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Abstract In factories during production, preventive mainte-
nance (PM) scheduling is an important problem in preventing
and predicting the failure of machines, and most other critical
tasks. In this paper, we present a new method of PM schedul-
ing in two modes for more precise and better machine main-
tenance, as pieces must be replaced or be repaired. Because of
the importance of this problem, we define multi-objective
functions including makespan, PM cost, variance tardiness,
and variance cost; we also consider multi-parallel series ma-
chines that perform multiple jobs on each machine and an aid,
the analytic network process, to weight these objectives and
their alternatives. PM scheduling is an NP-hard problem, so
we use a dynamic genetic algorithm (GA) (the probability of
mutation and crossover is changed through the main GA) to
solve our algorithm and present another heuristic model (par-
ticle swarm optimization) algorithm against which to compare
the GA’s answer. At the end, a numerical example shows that
the presented method is very useful in implementing and
maintaining machines and devices.

Keywords Scheduling - Reliability - Preventive
maintenance - Multi-objective genetic algorithm

1 Introduction

All around the world, failure and deterioration may occur in

systems and machines; so maintenance scheduling or planning
should be considered for equipment. Preventive maintenance
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(PM) plays a significant role in the maintenance of equipment
and machines and protects tools and pieces against failure.
Many authors have presented different explanations for PM;
in this paper, we describe it as maintenance of machines or
equipment before any failure or deterioration occurs. PM is a
schedule of planned maintenance that prevents apparatus from
breakdown and failure. We can divide PM into two main
maintenance groups “planned” and “condition-based.” One
difference between these two subgroups is the determination
of maintenance time. As PM scheduling is an important
problem, and machine failure and breakdown result in much
expenditure, both costs and time, many writers have under-
taken much research into this problem.

Much work has been undertaken on PM scheduling for a
single machine, with minimal repair on machine failure [1] and
on PM modeling minimizing total cost and maximizing the
reliability of the system [2]. Sadfi et al. presented a new
method and developed a modified algorithm maintenance
support product team for a single-machine scheduling problem
[3]. An important and traditional goal of that paper was to
minimize the total completion time (makespan). Based on their
algorithm, the worst-case ratio was 20/17 [4]. In their research,
Bris et al. considered cost and availability as the system’s
criteria. They presented a mathematical model to find the best
PM schedule and optimized it by including cost as the objec-
tive function and availability as the constraint by using a GA
[5]. In other research, Shalaby et al. developed an optimization
model for the PM scheduling of multicomponent and multi-
state systems. They defined a sequence of PM activities as the
decision variables and presented multi-objectives including
summation of the PM, minimal repair, and downtime costs.
In addition, they considered system reliability and minimum
intervals between maintenance actions and crew availability all
together as the constraints of their model [6]. Later, Yao et al.
extended their previous model to be more general, and applied
this expanded model in the production line of a semiconductor
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manufacturing system, and showed its application via numer-
ical examples [7]. Cassady and Kutanoglu also developed a
similar integrated model to minimize the total expected weight-
ed completion time of jobs [8]. Duarte et al. presented a model
and an algorithm for the maintenance optimization of a system
with series components [9]. Chelbi and Ait-Kadi considered a
mathematical model for a repairable production unit, supplying
inputs for a subsequent assembly line, operating according to a
just in time configuration [10]. The decision variables, the
buffer stock size, and the PM period length were obtained by
minimizing the sum of the maintenance costs, the inventory
holding costs, and the shortage costs. Nakagawa and
Nakamura studied an entropy model with the application of a
maintenance policy in which machine failure time satisfied a
Weibull distribution [11]. Another excellent study in this area
was by Tam et al., who developed three nonlinear optimization
models as follows: the first model minimizing total cost subject
to satisfy a required reliability, the second maximizing reliabil-
ity for a given budget, and the last minimizing the expected
total cost, including expected breakdown-outage costs and
maintenance costs [12]. Prasad et al. used a GA approach to
solve the multi-objective scheduling problems in a Kanban-
controlled flow shop with intermediate buffer and transport
constraints [13]. Alardhi et al. presented a binary integer linear
programming model in order to find the best PM schedule in
separated and linked cogeneration plants. Wu considered one
policy in the maintenance scope for optimizing a number of
parameters, such as number of contracts [14]. He presented a
PM model, analyzing and discussing the special cases of both
the PM policy and the bonus function [15].

Kenne et al. formulated an analytical model in which the
determination of age-dependent production planning and age-
PM is integrated. The objective of this paper is to minimize the
overall cost functions, such as inventory holdings, lost sales,
and preventive and corrective maintenance costs. However, the
production decisions rather revolve around safety stock levels
than scheduling job orders [16]. Although most of the relevant
research has been about setting PM planning into the schedul-
ing model, it usually considers production scheduling and PM
scheduling as two independent problems, which prevent the
planning model from being a real integrated model. So, the
result may not be optimal. Hence, an improved scheduling
model, explicitly integrating production scheduling and PM
planning, has been presented. In another article, Qi [17] studied
a machine scheduling model that considered machine mainte-
nance and job scheduling simultaneously, and then developed
the worst-case bounds of the shortest processing time and
carliest due date schedules. There, he defined two objective
functions and minimized total completion time and maximum
lateness. Mosheiov and Sarighas considered minimum total
weighted completion time as the objective function in a
single-machine scheduling problem. They proved that this
process is NP-hard and proposed a pseudo-polynomial
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dynamic programming algorithm and an efficient heuristic for
calculating the optimal weighted completion time value for a
tight lower bound [18]. In another article, Pan et al. presented
an integrated scheduling model. They incorporated production
scheduling and PM planning together with the objectives in
their function to minimize the maximum weighted tardiness.
They presented an improved production scheduling model
considering PM planning [19]. In another paper, Lapa et al.
presented a model with two purposes in the main objective; the
first being a methodology for PM based on reliability and the
second to optimize the PM for system evaluation. They pro-
posed a GA to attain the optimal solution for their model,
concluding probability of the need to repair, the cost of the
machine’s repair, the impact of the PM on the system, and so on
[20]. Berrichi et al. [21] presented an algorithm regarding a
production and maintenance scheduling problem as well as ant
colony optimization to solve the model. Their model was for
the case of a parallel machine, and they presented a reliability
model with two objective functions, production, and mainte-
nance. At the end of the article, they offered a multi-objective
ant colony optimization model to solve their model and pro-
posed a GA to solve their experimental results. Valdebenito and
Schuéller focused on the design of the PM to develop exhaus-
tion cracks. Their problem included the framework of reliabil-
ity optimization. In their model, they considered maintenance
and eventual failure to minimize the costs, taking into account
the uncertainty mode in crack propagation phenomenon and
inspection activities [22].

In this paper, we consider a multi-parallel series machine
that performs multiple jobs on every machine. In most pub-
lished papers, the authors considered one type of PM, and they
do not consider the effects of jobs on each other. Here, in this
article, we consider two types of PM, PM to change pieces or
to repair parts. We study PM scheduling from a new perspec-
tive by considering two aspects: whether or not the previous
job is under repair (under PM), which will have an effect on
the next job repair (with regard to series machines), so we will
check the effect of cost, time, and so on in the application of
PM to the problem to see, in the event of its application, which
kind of PM (repair or changing pieces) can be applied to the
jobs. We also study our problem on a multi-machine in paral-
lel mode where multiple jobs are undertaken on each machine;
we apply PM to each job whether it needs repair or not
(change or not). In Sect. 2, we define our constraints including
cost, reliability, and so on. Here, we use the analytic network
process (ANP) aid to weight our objectives in an objective
function and define it in Sect. 3. At the end, we present a GA to
solve our problem and to compare the answer with the particle
swarm optimization (PSO) answer and present the best solu-
tion. The main contributions are defined as follows:

* Defining two different kinds of PM, being the repair and
change modes
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» Considering the effects of jobs on each other (increasing
or decreasing reliability) whether or not PM is undertaken

» Presenting a new method of applying PM to machines

* Defining a process for PM scheduling and planning

* Using an ANP method to evaluation the objectives and
their alternatives

* Presenting a multi-objective function model to increase
reliability and decrease time and cost consumption

* Implementing this model in an example and solving it by a
multi-objective dynamic genetic algorithm and a multi-
objective particle swarm optimization (MOPSO)

2 Problem description

In this section, we define and describe our problem, constraint,
and objectives. We use Matlab software to code the problem.

2.1 Problem definition

The following notations are used to describe the problem
studied throughout the paper:

Parameters

tr Time of PM in repair mode

te Time of PM in change mode

tp Time of process time

cr Cost of PM in repair mode

cc Cost of PM in change mode

D; Duration of ith task

p i, k] Processing time

d [i,k] Due time

el Weight of earliness cost per unit time for job i
bi Weight of tardiness penalty per unit time for job i
Variables

H(t) Hazard function

X(j) {0 i dgacguenialty peormed tsjob J

a[o Initial age of part in PM

RM; Reliability of PM

RE Total reliability

TVT Total variance tardiness

TVC Total variance cost

Here, we consider PM on multi-parallel machines that
perform multiple jobs on each of them. The jobs are in series
mode and affect each other. If we run PM on each job, the
reliability of the machine will be increased. So, according to
the maintenance scheduling, if we want to apply PM to the
next job, first we should check the reliability and, if it is no
lower than a certain upper limit, PM will not be undertaken.
As PM was undertaken on the previous job, and the reliability
of the machine is increased, PM is not required. PM is

undertaken in the first (repaired) mode or the second
(changed) mode according to the reliability, cost, and make-
span amounts. For better scheduling, we need to calculate the
hazard function. In this paper, we define methods of comput-
ing the hazard function. The first is the Nelson—Aalen estima-
tor, a nonparametric estimator of the cumulative hazard rate
function used when data is censored or incomplete. The
estimator is given as follows [23]:

H(t) = ZES% (1)

Where d; is the number of events at t; and n; are the total
individuals at risk at t;. The second kind of hazard function is
computed as follows. Suppose that the machine used to pro-
cess the jobs is subject to random failure, and the time to the
failure of the machine follows a Weibull probability distribu-
tion having a scale parameter 1 and shape parameter b (b>1).
When b>1, the hazard function is an increasing function, and
it may be practical and important to undertake PM for the
machine in order to reduce the increasing risk of machine
failure.

H(k) = / k h(t)dt = (E) B (2)

Where h(t) is the hazard function. Having presented two
hazard functions above, we use Eq. (2) in this article. For the
ith job in the job sequence, let p [i, k] be the processing time, d
[i, k] be the due time, w [i, k] be the weight (or priority), then
we show these variables as follows [19]:

PGk) = > pli,j) x x(i.j) (3)
Wi, k)= > wiij) x x(i, ) (4)
D(ik) = > d(i.j) x x(i.j) (5)

X(i, j) = 1 iftheithjob sequentially performed beforejob j
JT0 o wfori,j=1,2,..,n

In [16] scheduling the PM plan, the maintenance cost and
machine availability must be considered. First, we calculate
the reliability, time, and cost of the system in repair mode; if
reliability is low and time is high, we will change the compo-
nent. We assume that the second type of PM restores the
machine to the “as good as new” condition and the first type
improves the reliability of jobs and machines. To calculate the
initial age of a part in the PM:

ac[g] = 1 X exp {7111(4“;_%))]

Where 3 and 1] are fixed amounts of the Weibull distribu-
tion, and RO is the initial reliability of machine (R0<[0.7,1]).

(6)
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After computing the initial age for each machine, we calculate
the age of the machine in both types of PM as follows:

ae(i, k) = ae(i,k—1) + P(i,k) i= 1..mnumberof machine,

k = 1...nnumber of jobs

To compute the makespan, we calculate the scheduling
completion. The completion time of the ith job in the job
sequence is expressed as follows: [19]

C (i,k) = P(i,k) + tp + trx((@) B—— (@) r3>; (7)

Where t, is the time of the repaired pieces (if the part
changes, we use t. instead of tr) and tp shows the time of the
PM.

2.2 Constraint

The level of reliability (for most efficient scheduling) and the
time of the PM are the most important problems in this paper;
hence, we define the model constraint in this session.

2.2.1 Reliability

The important contributions of reliability are as follows:

1. Using two kinds of PM (repair and change)
2. Considering jobs as series and affected together
3. Studying and presenting a new model for PM scheduling

The level of reliability is the most important constraint in
this paper as we want the machines to work well because we
do not want the performance of our machines to be lower than
a set level. We introduce two constant amounts for reliability
and apply PM according to these numbers. If the reliability of
the machine is lower than the higher amount, we apply the
first type of PM (repairing component), and if the reliability is
lower than the smaller amount, we apply the second type of
PM (changing component) to the current job. When we apply
PM to jobs, the reliability of the jobs increases and affects
the reliability of the machine; so, according to scheduling
programming, if we want to apply PM on the next job, and
reliability of the machine is no lower than the higher or lower
amount, PM will not be applied. That is, if the reliability of the
machine is greater than a constant amount, PM will not be
applied; and if it is lower than a certain level according to the
level of reliability and the time of the PM, PM will be applied
in change or repair mode. The reliability of each machine de-
creases when carrying out a job, so we apply PM to the jobs
until reliability is increased. If the reliability of the machine is
higher (than a constant amount) and the time of the PM is
lower (than a constant amount) then: [24]

Re =1+ m2 x (RO-T1); (8)
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RE = Re*exp((%) ); 9)

Where m; and m, are random numbers between (0, 1), RO
and r are the initial reliability of the machine and job, respec-
tively, and b and e are constant numbers in the Weibull prob-
ability distribution. Equation (9) computes the reliability of one
job implemented on each machine. First, we start with the
initial reliability for each machine (RM) and assign a reliability
amount (1;) and weight for each job (w;) because PM is applied
to jobs so that their reliability is increased. Then the reliability
of each machine is increased as follows:

RM,
RM,

forj > 1

forj=1 (10)

RM ji= I] X W] + {

As we have assumed that the jobs are located in series
mode, we apply PM to other jobs according to the reliability of
the machine. rj is calculated by Eq. (9).

2.2.2 Time of PM

Another important constraint considered in this paper is the
time of applying PM. We do not want the PM time to be
greater than a constant amount and we want to control our
time. So, besides reliability, we consider the time, and if our
conditions are satisfactory, then we apply PM.

TE = random{a : d]  z;

(11)

In Eq. 11, the time of the PM is computed with z (a random
number between (1, 2)).

2.3 Objective function

We have four objectives in the objective function as follows:
cost, makespan, total variance tardiness (TVT), and total vari-
ance cost (TVC). In this paper, makespan is the most important
objective followed by cost, TVT, and TVC, respectively, so we
use the ANP aid to calculate the objectives’ weights.

2.3.1 PM cost

We have two kinds of cost in our problem for the repaired or
changed modes. Naturally, the changed mode cost is more
than that of the repaired mode. The cost includes the PM cost
and the cost of repair or change [25], so:

w42 (42

or

CC(i. k) = ep + cc x ((ae%’ k)> 5- (ae(iﬁ‘_l));a) :

Jor[i = 1..mnumber of machine, k = 1...nnumber of jobs]
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That CR and CC are the costs of repair and change,
respectively. Total cost is shown in the following:

cost =y " > [CC(i,k) + CR(i, k)] (12)

2.3.2 Total makespan

Makespan is the most important objective in our function
because we want the processing time of the PM on the jobs
to be minimized. It is equivalent to the completion time of the
last job in the job sequence.

Makespan = C(n,j) j= l...m" -numberof machine

Where C (n, j) represents the completion time of the last job
on machine number j. Total makespan is equal to the maxi-
mum amount of completion time of the last job on each
machine.

Total makespan = max|[C(n, 1),C(n,2),...,C(n,m)] (13)

2331TVT

Tardiness is an important factor in scheduling, so we consider
this problem in this article as one of our objective functions.
First, we calculate the weighted mean earliness and the
weighted mean tardiness as follows [26]:

Z?:lmax [DrCi; O] Ci

Zn
e
i=1 "

Weighted mean earliness(wme) =

(14)

E ?:lmax[Ci—Di, 0]b;
n
i bi

Weighted mean tardiness (wmt) =

(15)

¢; and b; are weights of the earliness cost per unit of time for
job i and the tardiness penalty per unit of time for job I,
respectively. We want to minimize tardiness, so the earliness
includes a negative weight and tardiness includes a positive
weight.

\/ZLI {max[Ci—Di; 0]—(wmt)2} x bj

n
iibi

\/Zi":l {max[Di——Ci;O}*(wme)z} X €
Z;‘:lei

Variance of tardiness = \

—(1-X) %

i = 1...n,numbof job

So TVT is defined as follows:

TVT = Z;ﬂleotal variance of tardiness-*j = 1...mnoof machine  (16)

2.347TVC

First, we calculate the weighted mean ecarliness and the
weighted mean tardiness as follows [26]:

Z?:l max[Di——Ci; O]ei + Z?:l max[Ci—Di; O]bi

Weighted mean scheduling cost (W) =

n

‘We want to minimize the weighted mean earliness scheduling
cost.

n

i=1

<\/(max[D,»— —C;; 0]-wme?)e; + /(max[C;——Dj; 0]—wm02)b,-)

Variance of cost =
n

i = 1...n,numb of job

So TVC is defined as follows:

TVT = lenzlvariance of cost j = 1...m,numb of machine (17)

We present a new method of maintaining the machines and
devices and, according to Eqgs. (12)—(1), we established a
multi-objective model to do so. In this function, we implement

a tradeoff between four objectives. Wiak, Weost, Weve, a0d Wiye
are the weights of the makespan, cost, TVT, and TVC, respec-
tively. Due to Egs. (3), (6), (7), and (10), our model is as
shown as follows:

Z = min(Wpak * Mak + Weos*COSt + Wiy * tvE + Wiy * tve) (18)
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11’1(_11’1(1_R0)):| (19)

ac[O] = T], X exp[ B

Cli,k) = P(i, k) + tp + tr ((ae(ii k)> B—(ae(i;]l/(_l)) ﬁ) ; (20)

n

\/ZT] {maX[Ci_Di;O]_(Wmt)z] X bi_(l_)\) ) \/ZTI [maX[Di—Ci;O]—(wme)z e

Variance of tardiness = A o o (21)
D Zi:lei
RN NN
CR (i,k) = cp +cr x ((ae(:], 1)> —(ae(J;,]] 1)) >; (22)
. N B N
CCi,k) = cp + ce x ((ae(é’l)> (ae(J;; 1)> >; (23)
Variance of cost — Zi:l (\/ (max[D;—C;j; 0]wmc2)nei + /(max[C;—Dj; 0]*Wm(:2)bi> (24)
b .
RM; = ((r+m2>«< (RO-1)) *exp<<%) )) < W (i, k) + {ﬁél f;g:jzi (25)

R;<RM;<R, PM is undertaken in repair mode
RM; <R PM is undertaken in change mode
(26)
X, j) = 1 if the ith job sequentially performed before job j
’ 0 Owfori,j=1,2,...,n
(27)
A (0,1) (28)

Equation (18) shows the objective function. Equation (19)
shows the initial age of the part. Completion time is computed
in Eq. (20). Equation (21) computes the amount of variance of
tardiness. Equations (22) and (23) compute the cost of the
replace mode and change mode, respectively. Variance of cost
is computed in Egs. (24) and (25) achieves the reliability level
for each machine. Equation (26) expresses when PM is
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undertaken; if reliability is between two specific numbers
(Ry, Ry), PM (in repair mode) is undertaken; otherwise if
reliability is lower than R, PM is undertaken in change mode.
x (i, j) is 1 if the ith job is sequentially performed before the
job and 0 otherwise; and A is achieved randomly between (0,

1).
2.4 ANP method for weighting the objective function

ANP is a structured technique for organizing and analyzing
complex decisions based on elite viewpoints. ANP is a gen-
eralization of the analytic hierarchy process (AHP) used in
multi-criteria decision making and analysis. AHP structures a
decision problem into a hierarchy with a goal, decision
criteria, and alternatives, while the ANP structures it as a
network. This method was developed by Thomas L. Saaty
[27], and other authors have extended it. While it can be used
by individuals working on straightforward decisions, the ANP
is most useful where teams of people are working on complex
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problems involving human perceptions and judgments. This
method can be used when we do not have sufficient data for
our problem. ANP helps to capture both subjective and objec-
tive evaluation measures, providing a useful mechanism for
checking the consistency of the evaluation measures and alter-
natives suggested by the team, thus reducing bias in decision
making. It also helps us when making complex decisions
involving multiple criteria.

We have 1 goal, 4 objective functions, and 12 alternatives
in our problem as follows: cost, TVT, TVC, and makespan (in
manufacturing the time difference between the start and finish
of a sequence of jobs or tasks) are the objectives; and cost of
PM, programming time, cost of project, damage to pieces,
cost of repair, number of changed pieces, number of repaired
pieces, cost of changed pieces, starting time, time of project,
preventive in program, and preventive in precautionary are the
alternatives. We use super decision software to compute the
objective function coefficients. Figure 1 shows our network
structure.

The degrees of importance of our elements are as follows:
makespan, cost, TVT, and TVC, in our article, and the value of
their coefficients.

2.5 DMOGA

Our objectives in the multi-objective optimization problem
(MOP) are always in opposition, so the problem hardly con-
verges on one solution that optimizes all the objectives alto-
gether. A MOP usually produces a set of optimal solutions in
which each of them is not downscaled for the decision makers.
GA is a known population-based heuristic algorithm and is a
suitable method to solve multi-objective problems. Because
our model is multi-objective, we use the multi-objective ge-
netic algorithm. Therefore, in this section, we describe our
dynamic GA to solve this problem and present a new GA
method. When the best solution does not change over a num-
ber of iterations, the coefficients of mutation and crossover are
changed automatically throughout the GA (the coefficient of
mutation is decreased and the coefficient of crossover is
increased).

2.5.1 Crossover

Crossover is an important operation in GA in calculating
the best answer. A chromosome is defined as a binary
string, in PM whether running or not (0 means PM is not
undertaken and 1 means PM is undertaken). We use the
roulette-wheel method for crossover in this model (pro-
duced for the parents and the selected genes), namely one
random number is generated, and according to this num-
ber crossover is carried out.

2.5.2 Mutation

First, we define one coefficient mutation and then use one-
point for mutation, where the value of the gene at the mutation
point is changed from 0 to 1 or vice versa

2.6 Multi-objective particle swarm optimization

PSO is a population-based stochastic optimization tech-
nique, developed by Eberhart and Kennedy in 1995,
inspired by the social behavior of birds flocking or fish
shoaling. PSO shares many similarities with evolution-
ary computation techniques, such as GAs. The system is
initialized with a population of random solutions and
searches for the optima by updating generations.
However, unlike GA, PSO has no evolutionary opera-
tors, such as crossover and mutation. In PSO, the po-
tential solutions, called particles fly through the problem
space by following the current optimum particles. PSO
is a computational method that optimizes a problem by
iteratively trying to improve a candidate solution with
regard to a given measure of quality; therefore, here, we
present a PSO algorithm for comparison with the
achieved answer above.

3 Numerical example

In this section, we present a numerical example for our
model and solve it by representative GA and PSO and
compare the two answers. We solve our problem with
five jobs and five machines. If PM is applied to each
job, the reliability of the machine will be increased and
will affect other jobs. First, we define important values
for the problem variables. We compute the initial reli-
ability and age of the machine for the time of the PM
in changed mode (t.), which is defined randomly with
interval (70, 75), and for the time of the PM in repair
mode, this value is multiplied by one random number
(W) with an interval (1, 2) (wy €[1, 2]), namely t,=wy X t;
similarly for the cost of the PM in changed and repaired
modes. So, cc (cost of changed mode) = ¢, (cost of repaired
mode) X Wee (Wee €[1, 2]). 1 and $ (Weibull probability
distribution parameters) are 150 and 2, respectively.

In the objective function, because our functions are
not of one type, we normalize our objective as far as
the sum. Then, we use ANP and ascertain the weight of
each objective in terms of importance, sO Wy,c=0.5469
(weight of makespan), w.,=0.2167 (weight of cost),
Wit =0.1302 (weight of TVT), and wy,.=0.1067 (weight
of TVC). To solve the model with the GA, we assume
initial coefficients of mutation and crossover as 0.2 and
0.7, respectively. If the best solution of the GA does not
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change for 15 iterations, the coefficients of mutation will
be increased to 0.05 and the coefficients of crossover will
be decreased to the same amount. Our algorithm starts with
an initial RM, and then, according to the time of the PM
repair and change mode times, we make the decision to
apply PM or not. According to the level of reliability and
the age of the machine (using the hazard function), we
calculate the cost and conclusion time of each session. At
the end, we calculate the makespan with a completion time
for each machine and choose the maximum machine
makespan for the total makespan. At the end, we normalize
our objective function without dimension and then we
affect the weight of the objective in the objective function.
We use Matlab software to solve our problem.

Table 1 shows the best PM scheduling of the GA. For
an amount of 1, we undertake PM and for amount of 0 we
do not. Table 2 shows the best PM scheduling of the PSO.

Table 1 Final PM scheduling of GA

No of job 1 2 3 4 5

No of

machine
1 1 1 0 0 1
2 0 0 1 1 1
3 1 0 1 0 0
4 0 0 0 0 1
5 1 0 1 0 0

@ Springer

In Table 3, we show the value of each objective over ten
iterations of the algorithms, and Fig. 1 shows the changes
in each objective. For each run, we computed each value of
the objective function and show them in Table 3. Figure 2
shows the value of the objective functions for different runs
for GA. Figure 3 shows the value of the objective functions
for different runs for PSO. For example, in iteration num-
ber 3, Table 4 shows the makespan (completion time)
information of each job on each machine. Figure 4 shows
a Gantt chart of the second and fourth machines and their
jobs. Table 5 shows information about the final PM sched-
uling, the best value for the objective function, and presents
the weights of the objectives achieved by the ANP.
Figure 5 shows the process for the answers achieved by
the GA for different results. Figure 6 shows the process for
the answers achieved by the PSO for different results. The
tables and figures show that the MOPSO algorithm

Table 2 Final PM scheduling of PSO

No of job 1 2 3 4 5

No of

machine
1 0 0 0 1 1
2 1 0 0 1 1
3 0 0 1 1 0
4 0 1 0 0 1
5 1 0 0 1 0
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Table 3 Amount of each objective for different runs

Objective run no.  PM cost (GA) Makespan (GA) TVT (GA) TVC (GA) PM cost (PSO) Makespan (PSO) TVT (PSO) TVC (PSO)
1 9.7228¢+003  1.3124e+003 1.3837¢+003 1.63E+04 8.7931e+003  1.1529¢+003 9.0311e+003 4.62E+03
2 1.2344e+004 408.5847 1.3692¢+003 2.10E+03 1.0658¢+004  784.2766 6.9868¢+003 1.97E+04
3 1.0053e+004 567.5563 4.4329¢+003 4.2650e+004 1.0611e+004  250.2367 1.0660e+004 953.2342

4 8.5901e+003 324.9763 1.2548¢+004 422.0276 1.1832e+004  426.0966 5.9158¢+003 5.70E+03

5 1.1137¢+004  1.9691e+003 6.8642¢+003 4.37E+03 8.1161e+003  578.8836 8.3699¢+003 3.06E+03
6 1.0089¢+004 441.4521 1.4234¢+004 1.52E+04 1.0003e+004  718.7370 1.0888¢+003 3.98E+03
7 1.0665¢+004  257.0400 3.9507¢+003 249.1547 1.0658¢+004  1.0254e+003 7.2118e+003 1.50E+04

8 9.7134e+003  182.5059 1.8676e+004 28.5072 8.9828e+003  420.9371 1.1218e+003 9.65E+03
9 9.4322¢+003  974.5392 3.6206e+003 1.25E+04 1.0137e+004  493.9570 4.1934e+003 1.10E+03
10 1.0174e+004  791.6252 1.3142e+004 6.26E+03 1.0661e+004  783.9952 1.3844e¢+003 6.31E+03

achieved the final answer sooner, and proposes a better
answer than the DMOGA algorithm in this problem.

4 Conclusion and future research

In this paper, we presented a PM scheduling method according
to the reliability level, PM time, and cost. In most previous
articles, the writers did not consider the influence of jobs on
each other when PM is undertaken on one job. Namely, if PM is
undertaken on one job, the reliability of the machine is increased
and, although the next job may need PM, PM does not occur
because the machine’s reliability has increased. First, we con-
sidered the PM problem in multi-parallel machines undertaking
multiple jobs on each machine (these jobs are in series mode
and they affect each other) and assumed two kinds of PM (repair
and change mode). We tried to minimize the multi-objective
functions of cost, TVT, makespan, and TVC and used ANP to
weight these objective functions. In this case, PM was under-
taken in the first mode (repair the piece) or second mode
(change the piece) according to the level of desired reliability
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18000 function (GA)
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14000 +—4 ,"

£ 12000 - -4\ A

‘E’ 10000 =4 .“..’ A . ~...‘-~' od ."“'.A - ceeese cOSt

® 8000 ) e ! \ 7 \ e makspan
6000 ) ! v 7 > ™vT
4000 A ,J \ 7 - TVC
2000 L2 N

A ) T =
0

1 2 3 4 5 6 7 8 9 10
number of runs

Fig. 2 Amount of objective in different runs, solving with GA

from Eq. (26). With the numerical example, we considered our
model with two solution methods (GA and PSO).

This method accordingly considers all aspects of cost, time,
and reliability, presents a good maintenance schedule, and
considers all influences of the jobs on each other. Also, the
achieved results show that this method is very useful for
machine maintenance because the reliability of the machine
is always high (this amount may be different in various cases),
cost and makespan are near their lowest amounts (according to
the level of reliability), and variance from cost and tome (from
the initial specific amount) are trivial. Hence, the main factors
in the maintenance problem (cost, time, reliability, time vari-
ance, and cost planning) are considered in this method.

The following may be of interest in future research:

* Solving the problem using other heuristic or meta-
heuristic methods and comparing them with our results.

* Considering constraints in undertaking the PM in our
model, including those on cost and makespan.

» Using the Nelson—Aalen estimator to compute the hazard
function and compare it with our answer.

objective
22500 function (PSO)
20000 -
17500
& 15000 - " cost
8 12500 .'. ‘.' i Makespan
£ 10000 7—@%—%—4 ™vT
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Fig. 3 Amount of objective in different runs, solving with PSO
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Table 4 Completion time of jobs in first machine

Job number 1 2 3 4 5 Amount of makespan
Makespan
Completion time of 1st machine 29.8831 49.2332 63.4992 124.8533 141.7801 141.7801
Completion time of 2nd machine 267.9911 285.1283 5352368 550.3332 567.5563 567.5563
Completion time of 3rd machine 18.0015 34.4602 118.8562 130.8410 224.8860 224.8860
Completion time of 4th machine 17.5437 17.5437 17.5437 77.4629 77.4629 77.4629
Completion time of 5th machine 101.2191 116.5028 326.1655 339.5266 339.5266 339.5266
Fig. 4 Gantt chart of 2nd and 5th nd madiing
machines
it | PM™ iz | PM is PM js PM is
o time
267.9911 285.1283 535.2368 550.3332 567.5563
Sth machine
in PM iz PM is PM ia [ Js J
101.2191 116.5028 326.1655 339.5266  339.5266 me
Table 5 Summary of our output
Objective Objective weight Best amount of objective function from GA 0.3926
PM cost 0.447 Best amount of objective function from PSO 0.3764
TVT 0.395 Number of iteration 400
TVC 0.103 Number run of algorithms 10
Makespan 0.056
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Fig. 5 Genetic algorithm
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Fig. 6 Particle swarm optimization
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