially. Figs. 5(a) and
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Fig. 4. Replica number. (a)Total replica number under random query.
(b)Average replica number per partition under random query. (c)Total replica
number under flash crowd. (d)Average replica number per partition under flash
crowd.

(b) illustrate replication cost under random query. Fig. 5(a)
is of total replication cost while Fig. 5(b) is the average
replication cost per replica. We can see that the random
algorithm has the highest total and average replication cost,
which is much higher than other three algorithms. The total
replication cost of the owner-oriented algorithm is close to
the request-oriented algorithm’s. However, the average cost of
the request-oriented algorithm is much higher. It’s because the
request-oriented algorithm replicates data on nodes near to the
requesters, while the owner-oriented algorithm replicates data
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on nodes near to the primary partition owners, the replication
cost of the former one is definitely higher than the later one.
The RFH algorithm achieves both the lowest total replication
cost and average replication cost among all four algorithms. It
seems unreasonable that the RFH algorithm can achieve lower
replication cost than the owner-oriented algorithm, because
the later one places replicas mostly on its close neighbors.
However, we find it’s reasonable after deep analysis. Some
replicas are placed on the same datacenter of the primary
partition holders, but in different servers. Thus, the replication
cost is even lower than replicating on neighbors. It counts on
the locations of traffic hub nodes, and therefore counts on the
locations of queries based on which the traffic nodes form.
We can see this point from the result of flash crowd setting
experiment, illustrated in Figs. 5(c) and (d).
Figs. 5(c) and (d) illustrate replication cost under flash

crowd. Fig. 5(c) is of total replication cost while Fig. 5(d)
is the average replication cost per replica. The performance
of the request-oriented algorithm is worse than it is under
random query because of long distance replication. The total
replication cost of it is lower than the random algorithm’s,
but the average replication cost is much higher. The average
cost of the RFH algorithm is higher than the owner-oriented
algorithm’s, since the traffic nodes are different from those
under random query experiment, resulting in higher cost. Ba-
sically, if the primary partition holder is not a traffic node, the
average replication cost of the RFH algorithm will be higher
than the owner-oriented one’s. However, the total replication
cost is still the lowest because of fewer replicas.

D. Migration cost
Except the random algorithm, all other algorithms employ

migration function. According to the request-oriented algo-
rithm, a virtual node migrates to a server that has much
more queries than the former one, and also the server is the
closest to the requesters. The migration condition of the RFH
algorithm is based on traffic load together with other constrains
and benefits. The owner-oriented algorithm chooses migration
action when a higher value of availability versus cost can be
achieved, and this actually happens only when physical nodes
are added into or removed from the system. Fig. 6 is the result
of migration times experiment. Figs. 6(a) and (b) are under
random query setting, and Figs. 6(c) and (d) are under flash
crowd setting. It shows that the request-oriented algorithm
has more migration times whether in total times or average
times, and whether it’s under random query or under flash
crowd. Therefore, the RFH algorithm has better performance
in migration times experiment.
Figs. 7(a) and (b) demonstrate migration cost under random

query. The total migration cost of all four algorithms is
illustrated and compared in Fig. 7(a). The request-oriented
algorithm has the highest migration cost because it chooses
to migrate data to nodes near the requesters. The cost of
random algorithm is zero, because no migration function is
employed. The cost of the owner-oriented algorithm is zero,
for that the migration condition is not reached. The total cost
of the proposed RFH algorithm is very low. Fig. 7(b) shows the
comparison of the average migration cost per replica among
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Fig. 5. Replication cost. (a)Total replication cost under random query.
(b)Average replication cost per replica under random query. (c)Total repli-
cation cost under flash crowd. (d)Average replication cost per replica under
flash crowd.
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Fig. 6. Migration times. (a)Total migration times under random query.
(b)Average migration times per replica under random query. (c)Total migration
times under flash crowd. (d)Average migration times per replica under flash
crowd.

four algorithms. We can see that the cost of the RFH algorithm
is lower than the request-oriented algorithm’s.
Under flash crowd setting, Fig. 7(c) shows the total migra-

tion cost of different algorithms while Fig. 7(d) is the average
cost. By comparing with Figs. 7(a) and (b), we can see that
both the total and average migration cost under flash crowd is
higher than under random query. Obviously, the reason is that
migrating operation increases in order to meet the need of the
changing query. The performance of the proposed algorithm is
still better than others, note that the random algorithm has no
migration function and the migration condition of the owner-
oriented algorithm is to achieve maximum availability versus
minimum migration cost.
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Fig. 7. Migration cost. (a)Total migration cost under random query.
(b)Average migration cost per replica under random query. (c)Total migration
cost under flash crowd. (d)Average migration cost per replica under flash
crowd.

E. Load imbalance
Fig. 8(a) and Fig. 8(b) demonstrate load imbalance per-

formance of each algorithm in each epoch, under random
query and flash crowd respectively. With the owner-oriented
algorithm, data is replicated on servers to achieve maximum
availability, so it would like to choose a rack different from
another replica, or at least chooses a different server. The
request-oriented algorithm employs random choosing method,
which is the same as the random algorithm. The RFH algo-
rithm chooses a server with the least blockibility. So its load
balance performance is the best among all the four algorithms.
And it achieves better result under flash crowd than under
random query, while the performances of other algorithms
become worse.
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Fig. 8. Load imbalance. (a)Load imbalance under random query. (b)Load
imbalance under flash crowd.

F. Lookup path length
Fig. 9 illustrates lookup path length experimental result.

Fig. 9(a) is under random query while Fig. 9(b) is under
flash crowd. Initially, all curves drop very sharply in both two
settings, because replica number increases with the replication
action resulting in higher replica hit chance and shorter lookup
path length correspondingly. The owner-oriented algorithm is
of the longest path length in random query experiment. And
it’s also the worst under flash crowd, except in the third stage.

The reason why it has relatively better performance in the third
stage is because most of the queries are near the replicas. But
it’s still longer than the RFH algorithm’s. The RFH algorithm
achieves the best performance among all algorithms in both
settings, except in the first stage of flash crowd. It has a little
longer path length than the request-oriented algorithm’s for
that most of the queries have a path length of 0 according to the
request-oriented algorithm. During the few epochs after epoch
200, there’s a sharp angle in the curve of the RFH algorithm.
In these epochs, the traffic hub nodes change according to the
query condition, so migration process is started by the RFH
algorithm and it adjusts very well.
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Fig. 9. Lookup path length. (a)Lookup path length under random query.
(b)Lookup path length under flash crowd.

G. Node failure and recovery
Node failure is very common in Cloud storage system,

and the main purpose of replication is to avoid unwilling
consequence, such as data loss, which is brought by a server
failure, a rack failure or even a whole datacenter’s out of work.
And also to allow physical nodes freely join or depart the
system is another goal.
Fig. 10 shows the experimental result of node join, failure

and recovery of the RFH algorithm. The number of replicas
is keep increasing to meet the need of query load at first.
Then when the replicas number becomes stable, 30 servers are
randomly removed at epoch 290, resulting in a sharp decrease
of replicas number. The experiment proves the robustness of
the RFH algorithm in the later epochs. The replica number
increases as time passes by, and reaches the same level as
initial.
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Fig. 10. Node failure and recovery

IV. RELATED WORK
Replication algorithm is widely studied in Cloud storage

systems, distributed databases and distributed file systems.
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CFS is a cooperative file system that is built on Chord [14].
It replicates blocks of an original file on nodes of the Chord
ring, which are immediate after the block’s holder. Oceanstore
is an architecture designed for global-scale persistent storage
which is built on Tapestry [15]. It addresses the consistency
problem by serializing replicas updates before applying them
atomically. Gnutella [16] is a famous P2P protocol that pro-
vides a simple reliable distribution system. When an original
file owner is overloaded, it will replicate the file on the file
requesters. Gnutella’s replication scheme is request-oriented,
based on which the proposed RFH algorithm is compared with.
Haiying Shen carried out the concept of traffic hub and further
proposed an algorithm named EAD to address the problem of
data replication in P2P systems [17].
Work on Data Center traffic analysis has been done in [9],

which provides us a way to learn its feature of highly irregular.
It also introduce how to extend tomography methods for traffic
measurement in Data Center Networks. Amazon Dynamo [4]
is designed for Amazon e-commerce platform. Distributed file
systems, such as Ficus [19] and Coda [20], have replication
scheme which can achieve high availability at the expense
of relatively lower consistency. To host the state of Googles
internal applications, the Google File System [21] uses a single
master node to store all the metadata chunks.
Distributed database systems employ data replication algo-

rithms to provide data consistency and efficient data man-
agement. In [18], replication techniques based on snapshot
isolation are discussed. It points out the conflict between the
local concurrency controls providing snapshot isolation and
transaction inversions.V. CONCLUSION
In this paper, we propose the RFH replication algorithm

for distributed Cloud storage systems, which is high-efficient,
fault-tolerant and suitable for global wide replication. Different
from traditional existing algorithms which randomly replicate
to other nodes, the RFH algorithm employs traffic load evalua-
tion to figure out the nodes that are in the traffic hub, and then
the decision whether to replicate, migrate or suicide is up to
every individual distributed virtual node. We first describe the
flash crowd problem and how the RFH algorithm can work
to solve it. Then theoretical analysis is given out to prove
its effectiveness and also to analyze its performance together
with other compared-with algorithms. The simulation results
of some experiments confirm our hypothesis and analysis from
various aspects, such as replicas utilization rate, migration
cost, to name a few. It proves that the RFH algorithm has
much better performance than other three algorithms, which
can provide Cloud storage systems with high-efficient, fault-
tolerant and resilient global replication service. As a future
work, we will further study the effectiveness of RFH in real
business cases and plan to focus on the research of consistency
maintenance. ACKNOWLEDGMENTS
We thank many colleagues for their constructive criticism

for this paper, Naixue Xiong is the corresponding author.
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