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a b s t r a c t

Due to the increasing occurrence of very large databases, mining useful information and knowledge from
transactions is evolving into an important research area. In the past, many algorithms were proposed for
mining association rules, most of which were based on items with binary values. Transactions with quan-
titative values are, however, commonly seen in real-world applications. In this paper, the frequent fuzzy
pattern tree (fuzzy FP-tree) is proposed for extracting frequent fuzzy itemsets from the transactions with
quantitative values. When extending the FP-tree to handle fuzzy data, the processing becomes much
more complex than the original since fuzzy intersection in each transaction has to be handled. The fuzzy
FP-tree construction algorithm is thus designed, and the mining process based on the tree is presented.
Experimental results on three different numbers of fuzzy regions also show the performance of the pro-
posed approach.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Years of effort in data mining have produced a variety of effi-
cient and effective techniques. Depending on the classes of the
knowledge derived, the mining approaches may be classified as
finding association rules, classification rules, clustering rules and
sequential patterns (Agrawal & Srikant, 1995), among others. Espe-
cially, finding association rules in transaction databases is most
commonly seen in data mining (Agrawal, Imielinski, & Swami,
1993a; Agrawal, Imielinski, & Swami, 1993b; Agrawal & Srikant,
1994; Chen, Han, & Yu, 1996; Cheung, Lee, & Kao, 1997).

In the past, many algorithms for mining association rules from
transactions were proposed. Most of the approaches were based on
the Apriori algorithm (Agrawal et al., 1993a), which generated and
tested candidate itemsets level by level. This may cause iterative
database scans and high computational costs. Han et al. thus pro-
posed the Frequent-Pattern-tree (FP-tree) structure for efficiently
mining association rules without generation of candidate itemsets
(Han, Pei, & Yin, 2000). The FP-tree was used to compress a data-
base into a tree structure which stored only large items. It was con-
densed and complete for finding all the frequent patterns. The
ll rights reserved.
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construction process was executed tuple by tuple, from the first
transaction to the last one. After that, a recursive mining procedure
called FP-growth was executed to derive frequent patterns from
the FP-tree.

In these years, the fuzzy-set theory (Zadeh, 1965) has been used
more and more frequently in intelligent systems because of its
simplicity and similarity to human reasoning (Kandel, 1992). Sev-
eral fuzzy learning algorithms for inducing rules from given sets of
data have been designed and used to good effect with specific do-
mains (Hong & Chen, 1999, 2000). As to fuzzy data mining, several
approaches have been proposed. For example, Hong et al. proposed
a fuzzy mining algorithm for managing quantitative data (Hong,
Kuo, & Chi, 1999b). It was based on the Apriori algorithm. Basically,
it first used membership functions to transform each quantitative
value into a fuzzy set in linguistic terms. It then calculated the car-
dinality of each linguistic term on all the transaction data. The min-
ing process based on the cardinalities was then performed to find
linguistic frequent itemsets and association rules.

Papadimitriou et al. proposed an approach based on FP-trees to
find fuzzy association rules (Papadimitriou & Mavroudi, 2005). In
their approach, each item in the transactions was transferred into
only two fuzzy regions with individual fuzzy values. A threshold
was set and a fuzzy region in a transaction would be removed if
its fuzzy value was smaller than the threshold. In this process, only
the local frequent fuzzy 1-itemsets kept in each transaction were
used for mining. The fuzzy regions which were close to but below
the threshold would provide no contribution at all to the mining.
Thus, some fuzzy regions would not be frequent even the summa-
tion of its fuzzy values in the database was larger than or equal to

http://dx.doi.org/10.1016/j.eswa.2009.12.052
mailto:p7895122@mail.ncku.edu.tw
mailto:tphong@nuk.edu.tw
mailto:whlu@mail.ncku.edu.tw
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


C.-W. Lin et al. / Expert Systems with Applications 37 (2010) 4560–4567 4561
the minimum support. Besides, the expression of fuzzy patterns
with more fuzzy regions was straight. The approach did not use
any fuzzy operation to combine fuzzy regions together. It made
the mined fuzzy rules a little hard to understand.

In this paper, we attempt to extend the FP-tree mining process
for handling quantitative data from the global values of fuzzy re-
gions. A new fuzzy FP-tree is thus proposed, which is a data struc-
ture keeping frequent fuzzy regions. Besides, fuzzy operations are
considered in forming itemsets with more than one fuzzy region.
For achieving this purpose, the proposed fuzzy FP-tree is a little
more complex than the original one and than that proposed by
Papadimitriou and Mavroudi (2005). Based on the proposed ap-
proach, the frequent itemsets are efficiently expressed and mined
out in linguistic terms, which are more natural and understandable
for human beings.

The remainder of this paper is organized as follows. Related
works are reviewed in Section 2. The notation used in the algo-
rithm is explained in Section 3. The proposed fuzzy FP-tree con-
struction algorithm is described in Section 4. An example to
illustrate the proposed algorithm is given in Section 5. Experi-
mental results for showing the performance of the proposed algo-
rithm are provided in Section 6. Conclusions are finally given in
Section 7.
2. Review of related works

In this section, some related researches are briefly reviewed.
They are fuzzy-set concepts, mining association rules from quanti-
tative data, and FP-tree algorithm.

2.1. Fuzzy-set concepts

A fuzzy set is an extension of a crisp set. Crisp sets allow only
full membership or no membership at all, whereas fuzzy sets allow
partial membership. Besides, each element may belong to more
than one set. In a crisp set, the membership of an element x in
set A is described by a characteristic function uAðxÞ, where

uAðxÞ ¼
1 if x 2 A;

0 if x R A:

�

The fuzzy-set theory extends this concept by defining partial
memberships, which can take values ranging from 0 to 1. A mem-
bership function is formally defined as follows (Kosko, 1997; Za-
deh, 1965):

uA : X ! ½0;1�;

where X refers to the universal set for a specific problem. Assuming
that A and B are two fuzzy sets with membership functions uAðxÞ
and uBðxÞ, respectively. The following common fuzzy operators
can be defined as follows:

(1) The intersection operator:

uA\BðxÞ ¼ uAðxÞ s uBðxÞ;

where T is a t-norm operator. That is, T is a function of
½0;1� � ½0;1� ! ½0;1� and must satisfy the following conditions for
each a; b; c 2 ½0;1�:
(i) a s 1 ¼ a;
(ii) a s b ¼ b s a;
(iii) a s b P c s d if a P c; b P d;
(iv) a s b s c ¼ a s ðb s cÞ ¼ ða s bÞ s c.

Two instances of a t-norm operator for a s b are min(a,
b) and a � b.
(2) The union operator:

uA\BðxÞ ¼ uAðxÞ q uBðxÞ;
where q is an s-norm operator. That is, q is a function of
½0;1� � ½0;1� ! ½0;1� and must satisfy the following conditions for
each a; b; c 2 ½0;1�:
(i) a q 0 ¼ a;
(ii) a q b ¼ b q a;
(iii) a q b P c q d if a P c; b P d;
(iv) a q b q c ¼ a q ðb q cÞ ¼ ða q bÞ q c.

Two instances of an s-norm operator for a q b are
max(a,b) and aþ b� a � b.
(3) The a -cut operator:

AaðxÞ ¼ fx 2 XjuAðxÞP ag;

where Aa is an a-cut of a fuzzy set A. Aa thus contains all the ele-
ments in the universal set X that have membership grades in A
greater than or equal to the specified value of a. These fuzzy oper-
ators will be used in our fuzzy FP-tree mining algorithm to derive
fuzzy association rules.

2.2. Mining algorithms for fuzzy association rules

It is useful to extract knowledge via data from the real world
and to represent it in a comprehensible form. Linguistic represen-
tation is popular and may help knowledge more understandable to
human beings. It is also easily implemented by fuzzy sets, since the
fuzzy-set theory is concerned with quantifying and reasoning
using natural language. Several fuzzy mining approaches have
been proposed to find interesting linguistic association rules or
sequential patterns from transaction data with quantitative values.

For example, Chan et al. proposed an F-APACS algorithm to
mine fuzzy association rules (Chan & Au, 1997). They first trans-
formed quantitative attribute values into linguistic terms and then
used the adjusted difference analysis to find interesting associa-
tions among attributes. Kuok et al. proposed a fuzzy mining ap-
proach to handle numerical data in databases and to derive fuzzy
association rules (Kuok, Fu, & Wong, 1998). At nearly the same
time, Hong et al. proposed a fuzzy mining algorithm to mine fuzzy
rules from quantitative transaction data (Hong & Chen, 1999, 2000;
Hong et al., 1999b; Hong, Kuo, & Chi, 1999a). Besides, many mining
methods for finding fuzzy association rules have also been pro-
posed (Kaya & Alhajj, 2004; Shen, Wang, & Yang, 2004; Srikant &
Agrawal, 1996; Yue, Tsand, Yeung, & Shi, 2000), and some related
researches are still in progress.

2.3. The FP-tree mining algorithm

Han et al. proposed the Frequent-Pattern-tree structure (FP-
tree) for efficiently mining association rules without generation
of candidate itemsets (Han et al., 2000). The FP-tree mining algo-
rithm consists of two phases. The first phase focuses on construct-
ing the FP-tree from a database, and the second phase focuses on
deriving frequent patterns from the FP-tree. Three steps are in-
volved in FP-tree construction. The database is first scanned to find
all items with their counts. The items with their supports equal to
or larger than a predefined minimum support are selected as fre-
quent 1-itemsets (items). Next, the frequent items are sorted in
descending frequency. At last, the database is scanned again to
construct the FP tree according to the sorted order of frequent
items. The construction process is executed tuple by tuple, from
the first transaction to the last one. After all transactions are pro-
cessed, the FP tree is completely constructed.

After the FP tree is constructed from a database, a mining pro-
cedure called FP-growth (Han et al., 2000) is executed to find all
frequent itemsets. FP-growth does not need to generate candidate
itemsets for mining, but derives frequent patterns directly from the
FP tree. A conditional FP tree is generated for each frequent item,
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and from the tree the frequent itemsets with the processed item
can be recursively derived.

Several other algorithms based on the FP-tree structure have
been proposed. For example, Qiu et al. proposed the QFP-growth
mining approach to mine association rules (Qiu, Lan, & Xie, 2004).
Mohammad proposed the COFI-tree structure to replace the condi-
tional FP-tree (Zaiane & Mohammed, 2003). Ezeife constructed a
generalized FP-tree, which stored all the frequent and infrequent
items, for incremental mining without rescanning databases
(Ezeife, 2002). Koh et al. adjusted FP trees with a complex procedure
(Koh & Shieh, 2004). Some related researches are still in progress.

3. Notations

The notation used in the proposed fuzzy mining algorithm is
first described below:
D the original quantitative database
n the number of transactions in D
T the ith transaction in D, 1 6 i 6 n
m the number of items in D
Ij the jth item, 1 6 j 6 m
hj the number of fuzzy regions for Ij

Rjl the lth fuzzy region of Ij;1 6 l 6 hj

v ij the quantitative value of Ij in T
fijl the membership value of v ij in region Rjl

countjl the count of the fuzzy region Rjl in D;
max-countj the maximum count value among the fuzzy regions of Ij

max-Rj the fuzzy region of Ijwithmax� countj

s the predefined minimum support threshold

Besides, a special notation is often used to represent fuzzy sets.
Assume that x1 to xn are the elements in fuzzy set A, and l1 to ln

are, respectively, their membership grades in A. A is usually repre-
sented as follows:

A ¼ l1

x1
þ l2

x2
þ � � � þ ln

xn
:

4. The proposed fuzzy fp-tree mining algorithm

The proposed fuzzy FP-tree mining algorithm integrates the fuz-
zy-set concepts and the FP-tree-like approach to find frequent fuzzy
itemsets from quantitative transaction data. The fuzzy FP-tree con-
struction algorithm is designed to generate the tree structure for
frequent fuzzy regions (terms). It first transforms quantitative val-
ues in transactions into linguistic terms based on Hong et al.’s ap-
proach (Hong et al., 1999a, 1999b). Each term uses only the
linguistic term with the maximum cardinality in later processes,
thus making the number of fuzzy regions processed equal to the
number of the original items for reducing the processing time.
The frequent fuzzy itemsets, represented by linguistic terms, are
then derived from the fuzzy FP tree.

The fuzzy FP-tree structure could thus help mine fuzzy associa-
tion rules from quantitative data efficiently and effectively. How-
ever, when extending the crisp FP tree to the fuzzy one, the
processing becomes much more complex than the original since
fuzzy intersection in each transaction has to be handled. The fuzzy
FP-tree construction algorithm is stated below.

4.1. The fuzzy FP- tree construction algorithm

INPUT: A quantitative database consisting of n transactions, a
set of membership functions, and a predefined mini-
mum support threshold s.

OUTPUT: A fuzzy FP tree.
STEP 1: Transform the quantitative value v ij of each item Ij in
the ith transaction into a fuzzy set fij represented as
ðfij1=Rj1 þ fij2=Rj2 þ � � � þ fijn=RjhÞ using the given
membership functions, where h is the number of fuzzy
regions for Ij;Rjl is the lth fuzzy region of Ij;1 6 l 6 h,
and fijl is v ij’s fuzzy membership value in region Rjl.

STEP 2: Calculate the scalar cardinality of each fuzzy region Rjl

in the transaction data as:
countjl ¼
Xn

i¼1

fijl:
STEP 3: Find max-countj ¼ MAXh
l¼1ðcountjlÞ for j ¼ 1–m, where h

is the number of fuzzy regions for item Ij and m is the
number of items. Let max-Rj be the region with
max-countj for item Ij. It will then be used to represent
the fuzzy characteristic of item Ij in the later mining
process.

STEP 4: Check whether the value max-countj of a kept fuzzy
region max-Rj; j ¼ 1–m, is larger than or equal to the
predefined minimum count n � s. If the count of a fuzzy
region max-Rj is equal to or greater than the minimum
count, put the fuzzy region in the set of frequent fuzzy
regions ðL1Þ. That is:
L1 ¼ fmax-Rjjmax-countj P n � s; 1 6 j 6 mg:
STEP 5: Build the Header_Table by keeping the frequent fuzzy
regions in L1 in the descending order of counts.

STEP 6: Remove the fuzzy regions of the items not in L1 from
the transactions of the transformed database.

STEP 7: Sort the remaining frequent fuzzy regions in each trans-
action by their membership values in a descending
order.

STEP 8: Initially set the root node of the fuzzy FP tree as {root}.
STEP 9: Insert the transactions in the transformed database into

the fuzzy FP tree tuple by tuple. The following two
cases may exist.

Substep 9-1: If a fuzzy region max-Rj in a transaction has
been at the corresponding branch of the
fuzzy FP tree for the transaction, add the
membership value of max-Rj in the transac-
tion to the node of max-Rj in the branch.

Substep 9-2: Otherwise, add a node of max-Rj at the end
of the corresponding branch, set the count
of the node as the membership value of
max-Rj, and insert a link from the node of
max-Rj in the last branch to the current node.
If there is not such a branch with the node of
max-Rj, insert a link from the entry of max-Rj

in the Header-Table to the added node.
In STEP 9, a corresponding branch is the branch generated from
a transformed transaction according to the descending order of the
membership values of the fuzzy regions in it. After STEP 9, the final
fuzzy FP tree is constructed. With the fuzzy FP tree, the desired
frequent fuzzy itemsets can then be found in a way similar to
the FP-growth mining approach (Han et al., 2000), but much more
complex. The process is stated as follows.

The fuzzy regions in the Header_Table are processed one by one
and bottom–up. A fuzzy conditional pattern tree is first built for
each frequent fuzzy region. The counts of the itemsets containing
the fuzzy region are then recursively calculated. Since each branch
in the FP tree is built according to the membership values of the
fuzzy regions in a transaction, the count of a fuzzy k-itemset (with
k fuzzy terms) obtained by the fuzzy intersection (minimum) oper-
ator can be easily achieved without rescan of the database. If the
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Fig. 1. The membership functions used in this example.

Table 2
The fuzzy sets transformed from the data in Table 1.

TID Items

1 0:2
A:Lowþ 0:8

A:Middle

� �
0:2

C:Middleþ
0:8

C:High

� �
0:8

D:Lowþ 0:2
D:Middle

� �
0:4

E:Middleþ
0:6

E:High

� �
2 0:6

A:Middleþ
0:4

A:High

� �
0:8

B:Lowþ 0:2
B:Middle

� �
0:6

C:Lowþ 0:4
C:Middle

� �
3 0:6

B:Lowþ 0:4
B:Middle

� �
0:4

C:Middleþ
0:6

C:High

� �
4 0:8

A:Middleþ
0:2

A:High

� �
0:4

C:Middleþ
0:6

C:High

� �
0:6

D:Lowþ 0:4
D:Middle

� �
5 0:2

A:Lowþ 0:8
A:Middle

� �
0:8

B:Lowþ 0:2
B:Middle

� �
0:2

C:Lowþ 0:8
C:Middle

� �
6 0:6

A:Lowþ 0:4
A:Middle

� �
0:2

C:Middleþ
0:8

C:High

� �
0:8

D:Lowþ 0:2
D:Middle

� �
0:8

E:Lowþ 0:2
E:Middle

� �

Table 3
The counts of fuzzy regions.

Item Count Item Count Item Count

A.Low 1.0 C.Low 0.8 E.Low 0.8
A.Middle 3.4 C.Middle 2.4 E.Middle 0.6
A.High 0.6 C.High 2.8 E.High 0.1
B.Low 2.2 D.Low 2.2
B.Middle 0.8 D.Middle 0.8
B.High 0.0 D.High 0.0

Table 4
The set of frequent fuzzy regions in the example.

Frequent fuzzy regions Count

A.Middle 3.4
B.Low 2.2
C.High 2.8
D.Low 2.2

Header_Table

Fuzzy Region Count
A.Middle 3.4
C.High 2.8
B.Low 2.2 
D.Low 2.2

Fig. 2. The Header_Table formed after STEP 5.
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total membership value of a fuzzy k-itemset from all transactions
is larger than or equal to the predefined minimum count n � s,
the k-itemset is thought of as frequent.

5. An example

In this session, an example is given to illustrate how to con-
struct a fuzzy FP tree and generate frequent fuzzy itemsets based
on the proposed approach from the quantitative transaction data.
Assume the quantitative transaction database shown in Table 1 is
used as the example. It consists of six transactions and five items,
denoted A–E.

Assume the fuzzy membership functions are the same for all the
items and are shown in Fig. 1. In this example, amounts are repre-
sented by three fuzzy regions: Low, Middle and High. Thus, three
fuzzy membership values are produced for each item in a transac-
tion according to the predefined membership functions. Note that
our proposed approach also works when the membership func-
tions of the amounts for the items are not the same.

The proposed approach constructs the fuzzy FP tree for this
example as follows:

STEP 1: The quantitative values of the items in the transactions
are represented as fuzzy sets. Take the first item in
transaction 1 as an example. The amount ‘‘5” of A is
converted into the fuzzy set 0:2

A:Lowþ 0:8
A:Middle

� �
using the

given membership functions in Fig. 1. This step is
repeated for the other items, and the results are shown
in Table 2, where the notation item.term is called a
fuzzy region.

STEP 2: The scalar cardinality of each fuzzy region in the trans-
action is calculated as the count value. Take the fuzzy
region A.Low as an example. Its scalar cardinality is
(0.2 + 0.0 + 0.0 + 0.0 + 0.2 + 0.6), which is 1.0. This step
is repeated for the other regions, and the results are
shown in Table 3.

STEP 3: The fuzzy region with the maximum count among the
three possible regions for each item is found. Take item
A as an example. Its count is 1.0 for Low, 3.4 for Middle,
and 0.6 for High. Since the count for Middle is the max-
imum among the three counts, the region Middle is thus
used to represent item A in the later mining process.
This step is repeated for the other items. Thus, region
Low is chosen for B, D, and E, and region High is chosen
for C.

STEP 4: The count of any region selected in STEP 3 is checked
against the predefined minimum support value s.
Assume in this example, s is set at 30%. Since the count
values of A.Middle, B.Low, C.High, and D.Low are larger
than 6 � 30%ð¼ 1:8Þ, these fuzzy region are put in the
set of L1, which will be used to construct the fuzzy FP
tree later. The results are shown in Table 4.
Table 1
Six quantitative transactions in the example.

Transaction no. Items

1 (A:5) (C:10) (D:2) (E:9)
2 (A:8) (B:2) (C:3)
3 (B:3) (C:9)
4 (A:7) (C:9) (D:3)
5 (A:5) (B:2) (C:5)
6 (A:3) (C:10) (D:2) (E:2)

Table 5
The transformed transactions with frequent fuzzy regions.

TID Frequent fuzzy regions

1 0:8
A:Middle

� �
0:8

C:High

� �
0:8

D:Low

� �
2 0:6

A:Middle

� �
0:8

B:Low

� �
3 0:6

B:Low

� �
0:6

C:High

� �
4 0:8

A:Middle

� �
0:6

C:High

� �
0:6

D:Low

� �
5 0:8

A:Middle

� �
0:8

B:Low

� �
6 0:4

A:Middle

� �
0:8

C:High

� �
0:8

D:Low

� �



Fig. 4. The fuzzy FP-tree after the second transaction is processed.

A.Middle: 0.8

{ root}

C.High: 0.8

D.Low: 0.8

Header_Table

Fuzzy Region Count
A.Middle 3.4
C.High 2.8  
B.Low 2.2
D.Low 2.2

B.Low: 1.4

A.Middle: 0.6 C.High: 0.6

Fig. 5. The fuzzy FP-tree after the third transaction is processed.
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STEP 5: The frequent fuzzy regions in L1 are then sorted in the
descending order of their counts and are put into the
Header_Table. The results are shown in Fig. 2.

STEP 6: The fuzzy regions which are not in L1 are removed from
each transaction in Table 2. The results are shown in
Table 5.

STEP 7: The remaining fuzzy regions in each transaction of
Table 5 are then sorted according to their membership
values in a descending order. After this step, the trans-
actions with only the sorted frequent fuzzy regions (1-
itemsets) are shown in Table 6.It can be seen from Table
6 that the order of A.Middle and C.High are different
from that in Table 5.

STEP 8: The corresponding fuzzy FP tree is to be constructed.
The root of the fuzzy FP tree is initially set as {root}.

STEP 9: The transactions in the transformed database are
inserted into the fuzzy FP tree tuple by tuple. In Table
6, the first transaction is 0:8

A:Middle ;
0:8

C:High ;
0:8

D:Low

� �
. This trans-

action is then inserted into the fuzzy FP tree as the first
branch. The first node, which is, A.Middle is thus
inserted as the child of the root. The next node, which
is, C.High is then inserted as the child of the first node
A.Middle. The same procedure is processed for inserting
the node of D.Low. Each node in the branch is attached
with the membership value of the corresponding fuzzy
region. Besides, since each node in the branch is the
first one for the fuzzy region, a link is then connected
from the Header_Table to the node. The results after
the first transaction is processed are shown in Fig. 3.

The second transaction is next processed. Its content is
0:8

B:Low ;
0:6

A:Middle

� �
. It is then inserted into the fuzzy FP tree as the second

branch because it does not share the same prefix with the first
transaction. Besides, a link is created between the two nodes of
A.Middle in the two branches. The results are shown in Fig. 4.
Table 6
The transactions with only the sorted frequent fuzzy regions.

TID Frequent fuzzy regions

1 0:8
A:Middle

� �
0:8

C:High

� �
0:8

D:Low

� �
2 0:8

B:Low

� �
0:6

A:Middle

� �
3 0:6

B:Low

� �
0:6

C:High

� �
4 0:8

A:Middle

� �
0:6

C:High

� �
0:6

D:Low

� �
5 0:8

A:Middle

� �
0:8

B:Low

� �
6 0:8

C:High

� �
0:8

D:Low

� �
0:4

A:Middle

� �

A.Middle: 0.8

{ root}

C.High: 0.8

D.Low: 0.8

Header_Table

Fuzzy Region Count
A.Middle 3.4
C.High 2.8  
B.Low 2.2
D.Low 2.2

Fig. 3. The fuzzy FP tree after the first transaction is processed.
The third transaction is next processed. It contains 0:6
B:Low ;

0:6
C:High

� �
,

which shares the same prefix (B.Low) with the second branch in the
current fuzzy FP tree. The count of the node for B.Low in the second
branch is then incremented by 0.6, and the new node (C.High) with
count 0.6 is created and linked to (B.Low) as its child. A link is also
created between the two nodes of C.High in different branches. The
results are shown in Fig. 5.

The same process is then executed for the other transactions.
After all the six transactions are processed, the resulting Header_
Table and fuzzy FP tree are shown in Fig. 6.

After the fuzzy FP tree is constructed, the frequent fuzzy item-
sets with more than one fuzzy region can then be found in a way
similar to the FP-growth mining approach (Han et al., 2000), but
much more complex due to the intersection operation in fuzzy
sets. Here, the minimum operation is used for intersection. The fre-
quent fuzzy 1-itemsets (fuzzy regions) in the Header_Table in
Fig. 6 are then processed bottom-up and one by one. In this case,
item D.Low is first processed. The corresponding conditional fuzzy
pattern tree is thus built from the prefix paths of the item in the FP
tree and is further used to derive the itemsets containing the item.
In this example, there are two branches with item D.Low, which are
(A.Middle:2.4) (C.High:1.4) (D.Low:1.4) and (C.High:0.8) (D.Low:0.8).
The conditional fuzzy pattern tree built for item D.Low is shown in
Fig. 7.

After the conditional fuzzy pattern tree for the fuzzy region D.Low is
built, the fuzzy itemsets containing D.Low can then be generated by
the recursive approach of the FP-growth. In fuzzy data mining, the
intersection (minimum) operator is used to count fuzzy itemsets
in transactions. The operator can, however, be easily implemented
by the designed fuzzy FP tree since the count of an itemset in a pre-
fix of the tree is that of the item at the bottom of the prefix. For
example, (A.Mddile, D.Low), (C.High, D.Low) and (A.Middle, C.High,
D.Low) are the possible itemsets generated from the first branch



A.Middle: 2.4

{ root}

C.High: 1.4

D.Low: 1.4

B.Low: 1.4

A.Middle: 0.6 C.High: 0.6B.Low: 0.8

C.High: 0.8

A.Middle: 0.4

D.Low: 0.8

Header_Table

Fuzzy Region Count
A.Middle 3.4    
C.High 2.8
B.Low 2.2
D.Low 2.2

Fig. 6. The final fuzzy FP tree constructed in the example.

Prefix path with D.Low Conditional fuzzy 
pattern tree with D.Low

A.Middle: 2.4

{ root}

C.High: 1.4

D.Low: 1.4

B.Low: 1.4

A.Middle: 0.6 C.High: 0.6B.Low: 0.8

C.High: 0.8

A.Middle: 0.4

D.Low: 0.8

{ root}

A.Middle: 2.4

C.High: 1.4

D.Low: 1.4

C.High: 0.8

D.Low: 0.8

Fig. 7. The conditional fuzzy pattern tree for the fuzzy region D.Low.
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of the conditional fuzzy pattern tree for D.Low. Their counts in the
branch will equal to the count of D.Low in the branch, which is
1.4, because the fuzzy terms in the branch is sorted according to
their membership values in the corresponding transactions. Simi-
larly, the fuzzy itemset (C.High, D.Low) is generated from the second
branch of the conditional fuzzy pattern tree for D.Low and its count
is 0.8. The total count of each itemset containing D.Low is then
calculated from the individual branches. For example, the count of
the fuzzy itemset (C.High, D.Low) is 1.4 + 0.8, which is 2.2. In this
way, the counts of the fuzzy itemsets can be obtained without
rescan of the database.

Next, if the count of a fuzzy itemset is larger than or equal to the
minimum support threshold, it will become a frequent fuzzy item-
set. After D.Low is processed, the other frequent fuzzy regions in
the Header_Table are processed one by one and bottom–up
in the same way. The final results for this example are shown in
Table 7.
6. Experimental results

The experiments were performed in Java on an AMD Athlon PC
with a 3.0 GHz processor and 1 G main memory, running the
Microsoft Windows XP operating system. A real dataset called
FOODMART from an anonymous chain store was used in the exper-
iments (Microsoft Corporation). The FOODMART dataset contained
quantitative transactions about the products sold in the chain
Table 7
All the frequent fuzzy itemsets obtained in the example.

1-itemset 2-itemset 3-itemset

(A.Middle:3.4) (A.Middle, C.High:1.8) (A.Middle,C.High, D.Low: 1.8)
(C.High:2.8) (A.Middle, D.Low:1.8)
(B.Low:2.2) (C.High, D.Low:2.2)
(D.Low:2.2)
store. There were totally 21,556 transactions with 1600 items in
the dataset.

In the experiments, different numbers of fuzzy regions (mem-
bership functions) for items were tested. They included one region,
two regions and three regions. The purpose of using one region was
for comparison with using other numbers of regions. The range of
the minimum support threshold was divided into two parts due to
the different scales of the resulting numbers of nodes. The first part
was set at from 0.04% to 0.12% with increment 0.02% each time,
and the second part was from 0.14% to 0.22% with increment
0.02% each time as well. The relationship between the number of
nodes in the constructed fuzzy FP tree and the minimum support
values in the two ranges were shown in Figs. 8 and 9, respectively.

From Fig. 8, it could be seen that the cross point of the three
curves was at about 0.12%. When the minimum support threshold
was set lower than 0.12%, the nodes generated based on three re-
gions were more than those based on the others. On the contrary,
Fig. 8. The number of nodes in the fuzzy FP tree along with different minimum
support values in the first part.



Fig. 9. The number of nodes in the fuzzy FP tree along with different minimum
support values in the second part.
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when the minimum support threshold was set higher than 0.12%,
the nodes generated based on three regions were less than those
based on the others. This was because when an item had more fuz-
zy regions, it might have more concentrated membership func-
tions, thus causing a larger membership value belonging to a
certain fuzzy region.

The execution time of constructing the fuzzy FP-trees along
with different minimum support values in the two parts were
shown in Figs. 10 and 11, respectively.

From Fig. 10, it could be observed that the execution time of
constructing fuzzy FP trees decreased along with the increase of
Fig. 10. The execution time along with different minimum support values in the
first part.

Fig. 11. The execution time along with different minimum support values in the
second part.
the minimum support values for all the three different numbers
of regions. It was very reasonable since less frequent fuzzy regions
were generated for larger minimum support values. Besides, when
more fuzzy regions were used, the algorithm did not certainly take
more execution time. In Fig. 9, it could be observed that when the
minimum support threshold was set lower than 0.12%, more fuzzy
regions caused more execution time since more frequent fuzzy re-
gions were generated. On the contrary, in Fig. 11, when the mini-
mum support threshold was set higher than 0.18%, more fuzzy
regions caused less execution time since less frequent fuzzy re-
gions were generated. It was thus obvious that the number of fuzzy
regions did affect the performance of the proposed algorithm.
7. Conclusion

In this paper, we have proposed the fuzzy FP-tree construction
algorithm for processing transaction data with quantitative values
and for mining frequent fuzzy itemsets from the transactions. The
fuzzy FP-tree structure is used to efficiently and effectively handle
the quantitative data. When extending the FP tree to handle fuzzy
data, the processing becomes much more complex than the origi-
nal. For example, the membership value of a k-itemset ðk > 1Þ in
a transaction has to be derived from the membership values of
the items contained in the itemset by fuzzy intersection. By the
proposed fuzzy FP tree, the function can be easily achieved. The
tree structure, however, becomes larger than the original since
the order of fuzzy regions in a transaction must be maintained. Be-
sides, the mining process from the tree also becomes complicated.
The cost is, however, needed since more detailed knowledge is de-
rived than that in only the binary format. Of course, as an alterna-
tive, the fuzzy regions can be converted back into crisp regions by
the operation of a-cut, and then processed in the traditional FP-
tree approach.

Experimental results also show that the number of fuzzy re-
gions significantly affects the performance of the proposed algo-
rithm. When the minimum support threshold is set lower, the
larger number of fuzzy regions will generate less nodes and need
less execution time. On the contrary, when the minimum support
threshold is set higher, the result is inverse to the above.

In this paper, we assume the database is static. In real-world
applications, data may be dynamically inserted into a database.
In the future, we will attempt to handle the maintenance problem
of fuzzy data mining. How to further improve the fuzzy FP tree is
another interesting topic.
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