
Evolutionary Optimization of Software Quality
Modeling with Multiple Repositories

Yi (Cathy) Liu, Member, IEEE Computer Soceity,

Taghi M. Khoshgoftaar, Member, IEEE, and Naeem Seliya, Member, IEEE

Abstract—A novel search-based approach to software quality modeling with multiple software project repositories is presented.

Training a software quality model with only one software measurement and defect data set may not effectively encapsulate quality

trends of the development organization. The inclusion of additional software projects during the training process can provide a cross-

project perspective on software quality modeling and prediction. The genetic-programming-based approach includes three strategies

for modeling with multiple software projects: Baseline Classifier, Validation Classifier, and Validation-and-Voting Classifier. The latter is

shown to provide better generalization and more robust software quality models. This is based on a case study of software metrics and

defect data from seven real-world systems. A second case study considers 17 different (nonevolutionary) machine learners for

modeling with multiple software data sets. Both case studies use a similar majority-voting approach for predicting fault-proneness class

of program modules. It is shown that the total cost of misclassification of the search-based software quality models is consistently lower

than those of the non-search-based models. This study provides clear guidance to practitioners interested in exploiting their

organization’s software measurement data repositories for improved software quality modeling.

Index Terms—Genetic programming, optimization, software quality, defects, machine learning, software measurement.

Ç

1 INTRODUCTION

SOFTWARE quality improvement methods have a valuable

role in software engineering practice [1]. Some of these

methods include code inspections, design walkthroughs,

prototype simulation, and measurement-based analysis.

Practitioners are often interested in identifying problematic

areas in their software, with the goal of maximizing benefits

from the limited software quality improvement resources.

Software quality modeling generally involves predicting

low-quality areas of the software product, thereby assisting

the design and testing team in focusing their quality

improvement tasks.
Software quality models generally predict, for a program

module, either the number of defects it is likely to have or
the quality-based risk category it belongs to, e.g., fault-
prone (fp) or not-fault-prone (nfp) [2], [3], [4]. In the
literature, various classification techniques have been
applied for software quality modeling, such as Logistic
Regression [5], Naive Bayes [6], and Decision Trees [7], [8].
Software measurement and defect data from a prior
software release or similar project are used to train the

software quality model, which is then applied to predict the
quality of the target system with known software metrics.

In the software industry, it is common for an organization
to maintain several software metrics repositories for projects
developed [9]. The data in these repositories are likely to
follow similar patterns, especially if the organization
enforces the same development life cycle, as well as the
same coding and testing practices. While most existing
related works focus on training using one software measure-
ment data set, we emphasize including all relevant past
projects during the training process. The working hypothesis
is that multiple software repositories provide additional
information that can improve the predictive performance of
the trained software quality model.

A common problem during software quality modeling is
searching for an optimum model that adequately satisfies
quality improvement goals. For example, the different costs
of misclassifying fp and nfp modules poses model selection
challenges. The search for an optimal solution is com-
pounded when modeling with multiple software project
data sets. We present two case studies of building software
quality models with multiple software data repositories.
The multiple software project data are obtained from the
NASA software metrics data program, and include seven
software measurement data sets with known defect data.

The first case study involves Genetic Programming (GP)
as a search-based software engineering technique [10], [11]
for determining a practical and robust software quality
model. GP follows the Darwinian principle of survival and
reproduction of the fittest individuals [12] and performs a
parallel searching process for each given computation
problem. A common problem associated with GP-based
machine learning is overfitting, where generalization cap-
ability is relatively poor compared to prediction on the

852 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

. Y. Liu is with The J. Whitney Bunting School of Business, Georgia College
and State University, 231 W. Hancock St, Milledgeville, GA 31061.
E-mail: yi.liu@gcsu.edu.

. T. M. Khoshgoftaar is with the Department of Computer and Electrical
Engineering and Computer Science, Florida Atlantic University, 777
Glades Road, Boca Raton, FL 33431. E-mail: taghi@cse.fau.edu.

. N. Seliya is with the Computer and Information Science Department,
University of Michigan–Dearborn, 4901 Evergreen Rd, Dearborn,
MI 48128. E-mail: nseliya@umich.edu.

Manuscript received 1 Sept. 2008; revised 2 Sept. 2009; accepted 21 Sept.
2009; published online 12 May 2010.
Recommended for acceptance by M. Harman and A. Mansouri.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-2008-09-0273.
Digital Object Identifier no. 10.1109/TSE.2010.51.

0098-5589/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

www.Matlabi.irwww.Matlabi.ir

http://www.Matlabi.ir

training data [13]. A validation data set added during
training is often used to counter model overfitting [14], [15].
In contrast, we investigate a multiple data sets validation
process during training. We build GP-based software quality
models using three strategies for dealing with multiple
software measurement data sets—as discussed in Section 4.

The second case study involves 17 non-GP classification
techniques applied to (the same) multiple software metrics
data sets [16]. Learners from different computational
theories are included, such as probabilistic learning, rule-
based learning, ensemble-query learning, and simple pre-
diction models. Each learner is applied to the seven software
measurement data sets and a voting scheme is used to
predict the quality-based class of program modules in the
test data set. A discussion is presented for comparing both
case studies for their optimal solutions to software quality
modeling with multiple software project data repositories. It
is shown that the search-based software quality modeling
provides more benefit to the software practitioner in terms
of both expected cost of misclassification and software
quality prediction.

The remainder of the paper is structured as follows:
Section 2 summarizes key points of software quality
classification, including expected costs of misclassification
and model selection strategy. Section 3 presents the seven
software measurement data sets of our case studies. Section 4
details the GP-based solutions for software quality modeling
with multiple software repositories. Section 5 summarizes
the methodology followed in our second case study. Section 6
presents the various results of our case studies, including a
comparative discussion and threats to empirical validity.
Finally, in Section 7, we conclude our work and provide
suggestions for future work.

2 SOFTWARE QUALITY MODELING

2.1 Software Metrics

Software metrics are proven tools for aiding in project
management and process improvement [9], [17], [1], [18].
Prior to project planning, various objectives and goals need
to be established for both project management and software
quality assurance. In the case of the latter, software metrics
assist in the understanding of the technical process of
software development. By measuring various characteris-
tics of the software product and its development process,
actions can be taken to increase software quality and
reliability. While the exact science of software measure-
ments still tends to be controversial, such as the absence of a
universal set of best metrics, it is widely accepted that we
need to measure internal attributes of software to manage
and change external characteristics of software.

Software attributes can characterize the software quality
of both the product and the process of software develop-
ment. Attributes of software quality, such as defect density
and failure rate, are external measures of the software
product and its development process. We focus on utilizing
software metrics, such as code-level measurements and
defect data, to build defect predictors or software quality
models. This is based on the practical assumption that these
software metrics will capture the quality of the end product,

more specifically, how the defects are distributed among
the program modules of a given system and what makes
certain modules more likely to have defects than others. By
tapping into historical project data, characterized in the
form of software metrics and defect data, we build effective
software quality prediction models.

2.2 Software Quality Classification

A low-quality or fp prediction can justify the application of
available quality improvement resources to those programs.
In contrast, an nfp prediction can justify nonapplication of
the limited resources to these already high-quality pro-
grams. The practical goal is to achieve high software
reliability and quality with an effective use of available
resources. In a two-group classification model such as fp
and nfp, a software quality model can have four prediction
outcomes for a target program module: true positive, i.e.,
correct classification as fp, true negative, i.e., correct
classification as nfp, false positive, i.e., incorrect classifica-
tion as fp, and false negative, i.e., incorrect classification as
nfp. In terms of misclassification error types, a false positive
classification is a Type I error, while a false negative
classification is a Type II error.

The costs of these two misclassifications are clearly
different, as they both have different implications. A
Type II error implies a missed opportunity to detect and
rectify a low-quality program module, whereas a Type I
error implies wasted resources since a high-quality module
is subjected to unnecessary quality improvement tasks.
Hence, for a given software quality model, its (total)
expected cost of misclassification (ECM) provides practical
guidance to the practitioner, where a lower ECM value is
preferred.

The expected cost of misclassification of a model is
defined as:

ECM ¼ CINI þ CIINII; ð1Þ

where CI is the cost of a Type_I misclassification, CII is the
cost of a Type_II misclassification, NI is the number of
Type_I errors, and NII is the number of Type_II errors.
Generally, the magnitude of CII can be anywhere from five
to 100 times that of CI , depending on the type of software
system, e.g., for high-assurance systems, CII can be 15-50
times CI [8]. For simplicity, we compute the normalized
expected cost of misclassification as NECM ¼ ECM

N , where
N is the number of program modules in the test data set.

In addition to a low ECM value, the practitioner is
interested in the Type I and Type II error rates because they
are associated with the predicted numbers of fp and nfp
modules. For a given classification technique, the Type I
and Type II error rates are inversely proportional [8]. Thus,
a strategy for model selection is needed during model
training and evaluation. Consistent with our prior related
works, our preferred model selection strategy is to obtain
relatively similar Type I and Type II error rates with the
latter being as low as possible [19]. This strategy is subject to
change based on the software quality improvement
objectives of the project.

In the literature, one can find various metrics by which
performance of a classification model can be gauged. In

LIU ET AL.: EVOLUTIONARY OPTIMIZATION OF SOFTWARE QUALITY MODELING WITH MULTIPLE REPOSITORIES 853

www.Matlabi.irwww.Matlabi.ir

http://www.Matlabi.ir

addition to the expected cost of misclassification and the
two error rates which we use in our study, another
performance metric recently used in software engineering
literature is the area-under-ROC-curve (AUC), i.e., the area
under receiver-operating-characteristic (ROC) curve [6],
[20], [21], [22]. While AUC provides a good singular
measure to compare the overall performance of competing
models, it does not provide the practitioner with an
intuitive meaning. The analyst is more interested in the
error rates and predicted number of fp modules at a given
cost ratio (CIICI) that is reflective of their software project. This
provides practical value to the software quality assurance
team. By providing a comparison based on error rates and
expected cost of misclassification, we arm the analyst with
practical software quality information.

3 SOFTWARE MEASUREMENT DATA

The software metrics and quality data used in our study
originate from seven NASA software projects. Even though
these projects are not directly dependent on each other, they
share commonalities other than originating from the same
organization. More specifically, they are all targeted to high
assurance and complex real-time systems. Therefore, it is
practical and relevant to leverage the information spread
across these data sets in order to predict the quality of an
ongoing similar project.

The data sets were obtained through the NASA Metrics
Data Program, and include software measurement data and
associated error data collected at the function level [23].
These and other software project data sets are publicly
available under the PROMISE software engineering repo-
sitory [24]. The types and numbers of software metrics
made available are determined by the NASA Metrics Data
Program. Each instance of these data sets is a program
module. The quality of a module is described by its Error
Rate, i.e., number of defects in the module, and Defect,
whether or not the module has any defects. The latter is
used as the class label.

We only selected 13 primitive software metrics for our
study: three McCabe metrics (Cyclomatic Complexity,
Essential Complexity, and Design Complexity), five metrics
of Line Count (Loc Code And Comment, Loc Total, Loc
Comment, Loc Blank, and Loc Executable), four basic
Halstead metrics (Unique Operators, Unique Operands,
Total Operators, and Total Operands), and one metric for
Branch Count. Other derived and nonprimitive metrics,
such as Halstead’s Effort and Halstead’s Volume, are not
considered during modeling as it was felt that they would
not impart any additional knowledge to what is captured
by the software quality model from the four primitive
Halstead metrics.

Classifiers are built using the 13 software metrics as
independent variables and the module class as the depen-
dent variable (i.e., fp or nfp). In addition to the 13 product
metrics, two additional independent variables (or software
attributes) were added to the respective data sets. The first
attribute indicated the size of the (one of seven) software
project that a program module belonged to. We categorized
the seven data sets into small, medium, and large sizes
based on the number of modules in each data set. The

second variable is a Boolean metric representing whether or
not an instance belonged to a data set of an object-oriented
software system.

It is important to note that the software measurements
are primarily governed by their availability, the internal
workings of the respective projects, and the data collection
tools used by the projects. We only use functionally
oriented metrics for all software data sets, solely because
of their availability. This is an unfortunate case of a real-
world software engineering situation where one has to
work with what is available rather than the most ideal
situation. The use of specific software metrics in the case
study does not advocate their effectiveness—different
software projects may collect and consider different sets
of software measurements for analysis [2], [9].

We note that the selection of a best set of predictors in
estimation problems has been an ongoing subject of study in
software engineering. For example, Cuadrado-Gallego et al.
[25] consider an approach to improve the selection of cost
drivers in parametric models for software cost estimation.
They analyze various factors that affect the importance of a
cost driver, and use empirical evidence to formulate an
aggregation mechanism for cost driver selection. In the
context of software quality classification, Menzies et al. [6]
summarize that, instead of selecting a best set of software
quality indicators, empirical studies should focus on
building software quality classification models that are
useful and practical. They summarize that the best
attributes to use for defect prediction vary from data set
to data set and are project-specific, confirming a relatively
similar observation made by others [26], [27].

The data sets are related to projects of various sizes
written with various programming languages. Table 1
summarizes the seven data sets used in this case study.
Those data sets are referred to as JM1, KC1, KC2, KC3, CM1,
MW1, and PC1. It is worth mentioning that the KC data sets
are written using object-oriented languages. Since this study
focuses only on a unirepresentation approach (i.e., same
features across data sets), object-oriented metrics provided
by the NASA Metric Data Program are not considered. Each
software system and its data set is briefly described below:

. KC1 is a project that is comprised of logical groups
of computer software components (CSCs) within a
large ground system. KC1 is made up of 43 KLOC in
C++. The data set contains 2,107 instances, and of
these instances, 325 have one or more faults and
1,782 have zero (i.e., unreported) faults. The max-
imum number of faults in a module is seven.

854 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

TABLE 1
Summary of the Software Data Sets

www.Matlabi.irwww.Matlabi.ir

http://www.Matlabi.ir

. KC2 is a C++ program, with metrics collected at the
function level. The KC2 project is the science data
processing unit of a storage management system
used for receiving and processing ground data for
missions. The data set includes only those modules
that were developed by NASA software developers.
The data set contains 520 instances, and of these
instances, 106 have one or more faults and 414 have
zero faults. The maximum number of faults in a
software module is 13.

. KC3 has been coded in Java and has 18 KLOC. This
software application collects, processes, and delivers
satellite metadata. The data set contains 458 in-
stances, and of these instances, 43 have one or more
faults and 415 have zero faults. The maximum
number of faults in a module is six.

. CM1 is written in C with approximately 20 KLOC.
The data available for this project is from a science
instrument. It contains 505 instances, and of these
instances, 48 have one or more faults and 457 have
zero faults. The maximum number of faults in a
module is five.

. MW1 is the software from a zero gravity experiment
related to combustion. The experiment is now
completed. It is comprised of 8,000 lines of C code.
The data set contains 403 modules, and of these
instances, 31 have one or more faults and 372 have
zero faults. The maximum number of faults in a
module is four.

. PC1 is flight software from an earth orbiting satellite
that is no longer operational. It consists of 40 KLOC in
C. The data set contains 1,107 instances, and of these
instances, 76 have one or more faults and 1,031 have
zero faults. The maximum number of faults in a
module is nine.

. JM1 is a real-time C project which has approxi-
mately 315 KLOC [9]. There are eight years of error
data associated with the metrics. The changes to the
modules are based on the changes reported within
the problem reports. We processed JM1 to eliminate
redundancy, obvious noisy instances, and observa-
tions with missing values. The preprocessed data set
contains 8,850 modules, and of these instances, 1,687
have one or more faults. The maximum number of
faults in a software module is 26.

4 CASE STUDY 1 METHODOLOGY

A typical GP process initiates with a number of individuals
(each is a potential solution) generated randomly. A fitness
function is used to assess the solution optimality of a given
individual, i.e., to determine how well an individual is able
to solve the given problem. Mimicking natural evolution, a
GP process runs for a given number of generations and uses
various genetic operators to propagate from one generation
to the next. Individuals with better fitness are more likely to
survive and pass their characteristics on to the next
generation. When the GP process is completed, the best
individual generated will be the solution of the given
problem. Since a given GP process may not yield the
optimal solution, multiple GP processes are usually

required. However, one should note that even multiple

runs of GP cannot always guarantee the optimality of the

solution search process.

4.1 Genetic Programming Process

Each individual is an S-expression-tree composed of func-
tions and terminals provided by the analyst for a given

problem [28]. Examples of functions include sine, cosine,

add, and subtract, while examples of terminals include true,
false, X, and Y. An example of a GP solution from our case

study is shown in Fig. 1, which represents the expression

ðlogðx4

12Þ þ x1Þ�ðsinðx2

x3
ÞÞ. In the context of our case studies, x1 is

the Cyclomatic Complexity, x2 is the Essential Complexity, x3

is the Design Complexity, and x4 is the LOC Code Comment.

The stepwise description of our GP process is presented
below:

. Initialization: The first step of a GP process is
initialization, where the first population in the
problem domain is generated randomly. Generally,
individuals in the first population have extremely
poor fitness. The first population can be generated
using the half-and-half method [29], i.e., 50 percent
of individuals in the first population are generated
using the full method, where all individuals have the
specified maximum depth of trees. The other
50 percent of individuals are produced using the
grow method, where the individuals can have
various shapes, but the length of each branch from
the endpoint to the root in every individual cannot
be greater than the specified maximum depth.

. Evaluation: Each individual is evaluated and as-
signed a fitness value based on the fitness function
[12]. The two measures of fitness used in our study
are the raw fitness and adjusted fitness. The raw
fitness uses the natural terminology of a problem to
express the fitness. It generally measures the amount
of errors in an individual’s attempted solution, e.g.,
the number of modules that are misclassified or the
total cost of misclassification. The adjusted fitness
aði; tÞ is computed as

aði; tÞ ¼ 1

1þ sði; tÞ ; ð2Þ

LIU ET AL.: EVOLUTIONARY OPTIMIZATION OF SOFTWARE QUALITY MODELING WITH MULTIPLE REPOSITORIES 855

Fig. 1. Example GP solution.

www.Matlabi.irwww.Matlabi.ir

http://www.Matlabi.ir

where, for the tth individual in the ith generation,

sði; tÞ is the standardized fitness which is computed

by transforming the raw fitness such that a lower

numerical value implies a better fitness of the

individual. The range of the fitness function is

ð0; 1�, where 1 indicates the highest fitness level.

The reason for using the adjusted fitness is that it can

exaggerate a small difference when the standardized

fitness approaches zero.
. Selection: Once the performance of each individual

is known, a selection algorithm is carried out to
select individuals. Three commonly applied selec-
tion algorithms are:

- Fitness-Proportional Selection: With such a
selection, the possibility of an individual being
selected depends on his ability compared to
others in the population. It is calculated as

pi ¼
faðiÞPn
k¼1 faðkÞ

;

where faðiÞ is the adjusted fitness of an

individual. The higher the adjusted fitness of

an individual, the greater the probability of it

being selected. Every individual has some

opportunity to be selected.
- Greedy Overselection: The method may help GP

achieve better performance when the size of a
population is large. All of the individuals in the
population are sorted, in decreasing order, based
on their normalized fitness. The individuals are
then divided into two groups. The individuals in
the first group are the fitter individuals, account-
ing for a certain percent of the normalized
fitness. The less fit individuals are placed into
the second group. In 80 percent of runtimes, an
individual is selected from the first group. The
selection method inside the two groups is
Fitness-Proportional Selection. The method
may speed up the convergence of a GP run and
reduce the number of generations needed for
successfully finding a solution.

- Tournament Selection: Instead of exhaustively
testing every member of the population, a
binary tournament is run to determine a relative
fitness ranking. Two members are chosen at
random from the initial population to compete
with each other, and the winner proceeds to the
next level of the tournament. When the tourna-
ment is over (i.e., only one individual is left), the
relative fitness of each member of the popula-
tion is awarded according to the level of the
tournament it has reached. This method allows
us to adjust the selection pressure by choosing
different tournament sizes. The benefits of
applying this method are: accelerating the
evolution process and paralleling the competi-
tion. It also eliminates the centralized fitness
comparison among the individuals. We use
Tournament Selection in our case studies.

. Breeding: The breeding process involves the cross-
over, mutation, and reproduction genetic operators,
and starts after the selection algorithm is applied.
The reproduction operator randomly selects an
individual and sends a copy of that individual to
the next generation. The crossover operation selects
two individuals, randomly chooses a crossover point
on each individual, exchanges the tree substructure
below those points, and creates two new offspring
individuals. The mutation operation chooses a
random point in one selected individual, removes
the tree substructure below that point, and inserts a
randomly generated substructure. All offspring
generated from crossover and mutation are sent to
the next generation.

. Evolution: After breeding is complete, the new
population replaces the old one. The GP process
then repeats the evaluation, selection, and breeding
steps on the new population. This evolutionary
process continues until all terminating conditions
are satisfied, i.e., the maximum number of genera-
tions, or a preferred solution is found. As the GP
process evolves, the average fitness of the popula-
tion is expected to be increased. The best individual
of the given run is the solution found by GP.

The GP tool used in our study is “lilgp 1.01” developed
by Douglas Zongker and Bill Punch of Michigan State
University [29]. It is implemented in the C programming
language, and is based on the LISP work of John Koza.
When applying lilgp to a GP application, each individual is
organized as an S-expression-tree where each node in the
tree is a C function pointer.

4.2 Fitness Function

We consider two fitness functions during our GP modeling
process: a primary fitness reflecting model performance and
a secondary fitness representing model complexity. For a
given data set, an individual’s primary fitness is given by:

pFitness ¼ NI þ cNII

N
; ð3Þ

where NI is the number of Type_I errors, NII is the number
of Type_II errors, N is the total number of instances in the
data set, and c is a modeling parameter (or weight) that can
be varied to achieve the desired balance between the Type_I
and Type_II error rates. The above equation indicates that a
higher c value provides greater emphasis on correctly
predicting the fp modules. The lower the pFitness value is,
the better the model performance is.

The secondary fitness function (sFitness) relates to the
size of an individual, i.e., size of his S-expression-tree. Since
simpler solutions and overfitting avoidance are closely
associated [15], controlling code bloat is important and
needs to be considered in our study [30], [31]. The
secondary fitness function of an individual is defined as
the number of nodes in its S-expression-tree. The fewer the
nodes of an individual (i.e., smaller size), the better its
fitness is. We select 10 as a size threshold to avoid losing too
much diversity during the early generations of a GP run. If
the number of tree nodes is less than 10, then the fitness of
the model is assigned to 10.

856 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

www.Matlabi.irwww.Matlabi.ir

http://www.Matlabi.ir

We consider c values of 5, 8, 10, 15, and 20 to cover a
broad range of models for obtaining a good representative
of our model selection strategy. Based on preliminary
investigations, it was found that a value of less than 5 for c
tends to produce a model with very high Type_II error
rates, i.e., most fp modules are misclassified as nfp. More-
over, it was found that a value of greater than 20 tends to
produce a model with very high Type_I error rates, i.e.,
most nfp modules are misclassified as fp. We considered a
very large number of c values between 5 and 20 (both
inclusive), and found that the five values presented in the
paper represented a good set of sample values for c. It was
found that the other values of c which we considered in our
experimentation did not provide a noticeable variation in
the software quality models compared to those based on the
five c values presented in the paper. However, another
study with a different set of software projects would result
in the selection of a different set of values for the modeling
parameter c.

For a given GP-based software quality modeling task, we
perform 100 independent runs. This consists of 20 runs,
each with a different c value. Among the 100 GP runs, the
top three models are selected and recorded. Among
competing models with very similar error rates and
preferred balance, a smaller model (size in number of tree
nodes) is selected. The effectiveness of our fitness function
strategy has been demonstrated in our prior work [19].

4.3 GP Multiple Data Sets Baseline Classifier

In this first strategy of GP-based software quality modeling
with multiple software measurement data sets, among the
seven data sets (see Section 3), one is selected as test data
while the remaining six are combined to form the training
or fit data. For the given training, the 100 GP runs are
performed and the best three models are applied to the
associated test data set. In order to avoid bias due to a lucky
or unlucky GP run, an additional 100 runs are performed
and the resulting additional three models are applied to the
test data. The average test data performance of the six
models is reported as the prediction capability. This
modeling strategy is repeated such that all seven software
measurement data sets are used as test data once.

4.4 GP Multiple Data Sets Validation Classifier

Similar to other search-based computational methods (e.g.,
tabu search, simulated annealing, neural network, etc.), GP
is subject to closely emulating the training data rather than
learning the underlying trends of the data, i.e., overfitting.
The problem is compounded in GP with the uncertainty of
knowing when overfitting will occur, making model
selection a difficult problem. An example of this problem
is presented in Table 2, which shows error rates of the three

best models when KC3 is used as the training data and MW1
is used as the test data. The models that have similar Type I
and Type II error rates on KC3 perform significantly
differently (poorly in this case) on the test data, MW1.

The second strategy of GP-based software quality
modeling with multiple data sets involves adding a
validation phase for filtering models with poor general-
ization. This is in contrast to using only one validation data
set [14], [15] which may not be effective in filtering out poor
prediction. In this approach, for a given test data set, one of
the six remaining data sets is used as training data, while
the other five are used for validation. In the validation
phase, models that have relatively similar performances on
the validation data are selected as candidate models.

The initial pool of candidate models is comprised of those
that perform well on the training data set. All of the candidate
models are applied to each of the five validation data sets for
evaluating their generalization capability. If a given model
performs poorly on a validation data set, then it is removed
from the list of candidates. Otherwise, the model remains as a
candidate software quality model. A rule-of-thumb for
defining poor performance on a validation data set is that if
a model’s Type I or Type II error rate is greater than 50
percent, then it is removed from the list of candidates. This
process continues until all candidates have been evaluated on
all five validation data sets. The resulting list of candidates is
comprised of models with good generalization. The model
that performs best on all five validation data sets is selected
and applied to the test data set.

4.5 GP Multiple Data Sets Validation-and-Voting
Classifier

Software quality modeling based on only one training data
set may not be as effective as training on multiple data sets.
This is likely because of a lower amount of software
measurement and quality data available to the learner with
just one data set compared to several [32]. The third strategy
of GP-based software quality modeling with multiple data
sets involves adding a voting phase during training with
validation. While the validation phase focuses on the
overfitting problem, adding a voting phase during training
can alleviate the problem of training with just one data set.

Given a test data set and the remaining six data sets, the
validation-and-voting (V-V) classifier considers each of the
six data sets as a subsample of the collective training data
set. The training and validation phases are repeated six
times, each with a different training subsample, and
consequently, six final models are generated. The predic-
tions of the test data program modules are obtained by
polling the six models based on the following voting
strategy: If three or more models predict a module as fp,
then it is predicted as fp; otherwise, it is predicted as nfp.
This simple validation-and-voting strategy results in ob-
taining a robust software quality model that has learned
from multiple data sets with improved predictions.

5 CASE STUDY 2 METHODOLOGY

It is shown in Section 6.1 that the GP-based V-V approach
yielded the best results among the three strategies pre-
sented in Case Study 1. The aim of conducting this second

LIU ET AL.: EVOLUTIONARY OPTIMIZATION OF SOFTWARE QUALITY MODELING WITH MULTIPLE REPOSITORIES 857

TABLE 2
Model Overfitting Example

www.Matlabi.irwww.Matlabi.ir

http://www.Matlabi.ir

case study was to compare the GP-based V-V approach
with a similar voting approach but with non-GP classifiers.
Such a comparison provides practical merit to a practitioner
interested in adopting software quality modeling with
multiple software data repositories.

This case study involves 17 different machine learners
(nonevolutionary techniques) applied to the same seven
software measurement data sets used in Case Study 1 [16].
The 17 learners are listed in Table 3, which also provides
relevant references for the reader. A detailed description of
those learners is out-of-scope of this paper; however, the
reader can find those details in our prior work [23] and/or
in the WEKA data mining tool [32].

A given classification technique is trained on all seven
software data sets individually, resulting in seven models
for the given technique. For a given data set considered as
test data, the remaining six models are applied to predict
the fault-proneness of modules in the test data set, resulting
in six prediction vectors for the test data. Similarly to the
GP-based V-V approach of Case Study 1, a voting among
the six predictions determines the final fault-proneness
prediction for the test data program modules. More
specifically, if three or more models predict a module as
fp, then it is labeled as fp, and nfp otherwise. The model
training and voting process is repeated for all 17 learners,
and instead of presenting the results of each learner for each
test data set, we summarize the performance of all of the
classifiers for each test data set.

6 RESULTS AND ANALYSIS

6.1 Case Study 1: Results

We set the various GP modeling parameters required by
lilgp [29] as shown below:

. pop size: 1,000

. max generations: 50

. random seed: 3

. output.basename: cccs1

. output.bestn: 1

. init.method: half and half

. init.depth: 2-6

. max depth: 20

. breed phases: 3

. breed[1].operator: crossover, sele=tournament

. breed[1].rate: 0.60

. breed[2].operator: reproduction, sele=tournament

. breed[2].rate: 0.10

. breed[3].operator: mutation, sele=tournament

. breed[3].rate: 0.30

. function set: +, –, *, /, sin, cos, exp, log, GT, VGT.

Most of the parameters are fixed except for output.base-
name and random seed in our GP experiments. The
parameter output.basename defines a file name to store
the results of a GP run and random seed provides a random
starting point for each GP process. The two operators, GT
and VGT, create discontinuous functions for a model.
Operator GT returns 0.0 if the value of the first parameter is
greater than the second one; otherwise, it returns 1.0.
Operator VGT returns the maximum of the two arguments.
The maximum number of generations for a GP run is set to
50, except in the case of the Baseline Classifier, where the
merged training data set is relatively larger than an
individual data set. Optimization of the GP modeling
parameters is out-of-scope of this paper; however, specific
values are selected based on suggestions in related
literature and experience from our prior work in genetic
programming [19].

6.1.1 Multiple Data Sets Baseline Classifier

The GP-based Baseline Classifier results for the different
merged training data sets are shown in Table 4, which
shows the Type I, Type II, and Overall misclassification
rates. The notations of the first column indicate which of the
seven data sets was not included to form the merged
training data set, e.g., not-KC1 represents a training data set
formed by merging program modules from the KC2, KC3,
CM1, MW1, PC1, and JM1 data sets, while KC1 is treated as
the test data. The error rates shown are averages of the six
best models obtained from 200 GP runs, as explained
earlier. The relative balance between the Type I and Type II
error rates is reflective of our model selection strategy
explained in Section 2. The results of not-JM1 are relatively
better than other trained models, which is indicative of data
noise present in the JM1 data set [23].

The different Baseline Classifiers were applied to their
respective test data sets, and those results are summarized
in Table 5. Once again, the three types of misclassification

858 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

TABLE 3
Seventeen Learners of Case Study 2

TABLE 4
Baseline Classifier—Training Data Results

www.Matlabi.irwww.Matlabi.ir

http://www.Matlabi.ir

rates are presented for each test data set. The KC1, KC2, and
KC3 results are relatively similar to their corresponding
training data performances. However, in the case of CM1,
MW1, PC1, and JM1, there is considerable discrepancy
between their test data performances and training data
performances (Table 4).

6.1.2 Multiple Data Sets Validation Classifier

The second GP-based strategy for software quality model-
ing with multiple data sets is based on adding a validation
phase during model training. Instead of training with a
merged data set, only one of the six data sets is used for
training, while the other five are used for filtering out
overfitted models. An example of how validation is
performed is presented in Table 6, which corresponds to
when PC1 is used as test data and KC1 is used for training.
The column headings “M i” indicates the best model
obtained from the ith run, e.g., M 3 implies that the model
was generated by the third run, while M 6 implies that the
model was generated by the sixth run.

The table lists three flags for the different GP models
based on their performance on the five validation data sets:
“p” (pass), “f” (fail), and “-” (model removed). If a model has
good performance on a given validation data set, then a “p”
is assigned to that model and it is marked as a potential
candidate. On the other hand, if a model has poor
performance on a given validation data set, i.e., shows
overfitting, then an “f” is assigned to that model and it is
removed from the list of potential candidates. Once a model
is removed, it is not tested on the remaining validation data
sets. This implies that if a model has been removed from
the list of potential candidates, it is marked with an “-” in
the table.

Referring to example shown in Table 6, after training
with KC1 is completed, six models, M 3, M 6, M 7, M 15,
M 16, and M 17, were identified as potential candidates.
During the validation process, M 6 was removed as a
candidate since it had poor performance on KC2. Similarly,

M 3, M 15, and M 17 were removed since they had poor
performances on MW1. Upon completing the validation
process, M 7 and M 16 remain as potential candidates. A
comparison of these two models on all five validation data
sets resulted in selecting M 16 as the final model. Hence,
when KC1 is used for training, M 16 is the best model
which is then applied to the test data set, PC1.

For a given test data set, the process of selecting one of
the remaining six data sets as fit data and using the other
five for validation is repeated six times, i.e., each of the
remaining six data sets is used once for model training. This
results in six validated models obtained corresponding to a
given test data set. We report the average performances of
these six models for a given test data set. Those results are
summarized in Table 7, which again shows the Type I,
Type II, and Overall misclassification rates.

6.1.3 Multiple Data Sets Validation-and-Voting Classifier

The third GP-based strategy for software quality modeling
with multiple data sets extends the Validation Classifier by
incorporating a voting scheme. The V-V Classifier polls the
test data predictions of the six best models obtained after
validation, as explained in Section 4. The polled test data
prediction results are summarized in Table 8. We note a
general reduction (compared to Baseline Classifier and
Validation Classifier) in the Type II error rates for the test
data sets with a relatively similar or minimally-higher
Type I error rates.

In addition to the predicted numbers of fp and nfp
program modules, a practitioner is also interested in
knowing the total cost of misclassification at a cost ratio
relevant to his software project. We compare the three GP
approaches based on three cost ratio values in addition to
their misclassification error rates. We consider CII

CI
values of

15, 20, and 25 as these values are more representative of

LIU ET AL.: EVOLUTIONARY OPTIMIZATION OF SOFTWARE QUALITY MODELING WITH MULTIPLE REPOSITORIES 859

TABLE 5
Baseline Classifier—Test Data Results

TABLE 6
Multiple Data Sets Validation—PC1 Test and KC1 Fit

TABLE 7
Validation Classifier—Test Data Results

TABLE 8
Validation and Voting Classifier—Test Data Results

www.Matlabi.irwww.Matlabi.ir

http://www.Matlabi.ir

high-assurance systems such as those considered in our
case studies [8]. A practitioner can gain insight into which
approach performs better at a cost ratio that is closer to his
target value.

The relative comparison of the three approaches is
presented in Tables 9, 10, 11, 12, 13, 14, and 15 for the
seven test data sets. These tables list the respective
misclassification rates and NECM values for the three GP-
based approaches. Comparison based solely on Type I and
Type II error rates is rather complicated since the two are
inversely proportional. Among two competing models, one
can have a higher Type I rate but lower Type II rate while
the other can have a much lower Type I rate but higher
Type II rate. Computing the NECM values makes this
comparison task a bit simpler. Generally, a lower value of
NECM indicates lower misclassification costs, and there-
fore, a better software quality model.

In the case of test data sets KC1, KC2, KC3, CM1, and
JM1, the Validation-and-Voting Classifier yielded the low-
est total cost of misclassification compared to the Baseline
Classifier and Validation Classifier. This is true for all three
cost ratios considered in our comparison. When MW1 is the
test data set, the three approaches are relatively similar in
terms of NECM values for all three cost ratios. This suggests
that, for MW1, the Baseline Classifier cannot be improved
much by introducing the validation and/or voting phases
during software quality modeling. A similar conclusion can
be made when PC1 is the test data set. More specifically,
there is relatively no difference in total misclassification
costs of the Baseline Classifier and V-V Classifier.

A statistical analysis was performed to evaluate the
significance of performance differences between the Baseline
Classifier and the Validation-and-Voting Classifier. A t-test
is conducted to evaluate this significance with the hypothesis
that the V-V Classifier is better than the Baseline Classifier in
terms of NECM values. The statistical results for the
differences between the paired data of each test data are
summarized in Table 16. The table lists the mean, standard
deviation, maximum, minimum, median, average absolute
deviation, and p-value. The very low p-values (less than
0.05) for all three cost ratios clearly indicate that the V-V
classifier is significantly better than the Baseline Classifier at
the 95 percent confidence interval.

6.2 Case Study 2 Results

The average performances of the 17 classifiers for each
training data set are shown in Table 17. Recall that each of
the 17 learners is trained on each of the seven software

860 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

TABLE 9
Comparing GP Classifiers on KC1 Test Data

TABLE 10
Comparing GP Classifiers on KC2 Test Data

TABLE 11
Comparing GP Classifiers on KC3 Test Data

TABLE 12
Comparing GP Classifiers on CM1 Test Data

TABLE 14
Comparing GP Classifiers on PC1 Test Data

TABLE 13
Comparing GP Classifiers on MW1 Test Data

TABLE 15
Comparing GP Classifiers on JM1 Test Data

TABLE 16
V-V versus Baseline—Difference Statistics

www.Matlabi.irwww.Matlabi.ir

http://www.Matlabi.ir

measurement data sets. We present the error rates averaged
across all 17 learners instead of presenting details on all
17 learners individually. The error rates for each learner
averaged across all seven training data sets are presented in
Table 18. Similarly to Case Study 1, the relative balance
between the Type I and Type II error rates is reflective of
our model selection strategy. Among the 17 learners, TD
provides the best error rates, while IB1, DecisionTable,
NaiveBayes, and LOC provide the worst error rates.
Random Forest, Logistic Regression, and IBk learners
provide competitive fault-proneness predictions.

The test data predictions are obtained based on the
voting approach explained in Section 5, which is the same
approach used by the GP-based Validation-and-Voting
approach. This similarity of voting approaches allows us
to perform a direct comparison between the two case
studies. The test data performances of the 17 learners
averaged for each test data set are summarized in Table 19.
The table shows the three types of misclassification error
rates and the (normalized) total cost of misclassification
associated with each test data set. Compared to the other
data sets, JM1 has higher NECM values, which reflects the
higher level of noise present in the JM1 data set [23]. A
similar deduction can be made for KC1.

6.3 Case Study Comparisons

The two case studies presented software quality modeling
with multiple software measurement data sets, and

evaluated the various models based on total expected cost
of misclassification. In Case Study 1, the Validation and
Voting strategy was deemed best among the three compet-
ing approaches for modeling with multiple data sets. Case
Study 2 considers non-GP machine learners for software
quality modeling with the same seven software measure-
ment data sets. We compare results of the V-V approach
with those of Case Study 2.

The expected cost of misclassification values for both
approaches is summarized in Table 20. The two approaches
are compared with respect to the same cost ratio values, i.e.,
15, 20, and 25. A quick comparison of the respective
averages across all test data sets suggests that the GP-based
software quality models yield lower NECM values com-
pared to the non-GP models. This is true for all three cost
ratio values. A more detailed look at the individual test data
sets indicates that the GP-based models consistently yield
lower NECM values compared to non-search-based soft-
ware quality models. While a statistical comparison would
reveal the significance of this improvement, it is clear that
investing in a search-based approach for software quality
modeling with multiple data sets is worth the effort. Given
the substantial improvement in software quality prediction,
the relatively higher runtime complexity of the GP-based
approach can be justified.

A likely reason why the GP-based models performed
better in this study is that the search space for the solutions
is more widely explored by GP as compared to the more
traditional classification algorithms which generally make a
strong assumption about the structure of the software
quality model. The S-expression solution of GP has more
freedom in forming the structure of the final solution as
compared to the more traditional approaches, such as

LIU ET AL.: EVOLUTIONARY OPTIMIZATION OF SOFTWARE QUALITY MODELING WITH MULTIPLE REPOSITORIES 861

TABLE 18
Case Study 2: Performance of 17 Classifiers

TABLE 19
Case Study 2: Test Data Performance

TABLE 17
Case Study 2: Fit Data Performance

TABLE 20
Case Study 1 versus Case Study 2

www.Matlabi.irwww.Matlabi.ir

http://www.Matlabi.ir

Decision Trees or Naive Bayes. The GP-based approach
makes use of the unique advantage of GP, namely, 1) it
performs a much larger search of the solution space for the
given problem and 2) different models can be produced
during the GP search process even though all of the
parameters are kept unchanged during the modeling
process. It is important to note that, from a practical point
of view, the application of a complex search technique, such
as GP, must be justifiable given the complexity of the search
problem. A runtime analysis of a search-based solution can
provide insight into the justification of its usage [46], [47].

6.4 Threats to Empirical Validity

Due to the many human factors that affect software
development, and consequently, software quality, con-
trolled experiments for evaluating the usefulness of
empirical models are not practical. We adopted a case
study approach in the empirical investigations presented in
this paper. To be credible, the software engineering
community demands that the subject of an empirical study
have the following characteristics [48]:

. Developed by a group, and not by an individual.

. Be as large as industry-size projects, and not a toy
problem.

. Developed by professionals, and not by students.

. Developed in an industry/government organization
setting, and not in a laboratory.

We note that our case studies fulfill all of the above
criteria. The software systems investigated in our study
were developed by professionals in a government software
development organization. In addition, each system was
developed to address a real-world problem.

Empirical studies that evaluate measurements and
models across multiple projects should take care in
assessing the scope and impact of its analysis and
conclusion. For example, C and C++ projects may be
considered similar if they are developed using the
procedural paradigm. Combining object-oriented project
data (e.g., Java) with non-object-oriented project data (e.g.,
C or C++) needs careful consideration. For example, per
module lines of code of an object-oriented software tends to
be lower than that of a non-object-oriented software.

The proposed process of combining multiple learners and
data sets for software quality analysis included four C
projects, two C++ projects, and one Java project. We
introduced two additional metrics: one to capture data-set-
size variation and another to capture whether a module
belongs to an OO project. The average Loc Total of the C
projects was relatively similar to that of the C++ projects. The
average Loc Total for the Java project, while slightly lower,
was relatively comparable. All data sets were normalized
and scaled to account for variation in data set size.

The use of other software metrics (OO and process
metrics) may improve the outcome of software quality
modeling, and further ratify the basic conclusions derived
in our study. However, we believe that, in the case of the
seven projects used in our study, a similarity of application
domain and software development process would out-
weigh any adverse impact the OO-languages would have in
our multidata set combination study.

In addition to commonality of development organization
and application domain, all projects were characterized by
the same set of metrics. The similarity of projects emphasized
in our paper applies to a similarity in their development
organization and application domain. All software projects
used in our study were developed under NASA software
development organization process, and all pertain to mis-
sion-critical software applications. Such similarity among the
projects was considered sufficient for the primary scope of
our study, i.e., improving software quality analysis by
evaluating multiple software project repositories.

As with any work in empirical software engineering, the
specific results of this work are based on the case study data
examined during empirical analysis. It is important to know
that practical issues related to data collection, such as
inconsistent data interpretation, erroneous data recording,
implausible values, etc., may affect case study outcomes.
Other than JM1, the seven software measurement data sets
obtained from the NASA Metrics Data Program were used
(except for normalization and scaling) as is. The JM1 data
set was known to have some obvious data noise based on
our prior work [23], and hence, was cleansed prior to
modeling. No other changes were made to the case study
data other than those stated in Section 3, allowing for easier
and comparable replication studies.

In our study, the evolutionary process of a typical GP run is
conducted with a selected setting for the different GP
parameters, including crossover rate, mutation rate, popula-
tion, etc. We note that it is likely that the obtained results
could be improved by optimizing these GP parameters.
However, such an analysis was out of the scope of this study.

7 CONCLUSION

A focus on search-based software quality modeling with
multiple software data repositories is presented in this paper.
Traditionally, predictive software quality models are ob-
tained by learning from one software measurement and
defect data set of a prior release or similar project. However,
the knowledge obtained from just one training data set may
not sufficiently learn the software quality and defect
occurrence trends of the development organization. We
hypothesize that optimizing software quality models with
the help of multiple software projects can improve upon the
predictive capability of a one data set software quality model.

A genetic-programming-based approach is taken for
building optimal software quality models from multiple
data sets. Three different GP-based strategies are presented
for that purpose: Baseline Classifier, Validation Classifier,
and Validation-and-Voting Classifier. Software measure-
ment and defect data from seven real-world high-assurance
systems are used for demonstrating the different modeling
approaches. It is shown that the Validation-and-Voting
Classifier is generally better than the Baseline Classifier,
and is less prone to overfitting and predictive variance.

A second case study focuses on the same problem, i.e.,
software quality modeling with multiple data sets, but
involves 17 different machine learning algorithms—all non-
search-based learners. The same seven software measure-
ment data sets are used in this case study. A comparison
between the two case studies clearly indicates that the

862 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

www.Matlabi.irwww.Matlabi.ir

http://www.Matlabi.ir

search-based software quality modeling approach provides
a better solution when modeling from multiple software
data sets. However, in the case of software quality
engineering and as demonstrated by this study, it is
advised to use software data repositories of existing projects
similar to the target project in terms of software quality
requirements, measurements, and application domain.

Future works will investigate the use of learners trained
on different representations of the same input, e.g., investi-
gate whether the inclusions of object-oriented metrics,
process, and other measurements can improve the perfor-
mance of software quality models presented in this paper. In
addition, one could consider examining more sophisticated
voting schemes, such as weighted voting or cascading. Such
schemes may improve the predictive accuracy of the single-
learner and multidata set software quality model.

ACKNOWLEDGMENTS

The authors are grateful to the guest editors of the special
section on Search-Based Optimization for Software Engi-
neering, Professor Harman and Dr. Mansouri, and the four
anonymous reviewers for their constructive criticism and
suggestions which went toward improving this paper. They
thank the various members of the Empirical Software
Engineering Laboratory and Data Mining and Machine
Learning Laboratory at Florida Atlantic University for their
reviews of this paper. They are grateful to the staff of the
NASA Metrics Data Program for making the software
measurement data available. The work of Yi Liu was
supported in part by a summer research grant from The
J. Whitney Bunting School of Business at Georgia College
and State University, Milledgeville.

REFERENCES

[1] N.F. Schneidewind, “Body of Knowledge for Software Quality
Measurement,” Computer, vol. 35, no. 2, pp. 77-83, Feb. 2002.

[2] L.C. Briand, W.L. Melo, and J. Wust, “Assessing the Applicability
of Fault-Proneness Models across Object-Oriented Software
Projects,” IEEE Trans. Software Eng., vol. 28, no. 7, pp. 706-720,
July 2002.

[3] N.J. Pizzi, R. Summers, and W. Pedrycz, “Software Quality
Prediction Using Median-Adjusted Class Labels,” Proc. IEEE CS
Int’l Joint Conf. Neural Networks, vol. 3., pp. 2405-2409, May 2002.

[4] A. Koru and H. Liu, “Building Effective Defect-Prediction Models
in Practice,” IEEE Software, vol. 22, no. 6, pp. 23-29, Nov./Dec.
2005.

[5] N.F. Schneidewind, “Investigation of Logistic Regression as a
Discriminant of Software Quality,” Proc. IEEE CS Seventh Int’l
Software Metrics Symp., pp. 328-337, Apr. 2001.

[6] T. Menzies, J. Greenwald, and A. Frank, “Data Mining Static Code
Attributes to Learn Defect Predictors,” IEEE Trans. Software Eng.,
vol. 33, no. 1, pp. 2-13, Jan. 2007.

[7] L. Guo, B. Cukic, and H. Singh, “Predicting Fault Prone Modules
by the Dempster-Shafer Belief Networks,” Proc. IEEE CS 18th Int’l
Conf. Automated Software Eng., pp. 249-252, Oct. 2003.

[8] T.M. Khoshgoftaar and N. Seliya, “Comparative Assessment of
Software Quality Classification Techniques: An Empirical Case
Study,” Empirical Software Eng. J., vol. 9, no. 3, pp. 229-257, 2004.

[9] N.E. Fenton and S.L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, second ed. PWS Publishing, 1997.

[10] M. Harman, “The Current State and Future of Search Based
Software Engineering,” Proc. IEEE CS Workshop Future of Software
Eng., pp. 342-357, May 2007.

[11] M. Harman and B. Jones, “Search Based Software Engineering,”
J. Information and Software Technology, vol. 43, no. 14, pp. 833-839,
2001.

[12] J.R. Koza, Genetic Programming, vol. 1. MIT Press, 1992.
[13] T.M. Mitchell, Machine Learning. McGraw-Hill, 1997.
[14] I. Kushchu, “Genetic Programming and Evolutionary General-

ization,” IEEE Trans. Evolutionary Computation, vol. 6, no. 5,
pp. 431-442, Oct. 2002.

[15] C. Gagné, M. Schoenauer, M. Parizeau, and M. Tomassini,
“Genetic Programming, Validation Sets, and Parsimony Pres-
sure,” Proc. Ninth European Conf. Genetic Programming, P. Collet,
M. Tomassini, M. Ebner, S. Gustafson, and A. Ekárt, eds., pp. 109-
120, Springer, Apr. 2006.

[16] T.M. Khoshgoftaar, P. Rebours, and N. Seliya, “Software Quality
Analysis by Combining Multiple Projects and Learners,” Software
Quality J., vol. 17, no. 1, pp. 25-49, Mar. 2009.

[17] M.J. Meulen and M.A. Revilla, “Correlations between Internal
Software Metrics and Software Dependability in a Large Popula-
tion of Small C/C++ Programs” Proc. 18th IEEE Int’l Symp.
Software Reliability Eng., pp. 203-208, Nov. 2007.

[18] C. Kaner and W.P. Bond, “Software Engineering Metrics: What Do
They Measure and How Do We Know,” Proc. 10th IEEE Int’l
Software Metrics Symp., Sept. 2004.

[19] T.M. Khoshgoftaar and Y. Liu, “A Multi-Objective Software
Quality Classification Model Using Genetic Programming,” IEEE
Trans. Reliability, vol. 56, no. 2, pp. 237-245, June 2007.

[20] T.M. Khoshgoftaar, N. Seliya, and D.D. Drown, “On the Rarity of
Fault-Prone Modules in Knowledge-Based Software Quality
Modeling,” Proc. 20th Int’l Conf. Software Eng. and Knowledge
Eng., July 2008.

[21] A. Folleco, T.M. Khoshgoftaar, J. VanHulse, and L. Bullard,
“Software Quality Modeling: The Impact of Class Noise on the
Random Forest Classifier,” Proc. IEEE World Congress on Computa-
tional Intelligence, June 2008.

[22] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings,” IEEE Trans. Software Eng.,
vol. 34, no. 4, pp. 485-496, July/Aug. 2008.

[23] T.M. Khoshgoftaar and N. Seliya, “The Necessity of Assuring
Quality in Software Measurement Data,” Proc. IEEE CS 10th Int’l
Symp. Software Metrics, pp. 119-130, Sept. 2004.

[24] J. Sayyad Shirabad and T. Menzies, “The PROMISE Repository of
Software Engineering Databases.” School of Information Technol-
ogy and Eng., Univ. of Ottawa, http://promise.site.uottawa.ca/
SERepository, 2005.

[25] J.J. Cuadrado-Gallego, L. Fernández-Sanz, and M.- �A. Sicilia,
“Enhancing Input Value Selection in Parametric Software Cost
Estimation Models through Second Level Cost Drivers,” Software
Quality J., vol. 14, no. 4, pp. 330-357, Dec. 2006.

[26] M. Shepperd and G. Kadoda, “Comparing Software Prediction
Techniques Using Simulation,” IEEE Trans. Software Eng., vol. 27,
no. 11, pp. 1014-1022, Nov. 2001.

[27] K. Sunghun, T. Zimmermann, E.J. Whitehead, and A. Zeller,
“Predicting Faults from Cached History,” Proc. 29th Int’l Conf.
Software Eng., pp. 489-498, 2007.

[28] W. Banzhaf, P. Nordin, R.E. Keller, and F.D. Francone, Genetic
Programming: An Introduction on the Automatic Evolution of
Computer Programs and Its Application. PWS Publishing Company,
1998.

[29] GP-Tool, http://garage.cse.msu.edu/software/lil-gp/, 1998.
[30] H. Iba, H. de Garis, and T. Sato, “Genetic Programming Using

Minimum Description Length Principle,” Advances in Genetic
Programming: Complex Adaptive Systems, pp. 265-284, MIT Press,
1994.

[31] B.T. Zhang and H. Muhlenbein, “Balancing Accuracy and
Parsimony in Genetic Programming,” Evolutionary Computation,
vol. 3, no. 1, pp. 17-38, 1995.

[32] I.H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, second ed. Morgan Kaufmann, 2005.

[33] C.G. Atkeson, A.W. Moore, and S. Schaal, “Locally Weighted
Learning,” Artificial Intelligence Rev., vol. 11, nos. 1-5, pp. 11-73,
1997.

[34] L. Breiman, “Bagging Predictors,” Machine Learning, vol. 24, no. 2,
pp. 123-140, 1996.

[35] J.C. Platt, “Sequential Minimal Optimization: A Fast Algorithm for
Training Support Vector Machines,” Technical Report 98-14,
Microsoft Research, Apr. 1998.

[36] T.M. Khoshgoftaar and E.B. Allen, “Logistic Regression Modeling
of Software Quality,” Int’l J. Reliability, Quality, and Safety Eng.,
vol. 6, no. 4, pp. 303-317, 1999.

LIU ET AL.: EVOLUTIONARY OPTIMIZATION OF SOFTWARE QUALITY MODELING WITH MULTIPLE REPOSITORIES 863

www.Matlabi.irwww.Matlabi.ir

http://www.Matlabi.ir

[37] B.R. Gaines and P. Compton, “Induction of Ripple-Down Rules
Applied to Modeling Large Databases,” J. Intelligent Information
Systems, vol. 5, no. 3, pp. 211-228, 1995.

[38] R.C. Holte, “Very Simple Classification Rules Perform Well on
Most Commonly Used Data Sets,” Machine Learning, vol. 11,
pp. 63-91, 1993.

[39] R. Kohavi, “The Power of Decision Tables,” Proc. European Conf.
Machine Learning, N. Lavra�c and S. Wrobel, eds., pp. 174-189, 1995.

[40] J.R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[41] E. Frank and I.H. Witten, “Generating Accurate Rule Sets without
Global Optimization,” Proc. 15th Int’l Conf. Machine Learning.
pp. 144-151, 1998.

[42] T.M. Khoshgoftaar, X. Yuan, and E.B. Allen, “Balancing Mis-
classification Rates in Classification Tree Models of Software
Quality,” Empirical Software Eng., vol. 5, pp. 313-330, 2000.

[43] Y. Freund and L. Mason, “The Alternating Decision Tree Learning
Algorithm,” Proc. 16th Int’l Conf. Machine Learning, pp. 124-133,
1999.

[44] W.W. Cohen, “Fast Effective Rule Induction,” Proc. 16th Int’l Conf.
Machine Learning, A. Prieditis and S. Russell, eds., pp. 115-123, July
1995.

[45] E. Frank, L. Trigg, G. Holmes, and I.H. Witten, “Naive Bayes for
Regression,” Machine Learning, vol. 41, no. 1, pp. 5-25, 2000.

[46] A. Arcuri, P.K. Lehre, and X. Yao, “Theoretical Runtime Analyses
of Search Algorithms on the Test Data Generation for the Triangle
Classification Problem,” Proc. IEEE CS First Int’l Workshop Search-
Based Software Testing in Conjunction with ICST ’08, pp. 161-169,
Apr. 2008.

[47] A. Arcuri, P.K. Lehre, and X. Yao, “Theoretical Runtime
Analysis in Search Based Software Engineering,” Technical
Report CSR-09-04, Univ. of Birmingham, ftp://ftp.cs.bham.ac.
uk/pub/tech-reports/2009/CSR-09-04.pdf, 2009.

[48] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, and A.
Wesslen, Experimentation in Software Engineering: An Introduction.
Kluwer Academic Publishers, 2000.

Yi (Cathy) Liu received the PhD degree in
computer science from the Department of
Computer Science and Engineering at Florida
Atlantic University in 2003. She is currently an
associate professor of computer science at
Georgia College and State University. Her
research interests include software engineering,
software metrics, software reliability and quality
engineering, computer performance modeling,
genetic programming, and data mining. She is a

member of the IEEE Conputer Society.

Taghi M. Khoshgoftaar is a professor in the
Department of Computer Science and Engineer-
ing at Florida Atlantic University and the Director
of the Empirical Software Engineering Labora-
tory and Data Mining and Machine Learning
Laboratory. His research interests are in soft-
ware engineering, software metrics, software
reliability and quality engineering, computational
intelligence, computer performance evaluation,
data mining, machine learning, and statistical

modeling. He has published more than 400 refereed papers in these
areas. He is a member of the IEEE, the IEEE Computer Society, and the
IEEE Reliability Society. He was the program chair and general chair of
the IEEE International Conference on Tools with Artificial Intelligence in
2004 and 2005, respectively, and was the program chair of the 20th
International Conference on Software Engineering and Knowledge
Engineering in 2008. He was the general chair of the 21st International
Conference on Software Engineering and Knowledge Engineering in
2009. He has served on technical program committees of various
international conferences, symposia, and workshops. Also, he has
served as the North American editor of the Software Quality Journal,
and was on the editorial boards of the journals Multimedia Tools and
Applications and Empirical Software Engineering and is on the editorial
boards of the journals Software Quality, Fuzzy Systems, and Knowledge
and Information Systems.

Naeem Seliya received the PhD degree in
computer engineering from Florida Atlantic Uni-
versity, Boca Raton, in 2005. He is currently an
assistant professor of computer and information
science at the University of Michigan–Dearborn.
His research interests include software engi-
neering, data mining, machine learning, applica-
tion and data security, computer forensics, and
medical informatics. He is a member of the IEEE
and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

864 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

www.Matlabi.irwww.Matlabi.ir

http://www.Matlabi.ir

