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Haar wavelet method for nonlinear
integro-differential equations

Ülo Lepik

Institute of Applied Mathematics, University of Tartu, Liivi Str. 2, 50409 Tartu, Estonia
Abstract

A numerical method for solving nonlinear integral equations based on the Haar wavelets is presented. The method is
applicable for Volterra integral equations and integro-differential equations; it can be used also for solving boundary value
problems of ordinary differential equations.

The efficiency of the proposed method is tested with the aid of four examples. High accuracy even for a small number of
collocation points is stated.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Many problems of theoretical physics and other disciplines lead to nonlinear Volterra integral equations or
integro-differential equations. For solving these equations several numerical approaches have been proposed,
an overview can be found in the monograph [1]. Beginning from 1991 the wavelet method has been applied for
solving integral equations, a short survey on these papers can be found in [2]. The solutions are often quite com-
plicated and the advantages of the wavelet method get lost, therefore any kind of simplifications are welcome.
One possibility for it is to make use of the Haar wavelets, which are mathematically the most simple wavelets.

The Haar wavelet method for solving linear integral equations of different type was proposed in [2] and for
nonlinear Fredholm integral equations in [3].

In the present article the Haar wavelets are applied for solving of nonlinear Volterra integral equations and
integro-differential equations. The proposed method is based on the collocation technique; the wavelet coef-
ficients are calculated iteratively making use of the Newton method. The main idea of the method is to double
the number of collocation points at each iteration. With minor changes the proposed method is applicable also
for solving two-point boundary value problems of ordinal differential equations. The method is tested by the
help of four numerical examples, for which the exact solution is known. To make the article more readable in
Section 2 a short description on the Haar wavelets is added.
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2. Haar wavelet basis

The Haar wavelet family is
hiðtÞ ¼
1 for t 2 ½tð1Þ; tð2ÞÞ;
�1 for t 2 ½tð2Þ; tð3ÞÞ;
0 elsewhere.

8><>: ð2:1Þ
Here the notations
tð1Þ ¼ k
m
; tð2Þ ¼ k þ 0:5

m
; tð3Þ ¼ k þ 1

m
ð2:2Þ
are introduced. The integer m = 2j, j = 0,1, . . . ,J indicates the level of the wavelet; k = 0,1, . . . ,m � 1 is the
translation parameter. The integer J determines the maximal level of resolution. The index i is calculated from
the formula i = m + k + 1. Here the minimal value is i = 2 (then m = 1,k = 0); maximal value is i = 2M where
M = 2J. The index i = 1 corresponds to the scaling function
h1ðtÞ ¼
1 for 0 6 t 6 1;

0 elsewhere.

�
ð2:3Þ
We shall divide the interval t 2 [0,1] into 2M parts of equal length Dt = 1/(2M); the grid points are
sl ¼ ðl� 1ÞDt; l ¼ 1; 2; . . . ; 2M þ 1. ð2:4Þ

Since in the subsequent sections the collocation method is used then we define also the collocation points
tl ¼ ðl� 0:5ÞDt; l ¼ 1; 2; . . . ; 2M . ð2:5Þ

Following Chen and Hsiao [4] the Haar coefficient matrix H is introduced; it is a 2M · 2M matrix with the

elements H(i, l) = hi(tl). Let us integrate (2.1)
qi ¼
Z t

0

hiðtÞdt. ð2:6Þ
In the collocation points (2.6) gets the form Q(i, l) = qi(tl), where Q is a 2M · 2M matrix. Chen and Hsiao [4]
presented this matrix in the form Q = PH, where PH is interpreted as the product of the matrices P and H.
Chen and Hsiao called P the operational matrix of integration; they shoved that for calculating this matrix of
order l the following matrix equation holds:
P l ¼
P 0;5l �ð1

2
lÞH 0;5l

ð1
2
lÞH�1

0;5l 0

" #
. ð2:7Þ
It should be noted that calculations for Hl, Pl must be carried out only once; the obtained results are appli-
cable for solving whatever problems.

3. Solving nonlinear integral equations by the Haar wavelet method

Consider integro-differential equation of the type
au0ðxÞ þ buðxÞ ¼
Z x

0

Kðx; t; uðtÞ; u0ðtÞÞdt þ f ðxÞ ð3:1Þ
for 0 6 x 6 1 and u 0(0) = u0. Here a, b are constants, the functions K, f are prescribed.
Satisfying (3.1) in the collocation points (2.5) we obtain
au0ðxlÞ þ buðxlÞ ¼
Z xl

0

Kðxl; t; uðtÞ; u0ðtÞÞdt þ f ðxlÞ; ð3:2Þ
where l = 1,2, . . . , 2M.
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The function u 0(t) is developed into the Haar series
u0ðtÞ ¼
X2M

i¼1

aihiðtÞ. ð3:3Þ
By integrating (3.3) we obtain
uðtÞ ¼
X2M

i¼1

aiqiðtÞ þ uð0Þ. ð3:4Þ
If (3.3) and (3.4) are substituted into (3.2) and the integrations are carried out a system of 2M equations ai

is obtained for calculating the wavelet coefficients. Since this system is nonlinear we must use some numeri-
cal approach. In the present article for this the Newton method is applied, which brings us to the
equation
X2M

p¼1

ahpðxlÞ þ bqpðxlÞ �
Z xl

0

oK
oap

dt
� �

Dap

¼ �au0ðxlÞ � buðxlÞ þ
Z xl

0

K dt þ f ðxlÞ; l ¼ 1; 2; . . . ; 2M ; ð3:5Þ
where
oK
oap
¼ oK

ou
ou
oap
þ oK

ou0
ou0

oap
¼ oK

ou
qpðtÞ þ

oK
ou0

hpðtÞ. ð3:6Þ
The main problem is to evaluate the integrals in (3.5). This can be done in the following way. Let us denote
uðlÞ ¼
Z xl

0

K dt; wðp; lÞ ¼
Z xl

0

oK
oap

dt ð3:7Þ
and consider the subinterval t 2 [ss,ss+1], s = 1,2, . . . , 2M, where ss is the sth grid point defined by (2.4). In
each subinterval
hpðtÞ ¼ hpðtsÞ ¼ const.,

qpðtÞ ¼ qpðssÞ þ ðt � ssÞhpðtsÞ.
ð3:8Þ
Here ts denotes the sth collocation point defined by (2.5) and
ts ¼ ss þ 0:5Dt. ð3:9Þ

Since u 0(t) = u 0(ts) = const., we obtain
uðtÞ ¼ uðssÞ þ ðt � ssÞu0ðtsÞ;
uðtsÞ ¼ uðssÞ þ 0:5u0ðtsÞDt.

ð3:10Þ
Next the following notations are introduced:
DGðxl; ts; uðtsÞ; u0ðtsÞÞ ¼
Z ssþ1

ss

Kðxl; t; uðtÞ; u0ðtsÞÞdt;

DeGðxl; tl; uðtlÞ; u0ðtlÞÞ ¼
Z tl

sl

Kðxl; t; uðtÞ; u0ðtlÞÞdt;

DGu ¼
Z ssþ1

ss

oK
oap

dt ¼
Z ssþ1

ss

oK
ou

qpðtÞ þ
oK
ou0

hpðtÞ
� �

dt;

DeGu ¼
Z tl

sl

oK
oap

dt ¼
Z tl

sl

oK
ou

qpðtÞ þ
oK
ou0

hpðtÞ
� �

dt.

ð3:11Þ
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Evaluating the integrals (3.7) for each subinterval t 2 [ss,ss+1] and summing up the results we obtain
uðlÞ ¼
Xl�1

s¼1

DGþ DeG;
wðp; lÞ ¼

Xl�1

s¼1

DGu þ DeGu.

ð3:12Þ
It is convenient to put our results into the matrix form. For this purpose we introduce the row vectors
x = [x(l)], a = [ai], Da = [Dai], u = [u(tl)], u 0 = [u 0(tl)], f = [f(xl)], u = [u(l)] and 2M · 2M matrices H = [hp(xl)],
Q = [gp(xl)]. Besides we denote
S ¼ aH þ bQ� w;

F ¼ �au0 � buþ uþ f .
ð3:13Þ
The matrix form of the system (3.5) is now
DaS ¼ F ; ð3:14Þ

which has the solution
Da ¼ FS�1. ð3:15Þ

The Volterra integral equation
uðxÞ ¼
Z x

0

Kðx; t; uðtÞÞdt þ f ðxÞ ð3:16Þ
is a special case of (3.5). Our results remain applicable also for the Volterra equation if out the following
changes are carried out:

(i) a = 0, b = 1, oK
ou0 ¼ 0;

(ii) Eqs. (3.3) and (3.4) are replaced with u = aH.

4. Calculation of the wavelet coefficients

The wavelet coefficients ai can be calculated in the following way. Let us assume that the problem is solved
for the level m = J � 1, to which correspond M = 2J collocation points. The wavelet coefficients for this
approximation are labeled as aðmÞi ; i ¼ 1; 2; . . . ;M . Next the value of J is increased by one, thus the number
of collocation points is doubled. The wavelet coefficients at the new level are estimated as
âðmþ1Þ
i ¼ aðmÞi for i ¼ 1; 2; . . . ;M ;

0 for i ¼ M þ 1; . . . ; 2M .

(
ð4:1Þ
The estimates ûðmþ1Þ; ðû0Þðmþ1Þ are calculated according to (3.3) and (3.4). The values âðmþ1Þ
i are corrected by

(3.15) and we obtain
aðmþ1Þ
i ¼ âðmþ1Þ

i þ Daðmþ1Þ
i ; i ¼ 1; 2; . . . ; 2M . ð4:2Þ
The corrected values for u(m+1), (u 0)(m+1) are calculated again from (3.3) and (3.4). This cycle is repeated until
the necessary exactness of the results is obtained. Assumption (4.1) is motivated by the fact that higher coef-
ficients of the sequence ai are usually quite small.

The question how to start this procedure arises. We recommend to take the starting solution in the form
(u 0)(0) = a0, u(0) = a0x + u(0) and satisfy (3.1) in the collocation point x = 0.5. This leads to the equation
aa0 þ bð0:5a0 þ uð0ÞÞ ¼
Z 0:5

0

Kð0:5; t; a0t þ uð0Þ; a0Þdt þ f ð0:5Þ ð4:3Þ
from which the coefficient a0 can be evaluated.
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Estimates for the next step are âð1Þ1 ¼ a0; âð1Þ2 ¼ 0 and
ûð1ÞðtÞ ¼ âð1Þ1 h1ðtÞ þ âð1Þ2 h2ðtÞ ¼ a0;

ûð1ÞðtÞ ¼ âð1Þ1 q1ðtÞ þ âð1Þ2 q2ðtÞ þ uð0Þ ¼ a0t þ uð0Þ.
ð4:4Þ
These estimates are corrected by solving (3.15) for M = 1.
Our calculations show that this simple method gives good results in many cases, but there may be problems

for which the sequence of iterations does not converge (the convergence of the Newton method depends upon
the successful choice of the initial approximation). In such cases for getting a convergent solution we could
solve (3.1) directly for two or four collocation points. The other possibility is to apply the Newton method
for a fixed number of collocation points more than once and only after that double the number of collocation
points.

5. Error estimates

With the purpose to demonstrate the applicability and efficiency of the proposed method in the following
sections some tutorial examples, for which the exact solution is known, are solved. The error of the mth iter-
ation can be estimated as
eðmÞ ¼ max
16i62M

juðmÞðxiÞ � uexðxiÞj; ð5:1Þ
where uex(x) is the exact solution. For determining the convergence rate of the solution the quantity
qðmÞ ¼ eðm� 1Þ
eðmÞ ; m ¼ 2; 3; 4; . . . ð5:2Þ
is introduced.
In most cases we do not know the exact solution. Here the error of the results can be estimated in the fol-

lowing way. We introduce the quantity
SðmÞ ¼ DxðmÞ �
X2M

i¼1

uðmÞðxiÞ
�� �� ð5:3Þ
where Dx(m) denotes the stepsize of the mth approximation. Since u(m)(x) is in each subinterval x 2 [xi,xi+1] a
linear function then S(m) has a distinct geometrical meaning: it is the area which lies in the interval
x 2 [0, 1] underneath the curve ju(m)(x)j. For estimating the exactness of the solution the quantity
DðmÞ ¼ Sðmþ 1Þ
SðmÞ � 1

���� ����; ð5:4Þ
is introduced. Geometrically D(m) denotes the relative increase of the area underneath the curve ju(m)(x)j,
x 2 [0, 1] for one iteration step.

The convergence rate of the process can be estimated with the aid of the function
rðmÞ ¼ Dðm� 1Þ
DðmÞ ; m ¼ 2; 3; . . .
According to the criterion (5.1) the error estimate is based on a single collocation point, therefore it is a
local criterion of convergence. The estimate (5.4) makes use of all collocation points therefore it is a integral
criterion.
6. Examples

Let us consider some test problems.
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Example 6.1. Consider the Volterra equation
Table
Error

J

1
2
3
4
5
6

uðxÞ ¼
Z x

0

1þ u2ðtÞ
1þ t2

; ð6:1Þ
which has the exact solution uex = x.
The wavelet solution is sought in the form
uðtÞ ¼
X2M

i¼1

aihiðtÞ. ð6:2Þ
Since K ¼ 1þu2

1þt2 , it follows from (3.11) and (3.12) that:
uðlÞ ¼
Xl�1

s¼1

½1þ u2ðtsÞAðsÞ� þ 1þ u2ðtlÞaðlÞ;

wðp; lÞ ¼ 2
Xl�1

s¼1

uðtsÞhpðtsÞAðsÞ þ 2½1þ uðtlÞhpðtlÞ�AðlÞ; p; l ¼ 1; 2; . . . ; 2M ;

ð6:3Þ
where
AðsÞ ¼ arctan ssþ1 � arctan ss;

AðlÞ ¼ arctan tl � arctan sl.
We start our solution with u = a0 = const. Satisfying (4.3) we get the equation
a2
0 �

a0

arctan 0:5
þ 1 ¼ 0; ð6:4Þ
which has two roots að1Þ0 ¼ 0:6747 and að2Þ0 ¼ 1:4821. It follows from the calculations that the value að2Þ0 brings
to a nonconvergent iteration process and therefore we shall take a0 = 0.6747. Next two collocation points
x1 = 0.25 and x2 = 0.75 are taken and the estimates for a and u are â ¼ ða0; 0Þ; û ¼ ða0; a0Þ. Correcting these
values with the aid of (3.15) we obtain a(1) = (0.523,�0.323) and u(1) = (0.199,0.846); the error function (5.1) is
e(1) = 0.096. Results of the following iterations are shown in Table 1.

Example 6.2. Solve the Volterra equation of second kind
uðxÞ ¼ 1

2

Z x

0

uðtÞuðx� tÞdt þ 1

2
sin x; 0 < x < 1. ð6:5Þ
The exact solution of (6.5) is u(x) = J1(x), where symbol J1 denotes the Bessel function of order 1.
In the present case
K ¼ � 1

2
uðtÞuðx� tÞ;

oK
oap
¼ 1

2
½uðx� tÞhpðx� tÞ � uðtÞhpðtÞ�.

ð6:6Þ
1
estimates e, D and convergence rates q, r for Eq. (6.1)

2M e q D r

4 2.7E�2 – 7.7E�2 –
8 1.6E�3 15.0 2.8E�2 2.7

16 4.7E�4 3.7 8.6E�4 32.5
32 1.3E�4 3.7 2.9E�4 2.9
64 3.3E�5 3.9 7.9E�5 3.7

128 8.4E�6 3.9 2.0E�5 3.9
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Table 2
Error estimates e, D and convergence rates q, r for Eq. (6.5)

J 2M e q D r

1 4 1.2E�2 – 2.2E�2 –
2 8 1.2E�3 9.2 3.5E�2 0.6
3 16 1.3E�3 1.0 6.8E�3 51.2
4 32 7.9E�4 1.6 7.0E�4 1.0
5 64 4.3E�4 1.8 5.1E�4 1.3
6 128 2.2E�4 1.9 3.0E�4 1.7
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Making use of (3.11) and (3.12) we obtain
uðlÞ ¼ Dt
2

Xl�1

s¼1

uðtsÞuðxl � tsÞ;

wðp; lÞ ¼ Dt
2

Xl�1

s¼1

½uðtsÞhpðtsÞ � uðxl � tsÞhpðxl � tsÞ�.
ð6:7Þ
Eq. (3.14) get the form S = H, F = �u 0 + u + f, where f(l) = 0.5sinxl.
The starting solution is taken again in the form u = a0. Satisfying (4.3) we get for a0 the quadratic equation
a2
0 � 4a0 þ 2 sin 0:5 ¼ 0;
which has the solutions að1Þ0 ¼ 0:256; að2Þ0 ¼ 3:744. Since the value að2Þ0 leads to a nonconverging iteration pro-
cess we take a0 = 0.256. The estimated solution for two collocation points is â1 ¼ ða0; 0Þ; û ¼ ða0; a0Þ. Correct-
ing it with the aid of (3.15) we obtain a = (0.240,�0.117), u = (0.1237, 0.3572) with the error e0 = 0.0021.
Error estimates of the subsequent approximations are shown in Table 2.

It follows from this table that the convergence rates are smaller as in the case of Example 6.1.

Example 6.3. Consider the integro-differential equation
u0ðxÞ ¼ 1þ
Z x

0

uðtÞu0ðtÞdt; 0 6 x 6 1; uð0Þ ¼ 0. ð6:8Þ
The exact solution of (6.8) is
uexðxÞ ¼
ffiffiffi
2
p

tan
xffiffiffi
2
p . ð6:9Þ
We shall seek the wavelet solution in the form (3.3) and (3.4); from (3.11) and (3.12) we find
uðlÞ ¼ Dt
Xl�1

s¼1

uðtsÞu0ðtsÞ þ
Dt
2

uðtlÞu0ðtlÞ;

wðp; lÞ ¼ Dt
Xl�1

s¼1

½uðtsÞhpðtsÞ þ u0ðtsÞqpðtsÞ� þ
Dt
2
½uðtlÞhpðtlÞ þ u0ðtlÞqkðtlÞ�.

ð6:10Þ
Eqs. (3.13) and (3.14) obtain the form DaS = F, where S = H � w, F = �u 0 + u + E (symbol E denotes the
2M dimensional unit vector).

For starting we take u 0 = a0, u = a0x. Satisfying (4.3) for x = 0.5 the equation a2
0 � 8a0 þ 8 ¼ 0 is obtained.

It has two roots from which we shall take a0 = 1.172 (the other root leads to a nonconverging process).
Correcting the estimates â ¼ ða0; 0Þ, û0 ¼ ða0; a0Þ, û ¼ 0:25ða0; 3a0Þ with the aid of (3.15) we find
a = (1.237,�0.190), u 0 = (1.047,1.426), u = (0.262,0.880) the error of this approximation is e = 0.051. Results
for the next approximations are presented in Table 3.

This example is taken from the article [5] by Avudainayagam and Vani, who solved it by the wavelet-
Galerkin method. For computing the integrals the connection coefficient method was used. This makes the
solution quite complicated, besides it is applicable only in the case of quadratic nonlinearities of the type u2,
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Table 3
Error estimates e, D and convergence rates q, r for Eq. (6.8)

J 2M e q D r

1 4 4.2E�3 – 4.0E�2 –
2 8 3.3E�3 1.3 1.1E�3 37.0
3 16 1.1E�3 3.0 1.6E�3 0.7
4 32 3.0E�4 3.7 4.3E�4 3.7
5 64 8.9E�5 3.3 1.2E�4 3.5
6 128 2.6E�5 3.4 3.5E�5 3.4
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uu 0 or u 02. The same example was solved also in [6] with the aid of the Adomian�s decomposition method. The
authors of [6] denote that their solution is more simple and easy to use. We would like to note that its accuracy
of the results may be insufficient. So it follows from Table 3 of the paper [6] that u = 1.0973 for x = 1 while the
exact value is u = 1.2085; consequently, the error is 9.2%.
7. Boundary value problems of ODE

The method of solution proposed in this article can be applied also for solving boundary value problems of
ordinary differential equations. To illustrate this let us solve the two-point boundary value problem for the
differential equation
u00 ¼ Kðx; u; u0Þ ð7:1Þ

with the boundary conditions u(0) = A, u(1) = B.

By integrating (7.1) we get the integro-differential equation
u0ðxÞ ¼
Z x

0

Kðt; uðtÞ; u0ðtÞÞdt þ u0ð0Þ; 0 6 x 6 1. ð7:2Þ
As before we seek its solution in the form (3.3) and (3.4). Since
qið1Þ ¼
1 for i ¼ 1;

0 for i > 1;

�
ði ¼ 1; . . . ; 2MÞ ð7:3Þ
it follows from (3.4) that a1 = B � A, consequently, the first coefficient in (3.4) is specified.
According to (3.3)
u0ð0Þ ¼
X2M

i¼1

aihið0Þ; ð7:4Þ
where
hið0Þ ¼
1 if i ¼ 1;

1 if i ¼ 2J þ 1; J ¼ 0; 1; 2; . . .

0 elsewhere.

8><>:

Due to the fact that a1 is fixed and Da1 = 0 some changes in the system of Eqs. (3.14) must be executed. Let

the symbol ~a denote the vector a for which the first component is deleted. In similar way the bS is a reduced
matrix in which the first row and column are deleted. Instead of (3.13)–(3.15) we get now
D~aeS ¼ eF ; ð7:5Þ

where
eS ¼ eH � ~w� eE � ~hð0ÞT;eF ¼ �~u0 þ ~u0ð0Þ þ ~uþ ~f .
Here eE is a 2M � 1 dimensional unit vector, and �- denotes the Kronecker tensor product.
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332 Ü. Lepik / Applied Mathematics and Computation 176 (2006) 324–333
The following solution proceeds according to the algorithm presented in Sections 3 and 4: we generate the
vector a = (B � A,a2, . . . ,a2M) and evaluate u(x), u 0(x) for the next approximation from (3.3) and (3.4).

Example 7.1. Consider the boundary value problem
Table
Error

J

1
2
3
4
5
6

u00 � uu0 ¼ 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ xÞ3

q � 1

2
; uð0Þ ¼ 1; uð1Þ ¼

ffiffiffi
2
p

; ð7:6Þ
which has the exact solution
u ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ x
p

.

By integrating (3.4) we obtain
u0ðxÞ ¼
Z x

0

uu0 dt þ u0ð0Þ � 1

2
ð1þ xÞ þ 1

2
ffiffiffiffiffiffiffiffiffiffiffi
1þ x
p . ð7:7Þ
It follows from boundary conditions that a1 ¼ uð1Þ � uð0Þ ¼
ffiffiffi
2
p
� 1.

We start our solution with evaluating the quantities u(l) and w(p, l). Making use of (3.11) and (3.12) we
obtain
uðlÞ ¼ Dt
Xl�1

s¼1

uðtsÞu0ðtsÞ þ
Dt
2

u0ðtlÞ uðtlÞ �
Dt
4

u0ðtlÞ
� �

; ð7:8Þ

wðp; lÞ ¼ Dt
Xl�1

s¼1

½hpðtsÞuðtsÞ þ qpðtsÞu0ðtsÞ�

þ Dt
2
ðhpðtlÞuðtlÞ þ qpðtlÞu0ðtlÞÞ �

Dt
2

� �2

hpðtlÞu0ðtlÞ. ð7:9Þ
Since now a1 is fixed we take the starting solution in the form
u0ðtÞ ¼ a1 þ a2h2ðtÞ;
uðtÞ ¼ a1t þ a2q2ðtÞ þ uð0Þ.

ð7:10Þ
Replacing (7.10) into (7.7) and satisfying this equation in the point x = 0.5 we get the quadratic
equation
a2
2 þ 2ð5þ

ffiffiffi
2
p
Þa2 þ 2

ffiffiffi
2
p
þ 8ffiffiffi

6
p � 7 ¼ 0.
This equation has two roots from which fits to us the root a2 = 0.0702. The estimates for the first approxima-
tion are â ¼ ða1; a2Þ ¼ ð0:4142; 0:0702Þ, û0 ¼ ð0:4943; 0:3539Þ, û ¼ ð1:124; 1:336Þ. Correcting the values with
the aid of (7.5), (7.8) and (7.9) we find a(1) = (0.424,0.056), u(1) = (1.120,1.332), u 0(1) = (0.480, 0.368) with
the error e(0) = 0.009. Results of the subsequent approximations are presented in Table 4.
4
estimates e, D and convergence rates q, r for Eq. (7.7)

2M e q D r

4 3.2E�3 – 6.5E�2 –
8 1.1E�3 2.9 1.0E�3 62.4

16 3.2E�4 3.5 3.9E�4 2.7
32 8.6E�5 3.7 1.2E�4 3.4
64 2.2E�5 3.9 3.1E�5 3.7

128 5.6E�6 3.9 8.2E�6 3.8
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8. Conclusions

A new method for numerical solution of Volterra integral-equations and integro-differential equations,
which is based on the Haar wavelets, is proposed. Its applicability and efficiency is checked on four test
problems.

The benefits of the Haar wavelet approach are sparse matrices of representation, fast transformation and
possibility of implementation of fast algorithms. Simplicity of our solution is due to a great extent to the
assumption (4.1), based on the fact that usually higher wavelet coefficients ai are small. It should be mentioned
that such an approach is not applicable in the case of the conventional piecewise constant approximations
method.

It follows from Tables 1–4 that the accuracy of the obtained solutions is quite high even if the number of
collocation points is small (as a rule a four or eight point solution guarantees satisfactory exactness). By
increasing the number of collocation points the error of the solution rapidly decreases.

Approximation with the Haar wavelets is equivalent with the approximation for piecewise constant func-
tions. Therefore the convergence rate for piecewise constant functions, which is O(M�2) can be transferred to
Haar wavelet approach. As to the Newton method then in the case of sufficiently good initial values it has also
quadratic convergence. So it could be expected that in the case of our solution by doubling the number of
collocation points the error function roughly decreases four times. This theoretical estimation is in general
consistent with the data in Tables 1, 3 and 4. Deviations appear only for small values of J 6 3, where due
to small number of calculation points some ‘‘adaption’’ takes place. For bigger values of J the convergence
rates q and r come nearer to the theoretical value 4. Exceptional is Example 6.2, where convergence rates
are considerably smaller.
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