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ABSTRACT
Quick and timely fault detection is of great importance in control systems reliability. Undetected
faulty sensors could result in irreparable damages. Although fault detection and isolation (FDI)
methods in control systems have received much attention in the last decade, these techniques
have not been applied for some classes of nonlinear systems yet. This paper deals with the
issues of sensor fault detection and isolation for a class of Lipschitz uncertain nonlinear system.
By introducing a coordinate transformation matrix for states and output, the original system is
first divided into two subsystems. The first subsystem is affected by uncertainty and disturbance.
The second subsystem just has sensor faults. The nonlinear term is separated to linear and pure
nonlinear parts. For fault detection, two sliding mode observers (SMO) are designed for the two
subsystems. The stability condition is obtained based on the Lyapunov approach. The necessary
matrices and parameters are obtained by solving the linear matrix inequality (LMI) problem. Fur-
thermore, two sliding mode observers are designed for fault isolation. Finally, the effectiveness
of the proposed approach is illustrated by simulation examples.
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1. Introduction

With the development of industrial systems, the com-
plexity of control systems has increased too, requiring
high accuracy and speed. Real systems are subject to
the disturbance in their inputs and outputs. Thus, it
is important to include the disturbances in the control
system modelling to obtain practical results, particu-
larly in developing a fault detection method. The sen-
sors play a crucial role in feedback control systems. If
sensors provide incorrect information, tracking perfor-
mance or regulationwould beweak andmay even cause
system instability. In recent years, the study of fault
detection to increase the reliability of systems has been
of great interest to researchers [1–5]. Due to various
nonlinearities in the systems, there is no general fault
detection method for all nonlinear systems. The leader
following tracking consensus problem for high order
nonlinear dynamical multi-agent systems with switch-
ing topology and communication delay under noisy
environments is investigated in [6]. One of the model-
based FDI methods is the use of observers, which is
one of the best ideas for fault detection and isolation.
Observer-based fault detection is consideredmore than
other fault detection methods [7–14]. In FDI applica-
tions, the observer is used to generate a residual. The
residual is obtained from the difference between the
actual output of the system and the estimated output
of the observer. It is small in the absence of faults and

after the occurrence of a fault, the residual increases and
when exceeding a certain threshold, a fault is detected.
The practical observers used in fault detection are
adaptive observer, unknown input observer and sliding
mode observer. There are many researches in actuator
fault detection [15–18], but sensor FDI has been less
studied than actuator FDI. Fault detection and isolation
algorithm for attitude determination system of a satel-
lite including a sun sensor was proposed in [19]. Sensor
fault detection and isolation for a class of Lipschitz
nonlinear systems with unstructured modelling uncer-
tainty was developed by adaptive estimation approach
in [20]. Although using the adaptive threshold is inter-
esting but the capability to deal with the intermittent
fault detection with non-zero initial states is not pre-
sented in [20]. To reduce fault detection time delay
and for fault accommodation, an adaptive threshold
with TS fuzzy system is implemented in [21]. Based
on switched descriptor observer, sensor fault estima-
tion and compensation for time delay switch systems
were investigated in [22]. To detect incipient sensor
faults, some researchers combined the sliding mode
observer and lunberger observer [23]. The slidingmode
observer is used for sensor fault estimation [24]. The
present paper discusses sensor fault detection for a
class of Lipschitz uncertain nonlinear system using the
slidingmode observer. Firstly by introducing coordina-
tion transformation matrices for states and outputs, the
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original system is divided into two subsystems. One of
them contains uncertainty and disturbance and the sec-
ond one includes sensor faults only. Then, sensor faults
in the second subsystem are formed as an actuator fault.
The slidingmode observers are designed for fault detec-
tion and isolation. The sufficient condition of stability
of the proposed FDI scheme is proved by the Lyapunov
approach and solving LMI problem. Finally, if the esti-
mated output error value ismore than the threshold, the
occurrence of sensor fault is detected.

In this paper, sensor fault detection and isolation of
a special class of nonlinear systems, using a new tech-
nique to design new observers is considered. Two dis-
tinct motivations towards this research are, firstly there
are many practical systems in use which fall in the class
of nonlinear system investigated in this paper; and sec-
ondly, In spite of theoretical challenges to design sliding
mode observer for FDI purpose, this technique pro-
vides high-performance results in terms of robustness
against uncertainty and disturbances.

The rest of this paper is organized as follows: system
modelling andmathematical preliminaries required for
fault detection are described in Section 2. The observers
design for sensor fault detection and the stability condi-
tion of error dynamics of the proposed observers based
on the Lyapunov approach and solving LMI problem
is presented in Section 3.1. The design of observers for
fault isolation is discussed in Section 3.2. The simula-
tion results with the proposed method on a Lipschitz
nonlinear system in the presence of uncertainty and
disturbance for an abrupt, an incipient and an intermit-
tent fault are shown in Section 4, and some conclusions
are drawn in Section 5.

2. Diagnosis structure

The class of nonlinear system is consideredwith the fol-
lowing form. It is assumed that only sensor fault occur
in the system.

ẋ = Ax(t) + g(x)U(t) + Mη(t) + Dd(t)

y(t) = Cx(t) + Ffs (1)

where x ∈ Rn, U ∈ Rm, y ∈ Rp, fs ∈ Rq, η ∈ Rr, d ∈
Rr denote respectively the vector of state variables,
inputs, outputs, sensor faults, uncertainty and distur-
bance. g(x) represents the nonlinear term, which can be
rewritten as a combination of linear and pure nonlinear
parts.

g(x) = gl(x) + gnl(x) (2)

By substituting Equation (2) in Equation (1) and taking
B = gl(x), Equation (3) is obtained.

ẋ = Ax(t) + BU(t) + gnl(x)U(t) + Mη(t) + Dd(t)

y(t) = Cx(t) + Ffs (3)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,M ∈ Rn×r,D ∈
Rn×r F ∈ Rp×q, p ≥ q + r and F,M,D,C have full rank.

Assumption 2.1: rank(CM) = rank (M) and rank
(CD) = rank (D).

Assumption 2.2: For every s with non-negative real
part:

rank
[
sI − A M
C 0

]
= n + rank (M),

rank
[
sI − A D
C 0

]
= n + rank (D) (4)

Assumption 2.3: The nonlinear term, gnl(x), is Lips-
chitz about the state x.

|gnl(x) − gnl(x̂)| ≤ kg |x − x̂|, ∀ x, x̂ ∈ Rn (5)

where kg is the Lipschitz constant.

Assumption 2.4: The vector d and η satisfy the follow-
ing constraints:

‖d‖ ≤ ζ , ‖η‖ ≤ η0 (6)

where ζ and η0 are two known positive constants.

Basic steps of the proposed scheme are outlined in
Figure 1.

The first step is to determine coordinate transfor-
mation matrices and applying them to the original
system, resulting in the new system 1. Then the new
system 1 is decomposed into two subsystems. The first
subsystem contains uncertainty and disturbances, and
the second one includes sensor faults only. Then, by
augmenting first and second subsystems the new sys-
tem 2 is obtained. Next step is to design sliding mode
observers for fault detection and isolation. Moreover,
observer error dynamics stability is achieved by the Lya-
punov approach and solving LMIproblem.The residual
is calculated from the actual and estimated outputs. By
evaluating the residual, a fault is detected and isolated.

Lemma 2.1: There exist Z = Tx =
(
Z1
Z2

)
,W = Sy =(

W1
W2

)
under Assumption 2.1.

The coordinate transformation matrices T and S are
elaborately determined through mathematical manipu-
lation of the system equations so that they hold the
following properties:

TAT−1 =
[
A1 A2
A3 A4

]
, TB =

[
B1
B2

]
,

TM =
[
M1
0

]
, TD =

[
D1
0

]
, SF =

[
0
F2

]
,

SCT−1 =
[
C1 0
0 C4

]
(7)
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Figure 1. The structure of the proposed scheme for fault detection and isolation.

where:

T =
(
T1
T2

)
∈ Rn×n, S =

(
S1
S2

)
∈ Rp×p,

T1 ∈ Rr×n, S1 ∈ Rr×p, Z1 ∈ Rr

W1 ∈ Rr, A1 ∈ Rr×r, A4 ∈ R(n−r)×(n−r),

B1 ∈ Rr×m, M1 ∈ Rr×r,D1 ∈ Rr×r

C1 ∈ Rr×r, C4 ∈ R(p−r)×(n−r), F2 ∈ R(p−r)×q.

3. Design of slidingmode observer

3.1. Fault detection

The coordinate transformation matrices T and S are
introduced and system 1 is converted into the following
two subsystems (8) and (9), where (8) accommodates
uncertainties and disturbances but without any sensor
faults and (9) includes sensor faults free of uncertainties
or disturbances. The first subsystem is as follows:

Ż1 = A1Z1 + A2Z2 + g1(T−1Z)U

+ B1U + M1η + D1d

W1 = C1Z1 (8)

And the second subsystem is as follows:

Ż2 = A3Z1 + A4Z2 + B21U + g2(T−1Z)U

W2 = C4Z2 + F2fs (9)

where g1(T−1Z) = T1gnl(T−1Z) and g2(T−1Z)

= T2gnl(T−1Z).

Lemma 3.1: The pair (A4,C4) is detectable if and only
if Assumption 2.2 holds.

A new state Z3 = ∫ t
0 W2(τ )dτ is defined so that

Ż3 = C4Z2 + F2fs (10)

Equations (9) and (10) can be combined to form an
augmented system as

[
Ż2
Ż3

]
=

[
A4 0
C4 0

] [
Z2
Z3

]
+

[
A3
0

]
Z1 +

[
g2(T−1Z)

0

]
U

+
[
B2
0

]
U +

[
0
F2

]
fs

W3 = Z3 (11)

System with Equation (11) can be rewritten as

Ż0 = A0Z0 + A01Z1 + g(Z0)U + B0U + F0fs
W3 = C0Z0 (12)

where:

A01 =
[
A3
0

]
∈ R(n+p−2r)×r,

A0 =
[
A4 0
C4 0

]
∈ R(n+p−2r)×(n+p−2r)

B0 =
[
B2
0

]
∈ R(n+p−2r)×m,

C0 = [
0 Ip−r

] ∈ R(p−r)×(n+p−2r)

Z0 =
[
Z2
Z3

]
∈ Rn+p−2r, W3 ∈ Rp−r,

F0 =
[
0
F2

]
∈ R(n+p−2r)×q

g(Z0) =
[
g2(T−1Z)

0

]
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Accordingly, system (8) can be rewritten as

Ż1 = A1Z1 + Ā2Z0 + g1(T−1Z)U

+ B1U + M1η + D1d

W1 = C1Z1 (13)

where Ā2 = [ A2 0r×(p−r) ] .

Lemma 3.2: The pair (A0,C0) is observable if Assump-
tion 2.2 holds.

Proof: From the Popov–Belevitch–Hautus (PBH) test,
the pair (A0,C0) is observable if and only if:

rank
[
sI − A0
C0

]
= rank

⎡
⎣sI − A4 0

−C4 sI
0 I

⎤
⎦ = n + p − 2r

(14)
If s =0 then

rank

⎡
⎣sI − A4 0

−C4 sI
0 I

⎤
⎦ = rank

[−A4
−C4

]
+ p − r

If Assumption 2.2 holds, it follows that (A4,C4) is
observable and thus: rank

[
sI−A4
C4

]
= n − rwhen s �= 0

and because (A4,C4) is observable then:⎡
⎣sI − A4 0

−C4 sI
0 I

⎤
⎦ [

a1
a2

]
= 0 ⇒

[
a1
a2

]
= 0

It means that the columns of
[
sI−A4 0
−C4 sI
0 I

]
are linearly

independent and rank is n + p − 2r. This completes the
proof. �

It follows from Lemma 3.2 that there exists a matrix
L0 ∈ R(n+p−2r)×(p−r) such thatA0 − L0C0 is stable, and
for any Q0 > 0, the Lyapunov equation has a unique
solution, P0 > 0.

(A0 − L0C0)
TP0 + P0(A0 − L0C0) = −Q0 (15)

For subsystem (8) a sliding mode observer is designed
like (16):

˙̂Z1 = A1Ẑ1 + Ā2Ẑ0 + g1(T−1Ẑ)U + B1U

+ (A1 − A1s)(C1)
−1(W1 − Ŵ1) + ν1

Ŵ1 = C1Ẑ1 (16)

A1s is a stable matrix. Ẑ is defined as Ẑ := col(C1
−1W1,

Ẑ2). The injection term ν1 is defined by

ν1 =

⎧⎪⎨
⎪⎩
k1

P1(Z1 − Ẑ1)
‖P1(Z1 − Ẑ1)‖

if Z1 − Ẑ1 �= 0

0 otherwise
(17)

where k1 = ‖M1‖η0 + ‖D1‖ζ + γ and γ is a posi-
tive scalar. P1 ∈ Rr×r is a symmetric positive defi-
nite matrix. For subsystem (12) following observer is

designed:

˙̂Z0 = A0Ẑ0 + A01C−1
1 W1 + ĝ2(T−1Ẑ)U + B0U

+ L0(W3 − Ŵ3) + ν2

Ŵ3 = C0Ẑ0 (18)

Where L0 is the gain that will be defined and the injec-
tion term ν2 is defined by

ν2 =

⎧⎪⎨
⎪⎩

E0(Z3 − Ẑ3)
‖E0(Z3 − Ẑ3)‖

if Z3 − Ẑ3 �= 0

0 otherwise
(19)

where E0 ∈ Rq×(p−r).

3.1.1. Investigating the stability of observer error
dynamics
If the state estimation errors are defined as e1 = Z1 −
Ẑ1 and e0 = Z0 − Ẑ0, then the error dynamics with no
sensor fault can be obtained as

ė1(t) = A1se1 + Ā2e0 + g1(T−1Z)U

− g1(T−1Ẑ)U + M1η + D1d − ν1 (20)

ė0(t) = (A0 − L0C0)e0 + ḡ2(T−1Z)U

− ḡ2(T−1Ẑ)U − ν2 (21)

Sufficient conditions for the existence of the proposed
observers (16) and (18) are presented in the following
theorem.

Theorem 3.1: In the healthy system, the error dynam-
ics (20) and (21) are asymptotically stable if there exist
the matrices A1s < 0, L0 > 0, P1 = PT1 > 0, P0 = PT0 >

0 and the positive scalars α1,α0 such that[
�1 + 1

α1
P1P1 P1Ā2

Ā2
TP1 �2 + 1

α0
P0P0 + αIn+p−2r

]
< 0

(22)
where�1 = A1s

TP1 + +P1A1s,�2 = (A0 − L0C0)
TP0

+ P0(A0 − L0C0).

α = α1k2g1‖T−1‖2 + α0k2g2‖T−1‖2

Proof: The Lyapunov function is chosen as follows:

V(e1, e0) = V1(e1) + V0(e0)

V1(e1) = e1TP1e1, V0(e0) = e0TP0e0

The time derivative of V1 is given as

V̇1(e1) = eT1 (P1A1s + AT
1sP1)e1 + 2eT1 P1Ā2e0

+ 2eT1 P1M1η + 2eT1 P1D1d

+ 2eT1 P1(g1(T
−1Z) − g1(T−1Ẑ))U

− 2eT1 P1ν1
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Since the inequality 2XTY ≤ (1/α)XTX + αYTY is
true for any positive scalar α, then:

V̇1(e1) ≤ eT1 (P1A1s + AT
1sP1)e1 + 2eT1 P1Ā2e0

+ 2eT1 P1M1η + 2eT1 P1D1d + 1
α
eT1 P1P

T
1 e1

+ α(g1(T−1Z) − g1(T−1Ẑ))T

× (g1(T−1Z) − g1(T−1Ẑ)) − 2eT1 P1ν1

With no sensor fault there is

Z − Ẑ =
[
0
e2

]

‖T−1Z − T−1Ẑ‖ = ‖T−1e2‖ ≤ ‖T−1e0‖
‖g1(T−1Z) − g1(T−1Ẑ)‖ ≤ kg1‖T−1‖‖e0‖
‖g2(T−1Z) − g2(T−1Ẑ)‖ ≤ kg2‖T−1‖‖e0‖

kg1 = ‖T1‖kg , kg2 = ‖T2‖kg
It can be obtained:

eT1 P1ν1 = k1‖p1e1‖

V̇1(e1) ≤ eT1 �1e1 + 2eT1 P1Ā2e0 + 1
α1

eT1 P1P1e1

+ α1k2g1‖T−1‖2‖e0‖2

In the same way as above the time derivative of V0 is
given as

V̇0(e0) ≤ eT0 �0e0 + 2eT1 P1Ā2e0 + 1
α0

eT0 P0P0e0

+ α0k2g2‖T−1‖2‖e0‖2

Combining V̇1 and V̇0 yields:

V̇ = V̇1(e1) + V̇0(e0) ≤
[
e1
e2

]T
∧

[
e1
e2

]

If there exist the matrices A1s < 0, L0 > 0, P1 = PT1 >

0, P0 = PT0 > 0 and the positive scalars α1,α0 such that
inequality (22) is satisfied, then V̇ < 0 for any e �= 0,
where e = [ e1e2 ]. This implies that the error dynamics
are asymptotically stable. �

By using the Schur complement approach the prob-
lem of finding matrices to stability inequality (22) can
be transformed into the following LMI feasibility prob-
lem. The matrices X, y0, P1 = PT1 > 0, P0 = PT0 > 0
and positive scalars α1, α0 exist such that:⎡

⎢⎢⎢⎢⎢⎢⎣

X + XT P1 P1Ā2 0
P1 −α1I 0 0

ĀT
2 P1 0

ĀT
0 P0 + P0A0

−CT
0 y

T
0 − y0C0
+αI

P0

0 0 P0 −α0I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0

(23)

where X = P1A1s, y0 = P0L0. When a sensor fault
occurs at tf , the error dynamics become as follows:

ė1(t) = A1se1 + Ā2e0 + g1(T−1Z)U − g1(T−1Ẑ)U

+ M1η + D1d − ν1 (24)

ė0(t) = (A0 − L0C0)e0 + ḡ2(T−1Z)U − ḡ2(T−1Ẑ)U

+ F0fs − ν2 (25)

By considering (25) it can be comprehended that e0 is
only affected by sensor faults fs. The sensor fault dis-
tribution matrix is F0 = [ 0

F2
]
. Thus, the sensor fault

affects the last (p − r) components of e0 namely, eZ3 =
Z3 − Ẑ3. The residual for detecting sensor faults is cho-
sen as: ‖eW3‖ = ‖C0e0‖ = ‖eZ3‖. If ‖eW3‖ > η0 then
there is a sensor fault, where η0 is a specified threshold.
The detection time, td, where td ≥ tf , is defined as the
moment when ‖eW3‖ exceeds the threshold.

3.2. Fault isolation

When multiple sensor faults occur simultaneously the
vector of sensor faults is denoted as [f Ts1, f

T
s2, . . . , f

T
sq]T .

For each possible fsi �= 0, i = 0, 1, 2, . . . , q; two obser-
vers are designed for two subsystems. The resid-
uals obtained from the observers should only be
sensitive to fsi. The following observer is designed for
subsystem (13).

˙̂Z1i = A1Ẑ1i + Ā2Ẑ0i + g1(T−1Z̄i)U + B1U

+ (A1 − A1s)C−1
1 (W1i − Ŵ1i) + ν1i

Ŵ1i = C1Ẑ1i (26)

where Ẑi denotes the estimated state, it is defined as
Ẑi := col(c−1

1 W1, [In−1, 0]Ẑ0i) and Ŵi denotes the esti-
mated output. The output error injection term ν1i is
defined as

ν1i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(‖M1‖η0 + ‖D1‖ζ + γ )

P1(Z1 − Ẑ1i)
‖P1(Z1 − Ẑ1i)‖

if Z1 − Ẑ1i �= 0

0 otherwise
(27)

where γ is a positive scalar. The proposed observer
for fault isolation has the following form for subsys-
tem (12):

˙̂Z0i = A0Ẑ0i + A01C−1
1 W1i + ḡ2(T−1Z̄i)U + B0U

+ L0(W3i − Ŵ3i) + F̄0iν2i

Ŵ3i = C0Ẑ0i (28)

The output error injection term ν2i is defined as

ν2i =

⎧⎪⎨
⎪⎩

γ3
Ē0i(W3i − Ŵ3i)

‖Ē0i(W3i − Ŵ3i)‖
if eW3i =
W3i − Ŵ3i �= 0

0 otherwise
(29)
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where F̄0i represents the vector of all except fsi sensor
faults, γ3 is a positive scalar and E0i is the i-th row of E0
and Ē0i consists all other rows. The error dynamics are
expressed as

ė1i(t) = A1se1i + Ā2e0i + g1(T−1Z)U − g1(T−1Ẑ)U

+ M1η + D1d − ν1i (30)

ė0i(t) = (A0 − L0C0)e0i + ḡ2(T−1Z)U − ḡ2(T−1Ẑ)U

+ F0if0i − F̄0i(fsi − ν2i) (31)

Multiple sensor faults can be isolated by comparing the
residual ‖eW3i‖, with a predefined threshold. If ‖eW3i‖
exceeds the threshold, then it is concluded that fsi �= 0.
Considering the structure of F0, the decision on which
sensor is faulty is to be made.

4. Simulation

The effectiveness of the proposed sensor fault detec-
tion scheme is demonstrated by considering the fol-
lowing example. The state space of the system can be
represented in the following form.⎡

⎣ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ 0 0.5 0

−1 −1 0
1 −1 −2

⎤
⎦

⎡
⎣x1
x2
x3

⎤
⎦ +

⎡
⎣0
0
1

⎤
⎦U

+
⎡
⎣ 0

− sin(x1)
0

⎤
⎦U +

⎡
⎣1
0
0

⎤
⎦ η +

⎡
⎣1
0
0

⎤
⎦ d

y =
⎡
⎣1 0 0
0 1 0
0 1 1

⎤
⎦

⎡
⎣x1
x2
x3

⎤
⎦ +

⎡
⎣0 0
1 0
0 1

⎤
⎦ fs

η = 0.5 sin(t), d = 0.2 cos(t),

U = 1.5 sin(t), g(x) =
⎡
⎣ 0

− sin(x1)
1

⎤
⎦

The nonlinear term g(x) has a Lipschitz constant. The
terms η and d are added to the system equations
to represent uncertainties and disturbances. Parame-
ter uncertainty is assumed to change system matrix
elements randomly. Sensor fault vector is

[
fs1
fs2

]
and

the coordinate transformation matrices are obtained
as T = S =

[ 1 0 0
0 1 0
0 0 1

]
. In the new coordinate system, the

system matrices become:

A = TAT−1 =
⎡
⎣ 0 0.5 0

−1 −1 0
1 −1 −2

⎤
⎦ ,

C = SCT−1 =
⎡
⎣1 0 0
0 1 0
0 1 1

⎤
⎦ , B = TB =

⎡
⎣0
0
1

⎤
⎦

M = TM =
⎡
⎣1
0
0

⎤
⎦ ,D = TD =

⎡
⎣1
0
0

⎤
⎦ ,

F = SF =
⎡
⎣0 0
1 0
0 1

⎤
⎦

By solving the LMI problem (22), following parameters
are computed:

P1 = 0.6567, A1s = −0.8938, α0 = 1.1993,

E0 =
[
0.3852 0.0259
0.0259 0.4318

]

L0 =

⎡
⎢⎢⎣

0 0
0 0

1.7834 −0.1048
−0.1414 1.5562

⎤
⎥⎥⎦

To detect fault occurrence the norm of the output esti-
mation error, ‖eW3‖, is selected as the residual. An
adequate threshold level is decided based on practi-
cal considerations for system parameter uncertainty
which is implemented by changing 10% in some ran-
domly selected elements of system matrix. Performing
many simulations confirmed that threshold level 0.02
provides satisfactory results in terms of fault detec-
tion sensitivity and false alarm rate. Furthermore, an
upper band for initial transient errors is estimated by
performing an extensive simulation study. To this end,
randomly selected non-zero initial states are applied
to the fault detection observer and the resulted tran-
sients are evaluated carefully. The initial transient error
decays whiting 3.5 s. Therefore a time-varying thresh-
old is chosen as Equation (32). Initial time-varying
threshold facilitates fault detection during the transient
period. Thus, a fault is detected whenever the residual
goes over the threshold.

threshold =
⎧⎨
⎩

1
45
3.5 t + 5

t ≤ 3.5

0.02 t > 3.5
(32)

4.1. Fault detection results

In this part, it is assumed that fs2 = 0 for all time. The
residual value of fault-free system and after occurring
the following abrupt fault is observed in Figure 2.

f (abrupt)s1 =
{
0 t < 12
0.5 t ≥ 12

The residual value for non-zero initial states and with-
out parameter uncertainty is shown in Figure 2(a). The
trace of uncertainty is demonstrated in Figure 2(b)
evidencing that threshold level 0.02 is a desirable
choice. The result of non-zero initial states is shown
in Figure 2(c). As observed, transient error falls below
threshold level 0.02 before 3.5 s. The residual value in
case of uncertainty and non-zero initial states is shown
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Figure 2. The influence of sensor abrupt fault on the residual. (a) Without uncertainty and zero initial states. (b) With uncertainty
and zero initial states. (c) Without uncertainty and non-zero initial states. (d) With uncertainty and non-zero initial states.

Figure 3. The incipient sensor fault detection. (a) Without uncertainty and non-zero initial states. (b) With uncertainty and non-zero
initial states. (c) Fault occurs in transient period.

in Figure 2(d). The residual value exceeds the thresh-
old at 12.02 s, therefore sensor fault is detected within
0.02 s.

Fault detection results for the following incipient
fault with non-zero initial states but without param-
eter uncertainty and also with non-zero initial states

and parameter uncertainty are shown in Figure 3(a,b),
respectively. As observed in Figure 3(a) the residual
value exceeds the threshold level at 12.11s, alarming a
fault. The residual value exceeds threshold at 12.13 s
in Figure 3(b) which reveals sensor fault. Figure 3(c)
demonstrates the capability of the proposed scheme to
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Figure 4. The intermittent sensor fault detection via the proposed scheme. (a) Without uncertainty and non-zero initial states. (b)
With uncertainty and non-zero initial states.

Figure 5. Simulation of large parameter uncertainty. (a) Abrupt fault. (b) Incipient fault.

Figure 6. The residual in case of two successive sensors fault. (a)Without uncertainty and initial conditions. (b)With uncertainty and
initial conditions.

Figure 7. Isolation of first sensor fault, f s1. (a) Without uncertainty and initial conditions. (b) With uncertainty and initial conditions.
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Figure 8. Isolation of second sensor fault, f s2. (a) Without uncertainty and initial conditions. (b) With uncertainty and initial
conditions.

detect a sensor fault during the initial transient period,
thanks to the adopted threshold function.

f (incipient)s1 =
{
0 t < 12
0.1e0.01t t ≥ 12

The sensor fault detection via the proposed scheme
for the following intermittent fault with non-zero ini-
tial states is demonstrated in Figure 4, where the effects
of parameter uncertainty are seen in Figure 4(b). From
Figure 4(a) the residual value exceeds the threshold at
10.11 s, thus a fault is detected. The residual remains
larger than the threshold until 15.24 s. Then the resid-
ual falls below the threshold at 15.24 s and implies that
the fault is removed. The residual exceeds the thresh-
old at 20.10 s again, which implies that there is a fault
after 20.10 s. From Figure 4(b) the residual first exceeds
the threshold at 10.18 s and an incipient fault detected,
then it falls below the threshold at 15.21 s indicating
that the fault is removed. At 20.06 s a fault is detected
as the residual exceeds the threshold.

f (intermittent)
s1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 t < 10
0.1e0.01t 10 ≤ t < 15
0 15 ≤ t < 20
0.1e0.01t t ≥ 20

By more increasing, the level of parameter uncer-
tainty, the probability of false detection would grow
accordingly. The influence of 30% uncertainty in the
randomly selected elements of the system matrix on
abrupt and incipient fault detection are shown in
Figure 5(a,b), respectively. As observed in Figure 5(b)
false alarm is issued due to a large amount of parameter
uncertainty.

4.2. Fault isolation results

In this part of simulations, two sensors fault are
assumed as follows:

f s1 =
{
0 t < 12
0.1e0.01t t ≥ 12

,

f s2 =
{
0 t < 20
0.15e0.02t t ≥ 20

The fault detection capability of the proposed scheme
without a trace of uncertainty and with zero initial
states and also with a trace of uncertainty and non-
zero initial states are demonstrated in Figure 6(a,b),
respectively. After detecting a fault, the next step is to
determine which sensor is faulty. The isolation result
for fs1 and fs2 with zero initial states and without a trace
of uncertainty are shown in Figure 7(a,b), respectively.
In the same way, the isolation results for fs1 and fs2 with
non-zero initial states and with a trace of uncertainty
are shown in Figures 7(b) and 8(b), respectively. The
residual generated by the observer is comparedwith the
threshold obtained from Equation (32).

5. Conclusion

In this paper, a sensor fault detection and isolation
method for a class of nonlinear systems was proposed.
First, the original system was divided into two subsys-
tems by applying coordinate transformation matrices.
The first subsystem involved uncertainty and distur-
bance and the second subsystem only contained sensor
faults. Then, the sensor fault was expressed as an actu-
ator fault virtually and the new Sliding Mode Observer
was designed for multiple sensors fault detection and
isolation. The stability conditions were examined and
the required parameters of the observers were obtained
by solving the LMI problem. The performance of the
proposed scheme is illustrated by a simulation study. To
avoid false detection on initial transient, a time-varying
threshold function is employed. The simulation results
showed that the scheme detects and isolates faults cor-
rectlywith good accuracy and speedwithout false alarm
ormissed detection, in the presence of a certain amount
of uncertainty.
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