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Abstract The present study employs the traditional swarm intelligence technique in the classifica-

tion of satellite data since the traditional statistical classification technique shows limited success in

classifying remote sensing data. The traditional statistical classifiers examine only the spectral vari-

ance ignoring the spatial distribution of the pixels corresponding to the land cover classes and

correlation between various bands. The Artificial Bee Colony (ABC) algorithm based upon swarm

intelligence which is used to characterise spatial variations within imagery as a means of extracting

information forms the basis of object recognition and classification in several domains avoiding the

issues related to band correlation. The results indicate that ABC algorithm shows an improvement

of 5% overall classification accuracy at 6 classes over the traditional Maximum Likelihood

Classifier (MLC) and Artificial Neural Network (ANN) and 3% against support vector machine.
� 2015 National Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier

B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
1. Introduction

Remote sensing (RS) data with its ability for a synoptic view
observe the area of interest over the earth at different res-

olutions. Extraction of land cover map information from
remote sensing images is a very important and challenging task
inRS data analysis. Hence, in the above context, accurate image

classification results are a pre-requisite. Remote sensing
imagery with high resolution data (spatial, spectral, radiometric
and temporal) have made analysts to constantly explore the
image processing and data mining techniques to exploit their
potential in extracting the desired information efficiently from

the RS data to improve classification accuracy. Moreover,
obtaining satisfactory classification accuracy over urban/semi
urban land use/land cover (LU/LC) classes, particularly in high

spatial resolution images, is a present day challenge. Because it
is intuitive from the simple visual observation that urban/semi
urban areas comprise of roof tops made of reinforced concrete

slabs, clay tiles, corrugated plastic, fibre and asbestos sheets,
parking lots, highways, interior tar roads, vegetation, lawn, gar-
den, tree crowns, water bodies, soil, construction sites, etc. and

they show abundant sub-classes within classes (Mondal et al.,
2014). Apart from the above, tall trees and buildings casting
.Matlabi.ir.Matlabi.ir
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shadows on the adjacent classes, the orientation and geometry
of the roof tops, and various man-made structures made of
samematerials but having different colours stand spectrally dis-

tinct even though they belong to the same class (Sylla et al.,
2012). Also, the urban landscapes composed of features that
are smaller than the spatial resolution of the sensors lead to

mixed pixel problem.
Based on the training process, the classifiers are grouped

into supervised and unsupervised classifiers; based on their

theoretical modelling considering the type of distribution of
data the classifiers are also categorised into parametric (sta-
tistical) and non-parametric (non-statistical) classifiers
(Voisin et al., 2013); soft and hard classifiers examine only

the spectral variance ignoring the spatial distribution of the
pixels belonging to the classes and other artificial intelligence
methods still have limitations because of the complexities of

remote sensing classification (Singh et al., 2014). The paramet-
ric algorithms evolved so far are parametric in nature and can
be summarised as ISODATA, parallelepiped, minimum dis-

tance-to-means, Maximum Likelihood Classifier, Bayesian
classifier, etc. The limitation of parametric classifiers is that
they show limited success on spectrally overlapping features

(Voisin et al., 2013). The non-parametric classifiers include
decision tree, Artificial Neural Network (ANN), support vec-
tor machines, fuzzy and neuro-fuzzy classifiers, etc. (Baraldi
and Parmiggiani, 1995; Chen, 1999; Lee et al., 1999). The clas-

sification rules generated in the decision tree classifier are easy
to understand and the classification process is analogues to
human reasoning (Rawat et al., 2013). Moreover, decision tree

exhibits higher classification accuracy over MLC but the num-
ber of rules generated (tree size) increases with the increase in
the training data set and the number of classes (Ashok Kumar,

2011). Further, the practical employability of Artificial Neural
Network and support vector machines is not encouraging since
both are very slow in training and learning phase and slowly

covering optimal solution.
Genetic Algorithm (GA), gives better results for classifica-

tion of medium resolution images but it is prone to overfitting
the training set and derived rule set due to mutation crossover

and are difficult to interpret the classes which are spatially
homogeneous, i.e., barren land, degraded land etc.
(Bandyopadhyay and Maulik, 2002). Particle Swarm

Optimisation (PSO), produces higher classification accuracy
for coarse resolution image and it identifies the urban area cor-
rectly but it fails to update the velocity of each particle when

there is a spectral overlapping between two classes such as
urban and sand has same reflectance value in LISS III data
(Yang and Deb, 2010). Further, the cuckoo search method is
capable of searching each proportion of every individual class

within a single pixel by un-mixing all available land class infor-
mation in a pixel and assigning the pixel to multiple classes.
But the major drawback of the cuckoo search is that it is very

unstable when feature space and training areas are changed
(Yang and Deb, 2010). The Ant Colony Optimisation (ACO)
method uses a sequential covering algorithm and produces bet-

ter accuracy compared with traditional statistical methods,
ACO has number of advantages. First, ACO algorithm is dis-
tribution free, which does not require training data to follow a

normal distribution. Second, ACO is a rule induction algo-
rithm, which is more explicit and comprehensible than mathe-
matical equations. Finally, ACO requires minimum
understanding of the problem domain. In fact, XOR is a
difficult problem in rule induction algorithms. ACO uses
sequential covering algorithm to identify each class, so the
rules are ordered. This makes it difficult to interpret the rules

at the end of the list, due to spectrally homogenous class such
as land with/without scrubs, sandy area etc., which makes rule
in the list to be dependent on all the previous rules. Finally,

this ACO takes a much longer time to discover rules than
the non-parametric methods (Liu et al., 2008).

Artificial Bee Colony (ABC), relatively a new member used

for classification of data, was proposed by Tereshko, 2000.
Intelligent behaviour on the swarm has provided a new tech-
nique for classifying the remote sensing data efficiently
(Cuevas et al., 2011). Based on the motivation of many nature

inspired algorithms, classification of data can be a mimic beha-
viour of insects for searching best food source, building of
optimal nest structure, etc. Waggle dance is one of the mecha-

nisms to share the located food source which indicates a good
candidate for developing new intelligent search for distributed
computing, local heuristics and knowledge from past experi-

ence (Zhang et al., 2010).
It has been demonstrated that Artificial Bee Colony clas-

sifier produces satisfactory results in multi-objective environ-

mental/economic dispatch, data clustering and medical image
classification (Pan et al., 2010; Sabat et al., 2010; Stathakis
and Vasilakos, 2008). However, they have better search of
signature classes with better attribute compared to other clas-

sification algorithm such as MLC. Banerjee et al. (2012) com-
pared ABC with other algorithms and the study
demonstrates that ABC produces better classification accu-

racy on LISS III data of 23 m resolution data. Also, when
compared with the traditional statistical classifiers, ABC
requires minimum understanding of the problem domain

and does not require complex training data to follow a nor-
mal distribution of data. The ABC recruit bees to update
itself to cope better with attribute correlation and updating

is directly based on performance of classification class from
the knowledge of waggle dance (Xu et al., 2010; Dorigo
and Stützle, 2005). Therefore, it is ascertained that these
types of procedures have a greater potential in improving

classification accuracy.
The main objective of this work is to utilise the bee commu-

nication and food search method of information exchange to

achieve maximum classification accuracy.
Hence, in this work ABC algorithm has been selected for

classification of high resolution data as compared to other

swarm intelligence techniques due to following reasons.

� Bees are very optimal well defined workers
� Distribute the work load among themselves which does not

misclassify the data which is spectrally homogeneous and
spectral overlapping.
� The dancing behaviour helps in optimal design.

All the above points are taken care of in the ABC algo-
rithm. Hence, in the RS data classification, the searching ele-

ment is not known initially. However, just like a random
walker like ant, PSO, cuckoo search, etc., the search will be
initiated, but at each iteration, the new values derived values

help in reaching towards the final classified data without mis-
classifying the land cover classes. Hence the ABC is one of the
promising techniques over other proven classification
techniques.
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Figure 1 Study area of Mangalore coast.
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2. Data

2.1. Data products

Table 1 provides the specification of the image data products
being used in this study. The multi-spectral data (5.6 m) are

of LISS-IV (Linear Imaging and Self Scanning) sensor of
IRS P-6 (Indian Remote Sensing Satellite) and panchromatic
image (2.5 m) is of IRS P-5 satellites launched and maintained

by the Indian Space Research Organisation (ISRO). The satel-
lite data were procured from the National Remote Sensing
Centre (NRSC), Hyderabad, and Karnataka State Remote
Sensing Agency (KSRAC), Bangalore, India.

2.2. Study area

The study area considered for this work is the Coastal region

of Mangalore, Karnataka; its geographical co-ordinates are
between 12� 510 3200–12� 570 4400 N latitude and 74� 510 3000–
74� 480 0100 E longitudes with an elevation of approximately

0.0 m above mean sea level (AMSL). The image dimension
of the study area is 1664 · 2065 pixels in MS data and
2593 · 4616 pixels in pan-sharpened data. The data comprise

forest plantation, crop plantation, urban area, wetlands and
water body (Fig. 1). The climate of the study area is relatively
mild and humid in winter and dry and hot in summer. The
interactions such as extensive agricultural activities, conversion

of marshy land to build up land and tourism activities have
resulted in a considerable change in the study area.
Therefore the above area has been considered as an ideal

test-bed site for the study of change detection technique.

2.3. Image registration

The images were geometrically corrected and geo-coded to the
UTM with a minimum of 3 GCPs required for registration. To
increase accuracy in the ROI, 10 ground control points have
been selected and re-sampled with cubic-convolution. The

accuracy of image registration was accurate within one pixel
with an RMS error of 0.2 pixels.

2.4. Image fusion

Data of higher spatial resolution bring out better discrim-
ination between shapes, features and structures for an accurate

identification of land use and land cover classes, whereas finer
spectral resolution allows a better discrimination between
Table 1 Details of the data products used in our research work.

Sl. No. Satellite and data type Date of acquisitio

1. IRS P-6 26th Dec 2008

(Resourcesat 1)

Multi-spectral (2)

2. IRS P-5 7th Jan 2008

(Cartosat-1)

Panchromatic (2)
various classes in spectral space in the remotely sensed data.
By fusing the data of higher spatial resolution and multi-spec-

tral data it is possible to derive composite fused data which
exhibit the features of both data. The commonly employed
data fusion techniques are Intensity-hue-saturation (IHS)

transform, Principal component analysis (PCA), Brovey trans-
form (BT), Multiplicative technique (MT), Wavelet transform
(WT) and WT+IHS. This study has employed WT+IHS data

fusion technique as it exhibits satisfactory results in the evalua-
tion of change detection over coastal land cover classes. The
cubic convolution algorithm has been employed for re-sam-
pling of fused data.
n Spectral resolution Spatial resolution

Green (0.52–0.59 lm); 5.8 m

Red (0.62–0.68 lm);

Infrared (0.77–0.86 lm)

0.55–0.99 lm 2.5 m
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3. Artificial Bee Colony (ABC)

The ABC algorithm is based on bee’s behaviour in finding the
food source positions without the benefit of visual information

(Karaboga and Ozturk, 2011). The information exchange from
bees is integrated knowledge about which path to follow and
quality of food through a waggle dance. Bees calculate their

food source using probabilistic selection and abounding source
by sharing their information through eagle dance and food
source with less probability of producing new food source in
neighbourhood of old source in relation to their profitability.

The ABC has three necessary components: food source,
employed bee, scout bee and onlooker bee, and the behaviours
are: selection and rejection of the food source.

� Employed Bee: The employed bees store the food source
information which includes the distance, the direction and

share with others according to a certain probability and
shares with other bees waiting in the hive, richness and
extraction of energy, nectar taste and fitness of the solution.

� Onlooker Bee: It takes the information from selected num-
bers of employed bee and decides the probability of higher
nectar amount information of the food source are selected
according to profitability of food source.

� Scout Bee: If the position of food source is not improved
through maximum number of cycles, food source will be
removed from the population; employed bee becomes a scout

bee and elects a new random food source. Based on the per-
formance of fitness value, if the elected new food source is
better than rejected one then scout bee becomes employee

bee. This process is repeated until the maximum number of
cycles to determine the optimal solution of food source.

The main steps can be described as follows:

(1). Bees are initialised in a colony as Xi = {xi
1, xi

2, . . ., xi
N},

where i represents the food source in the colony, n

denotes population size. Fitness Fi is calculated for each
employed bee xi which is proportional to the nectar
amount of the food source and records maximum nectar

amount in the position i.
(2). Employed bees will identify new food position vi in the

neighbourhood of the old one in its memory by

vi ¼ xi þ ðxi � xkÞ � /k�f1; 2; . . . ;Ng; ð1Þ

where k is an integer number but it is different from i, / is a

random real number in [�1, 1]. Fitness values of xi is com-
pared with the value of vi, if vi is better than xi, vi is replaced
with xi, otherwise fitness value of xi is retained, these types
of mechanism are done by greedy selection.
(1). After the search of neighbourhood task completed by

employed bees, each onlooker bee chooses a food source

depending on the fitness Fi of xi, the probability value of
Pi chosen by onlooker bee is calculated according to
Eqs. (2) and (3).

Pi ¼
fitiPSN
n¼1fitn

ð2Þ
fiti ¼
1=1þ fi

1þ absðfiÞ

�
ð3Þ

If onlooker bee has selected one food source depending on
the probability Pi, modification of Pi is done according to Eq.

(1) where fitness strategy is done using roulette selection to
check whether there are some abandoned solutions or not in
xi and will be replaced by the food source if it has better nectar

amount compared to previous value xi. If the position of one
employed bee cannot be improved through a predetermined
number of cycles, the employed bee will become a scout bee

and produce a food source randomly according to Eq. (4), a
new solution is generated.

xi ¼ minþ ðmax�minÞ � / ð4Þ
3.1. ABC for remote sensing classification

Main component of the proposed ABC algorithm is to select
classes by a bee. Selection of classes corresponds to Digital

Number (DN) values of images. Bees are represented by pixels
of images, Food sources are land cover features, employed bees
are simulated bypixels belonging to classified datasetwhich con-
tains the function values (nectar quality) of the solution, are cal-

culated using euclidean distance (Karaboga and Basturk, 2008).
The following main components in this proposed algorithm

are shown in Fig. 2.

� Initialisation: Bees select the classes depending on various
parameters such as position, pattern, location and associa-

tion of classes depending on its Digital Number (DN) value.
Each employed bee selects the classes on the dataset
depending on attributes of dataset. Each class has its lower
range of DN values and upper range of DN values for selec-

tion of classes within cover percentage.

To evaluate the performance of the data, selection of points

from datasets is stored in the UCI datasets for training and sig-
natures are controlled by the size of a colony (land cover
classes), by limiting the count of maximum cycle of a bee for

a determining the weight of a class and its bound value lim-
itation. In each training period, the classes are divided into
K classes. For each time, a single subset of employed bee is

used to update the weight of bee to new weight and remaining
K subsets are retained with old weight to compare with each
new weight for the validation of class.
� Classification strategy: Classifications are done based on the
upper and lower bound of DN values, which can identify
the specific class from different groups. The procedure is

defined in Eq. (5) and Eq. (6) as below:

Lower bound ¼ f� k1 � ðFmax � FminÞ ð5Þ

Upper bound ¼ fþ k2 � ðFmax � FminÞ ð6Þ

Maximum DN values of a class are represented by Fmax and

Fmin is the minimum values. F represents the original DN value
of class. k1 and k2 are random variables [0 1].

� Fitness function: Fitness values are evaluated depending on
the land cover class and maximum cycle of an employed bee
and scout bee to cover the class depending on their weights.
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Figure 2 Flow chart for classification using ABC algorithm.
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If the class is in between the lower and upper range it pre-

dicts the class depending on their evaluated record of
employed bee and calculate the fitness and proves this has
an predictive record. Its representation is as below:
Fitness Value ¼ TN=TN þ FP � TP=TP þ FN ð7Þ

(I). True Negative (TN): Classes that are not covered by fea-
ture and that do not have class in the predictive class.

(II). True Positive (TP): Classes that are in the features and
covered by predictive class.
(III). False Positive (FP): Number of bees (pixel) covered by

class, but the class is not covered by predictive class.
(IV). False Negative (FN):Number of bees (pixel) not covered

by the class, but the class is covered by predictive class.

To avoid overfitting when learning algorithm induces a
classifier that classifies all instances in the training set, includ-
ing the noisy ones, correctly. To avoid this pessimistic pruning

approach is used to remove redundant feature limitations, it is
repeated till all the classes are evaluated.

� Search and prediction strategy: Employed bee starts to
search the location of class depending on the DN values
and the weights of each class. When an employed bee does

not meet the requirement or reach the maximum cycle num-
ber it calculates and updates new weight of a class.

Vij ¼ Xij ð8Þ

where Vij represents the position of the new food source and
Xij stands for neighbour of food source, here represented by
euclidean distance between food source and particular bee.
In addition to these i and K are between 1 and 0, but K is dif-

ferent value from i and j represents the dimension. In our work
dimension is equal to the number of class in the
dataset.Prediction strategy will determine which class should

be predicted when there are mixed classes or when pruned rule
is applied when the classes are unknown. Three main steps are
as follows.

(a) Calculate the weight for each class and predict new
weight for each class which covers the test data record

when maximum cycles are not reached for a given class.
(b) Classes are predicted depending on the upper and lower

bound weight according to different possible classes.

(c) Select class which has the highest prediction class as the
final class.

Prediction is defined as below

prediction ¼ ða � rule fitness valueÞþ
ðb � rule cover percentageÞ ð9Þ

where a and b are two weighted parameters, a € [0,1] and
b = (1 � a).

Cover percentage ¼ TP=N ð10Þ
� Selection: The proposed phases are highlighted. In these
phases, 10% of all possible solutions, which have the lowest

fitness value, are to be updated. Hence, the proposed phase
only updates poor possible solutions. The poor possible
solutions are mutated around the gbest food source, in this

phase. The equation for this phase is:

Vij ¼ ybest; jþ uijðXpj � xkjÞ ð11Þ

where Vij is the candidate solution of new food sources, ybest, j
is the global best food source with j-th dimension, xpj is the
p-th food sources of j-th dimension and ykj is the k-th food

sources of j-th dimension. p and k are randomly chosen food
sources and they are mutually exclusive. Meanwhile the
parameter uij is a control parameter that represents random
numbers within [�1, 1]. As poor possible solutions are mutated
www.Matlabi.irwww.Matlabi.ir
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Figure 3 Influence of No. of bees on the performance of classification.
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around the gbest possible solution, the modified poor possible
solutions would be fitter. This way, the number of fit possible
solutions increases with increasing generation. Now, there
exists a higher probability that a selected possible solution will

be mutated with a fit possible solution during employed and
onlooker bee phases, as fitness of every possible solution is
higher in the proposed algorithm. Hence, the produced candi-

date solution will be fitter than the existing possible solution.

4. Implementation and results

The image classification and evaluation were performed for six
classes using MLC, SVM, ANN and ABC algorithm on
panchromatic fused LISS-IV data of 2.5 m spatial resolution.

Selection of training samples is directly related to the DN value
of class and it is the initial step for Artificial Bee Colony clas-
sification. A total of 3090 samples are used to identify the LC

classes i.e., 1090 samples as the training data set (Employed
bee), and the remaining 2000 samples for validating the classes.
The ABC classification was accomplished using the MATLAB
software, the supervised classification based on MLC algo-

rithm, Support Vector Machine (SVM), Artificial Neural
Network (ANN) and validation were carried out in the
ENVI RS image processing software. The accuracy of each

class is determined by using OCA (Overall classification accu-
racy), PA (Producer’s accuracy) and UA (User’s accuracy).

For the implementation of the SVM classifier, we kept con-

stant: the gamma parameter in the kernel function (value:
0.167) the penalty parameter (value: 100) and the pyramid lay-
ers (value: 0); and we tested different kernel types (functions):
polynomial (1st–6th order), sigmoid and radial basis functions

concerning their accuracy results with a 4th order polynomial
function (El-Asmar et al. 2013).

For the implementation of the Feed-Forward ANN, we

kept constant: the training threshold contribution (value:
0.167), the training rate (value: 0.2), the training momentum
(value: 0.9) and the number of training interactions (value:

1000) but we tested different number of hidden layers (one
and two) and different activation functions (hyperbolic and
logistic). The Feed-Forward, one hidden layered ANN with
logistic function.

This Artificial Bee Colony algorithm requires the speci-
fication of the following parameters.

(1) No of bees: This is the maximum number of bees for a
specified class constructed during iteration.

(2) Minimum number of training samples per class: This is

the minimum number of training samples that each class
must cover to help avoiding pruning.

(3) Maximum number of uncovered training samples in the
training set: The process of calculating the weights for

each class until the number of uncovered training sam-
ples is smaller than this threshold and updates itself to
new weight.

(4) Maximum number of cycles: The program stops when
the number of iterations is larger than this threshold.

The parameter settings of ABC are as follows: No. of
bees = 220 (Employed bees = 60 and Onlookers bee = 160);
Minimum training samples = 20, Maximum uncovered train-
ing samples = 12; and maximum iterations for onlookers

bee = 220. The sensitivity of selecting two parameters such
as selection of number of bees and minimum training samples
are shown in Fig. 3. Classification result stabilises when num-

ber of bees reaches 60 and the relationship changes when maxi-
mum number of cycles reaches above 200. Results are
compared with MLC, SVM, ANN and ABC through three cri-

teria namely, the same training data (1090 samples) are used
for the classification, and the same test data (2000 samples)
were used for validation, the overall classification accuracy,

and the Kappa coefficient. Total time taken by the ABC is
5 min to complete the identifying of each class by using the
training data.

The classification result of the MLC, SVM, ANN and ABC

is shown in Fig. 4. The comparison between them shows that
ABC algorithm performs better than MLC, SVM and ANN.
Area ‘A’ in Fig. 4 is actually land covered with scrubs,

degraded scrubs, fallow land and build up areas, which
www.Matlabi.irwww.Matlabi.ir
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(A) MLC (B) ABC

(c) ANN (D) SVM

Build up land water sand area Fallow land Degraded Scrub Land with scrub

Figure 4 Land cover classification in the area of Mangalore coast: (A) MLC; (B) ABC; (C) ANN; (D) SVM.
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MLC and SVM misclassified as degraded scrub whereas ANN
correctly classified the degraded scrub area and land area as
scrub but it was unable to separate fallow land and urban land.

However, ABC classified all the classes correctly in Area A.
Further, area B is a mixture of land with scrubs and degraded
land. But MLC has misclassified this land area as land with

scrubs and ANN as fallow land while SVM and ABC classified
the area correctly as land with scrubs and degraded land.
Another land cover area ‘C’ which contains only land with

scrub has been classified as degraded land by MLC and
Table 2 Behavioural study of ABC for 6 classes: comparison of cla

Producer’s accuracy (%) User’s acc

Data sets MLC SVM ANN ABC MLC

Build up land 75.94 72.18 77.27 86.79 90.99

Water 79.49 100 94.44 84.62 81.58

Sand area 81.08 91.11 63.95 89.19 76.92

Degraded scrub 52.00 73.28 47.62 74.40 89.04

Fallow land 71.43 70.05 57.68 82.86 60.98

Land with scrub 73.60 94.58 41.21 77.60 77.31

OCA 77.88 80.43 78.25 83.03

Kappa 0.753 0.765 0.645 0.794
SVM, fallow lands by ANN but correctly classified by the pro-
posed technique. However, the one more area under inves-
tigation containing water body ‘D’ has been misclassified as

fallow land in the ABC classified image (Fig. 4A–D).
From Table 2, it is intuitive that the highest OCA of

83.03% is obtained in the ABC technique for the training data-

set size of 3090 pixels, whereas the OCA in MLC for the same
training set size at 6 classes is 77.88%. The SVM and ANN
classifiers produced OCA of 80.43% and 78.25%, respectively.

Further ABC shows the highest Kappa coefficient of 0.794,
sswise accuracy of MLC, SVM, ANN and ABC.

uracy (%) Kappa statistics

SVM ANN ABC MLC SVM ANN ABC

93.20 73.91 93.88 0.891 0.572 0.579 0.934

100 100 86.84 0.571 0.746 0.596 0.554

96.47 67.17 70.21 0.717 0.700 0.594 0.697

57.14 74.73 79.49 0.756 0.650 0.560 0.896

77.51 100 50.00 0.451 0.699 0.588 0.571

87.67 74.07 78.23 0.765 0.685 0.600 0.770
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and the other techniques stand in the descending order like,
SVM (0.765), MLC (0.753) and ANN with the lowest kappa
value of 0.645. Taking into consideration the qualitative and

quantitative comparisons, it is evident that the Artificial Bee
Colony method out performs Support Vector Machine,
Maximum Likelihood Classifier and Artificial Neural

Network based classifiers and exhibited higher overall classifi-
cation accuracy.

5. Conclusion

The performance of RS data classification using swarm intelli-
gence can overcome the limitation in constructing proper clas-

sifier, when the study area is complex and spectral signature of
the classes overlap. This work has presented a new method for
classifying RS data using Artificial Bee Colony algorithm.

ABC is a multi-agent system with a simple intelligence which
can complete the task through cooperation. ABC is based on
waggle dance which updates the distance of class values
(Nectar amount) and can be represented without using com-

plex equation. As a result, ABC is capable of providing better
classification results. This method has been applied in classifi-
cation of RS images of Mangalore coastal area, India. The

comparison of classification results is carried out between the
ABC, MLC, SVM and ANN methods. The overall accuracy
obtained in the ABC method is 83.03% with a Kappa coeffi-

cient of 0.7949. When compared to MLC, SVM and ANN,
the ABC method is found to be more effective in the classifica-
tion of RS data.

However, there is a limitation in using this method in

identifying classes. The classes identified by scoot bees have
larger number of boxes (classes) in feature space. This is
because some of the scout bees become an onlooker’s bee if

the threshold reaches maximum iteration. In future research
classification rule can be applied using XOR condition to iden-
tify the classes.
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