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Abstract— The Robocup Small Size Soccer League is a widely
known Robotics league around the world. One important
competition done in Robocup is the Small Size Soccer League
(SSL). The path following problem is important to score goals in
this competition. It is also necessary a speed control algorithm
embedded in the low level. The teams mostly use embedded
linear speed controllers. However, the robot has constraints
not considered by linear control theory. The main goal of this
paper is to derive a mathematical description of the robot’s
model and propose a Model Predictive Controller that considers
these constraints, getting near to an optimal approach for
the problem. The speed controller achieved shows a system
that uses the maximum acceleration available throughout the
transient. Besides this, the controller obtained slows down
the system to avoid slippages. The slippages could drastically
reduce the robot’s performance when following paths. Finally,
the linear physical model obtained for the constraints opens
up opportunities for implementing faster algorithms using e.g.
Multi Parametric Programming.

I. INTRODUCTION

The ITAndroids robotics team participates regularly in

robotic related competitions. Our team started to partake in

the Small Size Robot Soccer League, that organizes games

between two teams of 6 robots (Div B), with a maximum

size of 18 cm in diameter and 15 cm height, in a field of

9 m x 6 m. The winner is the team who makes more goals

[8]. The physical setup provides a top view of the field via

computer vision processing. With the preprocessed image, it

is possible to recognize the poses of the teammates, as well

as the adversary.

Our Small Size robot has 4 omnidirectional wheels [9].

The movement of the wheels is controlled by an embedded

processor that commands the motors. Up to the date, the

embedded processor used the PID algorithm. However, this

algorithm does not consider the coupling between the outputs

of the controlled system, and therefore does not have an

optimal performance.

The team has experimented with model predictive control,

such as [5] and [6] with promising results for Very Small Size

robots, which have additional constraints when comparing to

SS robots [7]. In the case of the standard small size robots,

there are constraints in terms of the maximum voltage that

can be applied to the motors. Besides this, slippages are
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undesirable so that the maximum acceleration demanded by

the robot is also constrained. In fact, this constraint is associ-

ated with the maximum friction force between the wheel and

the floor. Linear controllers, such as the traditional PID, are

not able to reason about constraints. The main objective of

this article is to propose a speed model predictive controller

(MPC) in which the robot dynamics and the constraints are

adequately represented and taken into account.

To the best of our knowledge, the main state of the

art works related have not been considering non slipping

constraints for omnidirectional four wheeled robots [1].

Other authors such as [2] and [3] attempted to solve related

problems considering friction side effects. On their work,

the MPC design was used to handle only voltage limit

constraints. The system model considered includes dry and

viscous friction. Whereas the article [4] presents the non-

slipping constraints obtained for the omnidirectional robot

system. However, the model obtained do not include the

motor dynamics. Besides this, the constraints derived are of

non-linear form, making infeasible the optimization problem

embedded in the linear MPC quadratic programming algo-

rithm. This article contributes with an alternative method

to yield an optimization problem with linear constraints,

that can be solved by means of linear MPC techniques.

As the control system requires a fast response, non-linear

MPC techniques would be inconvenient, since it has a larger

computacional cost. Moreover, linear constraints facilitate

the physical analysis.

The Section II presents the model of the system, the

Section III shows the MPC methodology, the Section IV

depicts results for the adopted case study, the Section V

provides some conclusions and indicates some further works

and finally the Section VI with acknowledgements. For this

particular paper the system model derived can be extended

to any four wheeled omnidirectional robot following the

physical conditions described in the Section II.

II. SYSTEM MODELLING

In a higher abstraction level, a robot is represented by a

state vector which describes its position in the field, as well

as its orientation, according to a chosen reference system.

However, in a low abstraction level, a robot is viewed in

physical terms, focusing in entities such as the input u, the

voltage applied to each one of the motors, and the output y,

the angular velocity of each wheel. This section is devoted to

the construction of a mathematical description of the robot.
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A. Conventions

In the global reference frame,
{

xg,yg
}

, the robot is repre-

sented by the vector of states x = [x y ψ]T , in which x and y
are cartesian coordinates of a point in the robot (typically, the

point is the intersection between the lines along the wheel’s

axes) and ψ is the robot’s orientation taking as the reference

the robot’s front side, defined by the presence of devices:

kicker, chipper and dribbler. Besides, a coordinate system

{xr,yr} attached to the robot with its origin at the robot’s

reference point and rotated in a way that the axis xr is

aligned with the front [9]. With this setup, v, vn and ω are

considered the front, side and angular speeds, respectively.

The conventions described so far are depicted in the Figure

1.

Fig. 1. Conventions for other Cartesian coordinate systems.

With respect to the wheels, the following conventions,

schematically shown in the Figure 2, is adopted: the wheels

are numbered in a anticlockwise way, starting with the axis

xr and assigning the number 1 to the first wheel. The linear

velocities convention follows the same rationale. Finally,

the convention for the angular velocity is done in a way

that is consistent with the corresponding linear velocity, i.e.

vi =ωiri and to the ith wheel, in which vi, ωi and ri represent

the wheel’s linear velocity, the wheel’s angular velocity and

the ith wheel’s radius, respectively.

Fig. 2. Wheels’ conventions.

Fig. 3. Non-slipping condition to omnidirectional wheel.

B. Kinematic constraints

It is important to ensure that the robot is not slipping. As

the robot’s wheels are omnidirectional, they do not impose

any constraint in the normal direction, in which the rollers
are free to spin. However, in the tangential direction, for non-

slipping purposes, there should not exist any relative velocity

between the wheel and the ground in the contact point.

Consider an omnidirectional wheel with a distance l from

the reference, and positioned according to the angles α and

β , as shown in Figure 3. In that case, if the reference point is

the intersection between the lines along the wheels’ axes (if

it exists), then β = 0 to any wheel. Given v and vn, the linear

speed on the origin, in the directions xr and yr, respectively,

the non slip condition on the wheel can be written as [10]:

vw = ωwr =−sin(α +β )v+ cos(α +β )vn + l cos(β )ω
(1)

in which vw and ωw are the linear and angular speeds of

the wheel, respectively. In the case of our robot, there are 4

wheels, thus the non-slipping constraints can be represented

as:

⎡
⎢⎢⎣

v1

v2

v3

v4

⎤
⎥⎥⎦

︸ ︷︷ ︸
vw

=

⎡
⎢⎢⎣

ω1r1

ω2r2

ω3r3

ω4r4

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
−sin(α1 +β1) cos(α1 +β1) l1 cos(β1)
−sin(α2 +β2) cos(α2 +β2) l2 cos(β2)
−sin(α3 +β3) cos(α3 +β3) l3 cos(β3)
−sin(α4 +β4) cos(α4 +β4) l4 cos(β4)

⎤
⎥⎥⎦

︸ ︷︷ ︸
M

⎡
⎣ v

vn
ω

⎤
⎦

︸ ︷︷ ︸
vr

(2)

in which the matrix M maps the velocity (omnidirectional)

of the robot in wheels’ speed. The inverse mapping is

sometimes required. As the matrix M is not square, the

inverse mapping can be obtained by means of the Moore-

Penrose’s pseudo-inverse [13]:

vr = M+vw. (3)
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Therefore, regardless of the configuration of the wheels,

it is always possible to determine the mappings between the

robot’s velocity and wheels’ velocities. In the case of our

robot, the wheels’ axes intersect in a single point and all the

wheels have the same radius r and dist l from the origin. The

Table I summarizes the wheels’ angle parameters for the our

robot.

TABLE I

ANGLE PARAMETERS FOR OUR ROBOT.

Wheel α β sin(α +β ) cos(α +β ) cosβ
1 45◦ 0

√
2/2

√
2/2 0

2 135◦ 0
√

2/2 −√2/2 0

3 225◦ 0 −√2/2 −√2/2 0

4 315◦ 0 −√2/2
√

2/2 0

Therefore, the coordinate mappings for our robot are:

⎡
⎣ v

vn
ω

⎤
⎦= r

⎡
⎢⎣−

√
2

4 −
√

2
4

√
2

4

√
2

4√
2

4 −
√

2
4 −

√
2

4

√
2

4
1
4l

1
4l

1
4l

1
4l

⎤
⎥⎦
⎡
⎢⎢⎣

ω1

ω2

ω3

ω4

⎤
⎥⎥⎦ (4)

C. Dynamic Equations

For deriving the dynamic equations, the Lagrangian Me-

chanics formulation is used. In the derivation considered,

we assume that the non slipping conditions are satisfied.

The rotation angle of the wheels, i.e. q = [θ1 θ2 θ3 θ4]
T ,

are chosen as generalized coordinates and the Lagrange

equations become:

d
dt

(
∂L
∂ q̇

)
− ∂L

∂q
= τ (5)

in which L is the system’s lagrangian

L = T −U , (6)

and τ is the generalized force vector. In the expression (6),

T and U are the system kinetic and potential energy. In the

present case, the single potential energy is due to the gravity,

but as the robot moves on a plane, it is possible to choose

the potential’s reference in a way that U = 0. On the other

hand, the kinetic energy is given by:

T =
1

2
mvT

CoMvCoM +
1

2
ICoMω2, (7)

in which m is the robot’s mass, ICoM is the inertia with the

center of mass (CoM) of the robot as a reference and vCoM
is the robot’s CoM speed. In the case in which the CoM

coincides with the reference point (xCoM = yCoM = 0), one

has that:

⎡
⎢⎢⎣

Id Iwc Isc Iwc
Iwc Id Iwc Isc
Isc Iwc Id Iwc
Iwc Isc Iwc Id

⎤
⎥⎥⎦

︸ ︷︷ ︸
Hτ

⎡
⎢⎢⎣

ω̇1

ω̇2

ω̇3

ω̇4

⎤
⎥⎥⎦

︸ ︷︷ ︸
v̇w

=

⎡
⎢⎢⎣

τ1

τ2

τ3

τ4

⎤
⎥⎥⎦

︸ ︷︷ ︸
τ

(8)

in which:

Id =
mr2

4
+

ICoMr2

16l2
(9)

Iwc =
ICoMr2

16l2
(10)

Isc =
ICoMr2

16l2
− mr2

4
(11)

D. Inclusion of the motor and wheel models

The kinetic energies from the motor and wheel were not

included in the Lagrangian, so that it is necessary to discount

them from τ , the momentum necessary to accelerate the

motor and wheel. For simplicity, the following analysis is

carried out for the ith wheel to be generalized later. The

torque generated by the motor i to accelerate the motor’s

rotor and the wheel, denoted τ , satisfies:

τe = Jwω̇i +Bwωi + τi (12)

τe = Nητg (13)

τg = K ji− JmNω̇i−BmNω̇i (14)

in which τg and τe are the torques before and after the

reduction, respectively; Jm and Jw are the inertia from the

motor and wheel, respectively; Bm and Bw are the viscous

friction coefficients from the motor and wheel, respectively;

K is the motor torque constant; N is the reduction factor;

and η is the efficiency of the reduction system. Isolating τi
as a function of all these terms, we obtain:

τi = Nη (K ji− JmNω̇i−BmNω̇i)− Jwω̇i−Bwωi ⇒
τi = NηK ji−

(
N2ηJm + Jw

)
︸ ︷︷ ︸

Jeq

ω̇i−
(
N2ηBm +Bw

)
︸ ︷︷ ︸

Beq

ωi ⇒

τi = NηK ji− Jeqω̇i−Beqωi
(15)

Substitution of (15) into (8) yields:

(Hτ + JeqI4)︸ ︷︷ ︸
H j

⎡
⎢⎢⎣

ω̇1

ω̇2

ω̇3

ω̇4

⎤
⎥⎥⎦

︸ ︷︷ ︸
v̇w

+BeqI4︸ ︷︷ ︸
C j

⎡
⎢⎢⎣

ω1

ω2

ω3

ω4

⎤
⎥⎥⎦

︸ ︷︷ ︸
vw

= NηK︸ ︷︷ ︸
k j

⎡
⎢⎢⎣

j1
j2
j3
j4

⎤
⎥⎥⎦

︸ ︷︷ ︸
j

, (16)

where I4 is the 4x4 identity matrix.

In this case, observe that neglecting the couplings, the

global inertia (seen from the output) that the motor must

accelerate is

I′d =
mr2

4
+

ICoMr2

16l2
+N2ηJm + Jw (17)

Equation (16) represents the robot’s dynamics, having the

motor current as input. The motor current is a function of

the voltage on the motor terminals V , the back electromotive
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force Vbackem f and the motor resistance R. The inductance

effects of the motor winding are neglected, since this value

is usually very low. The model for the motor is thus given

by

ji =
Vi−Vbackem f

R
=

Vi−KNωi

R
, (18)

and substituting (18) in (16):

H jv̇w +C jvw =
NηK

R

⎡
⎢⎢⎣

V1−KNω1

V2−KNω2

V3−KNω3

V4−KNω4

⎤
⎥⎥⎦ (19)

The equations can now be grouped as

H j︸︷︷︸
HV

⎡
⎢⎢⎣

ω̇1

ω̇2

ω̇3

ω̇4

⎤
⎥⎥⎦

︸ ︷︷ ︸
v̇w

+

(
Beq +

N2ηK2

R

)
I4︸ ︷︷ ︸

CV

⎡
⎢⎢⎣

ω1

ω2

ω3

ω4

⎤
⎥⎥⎦

︸ ︷︷ ︸
vw

=
NηK

R︸ ︷︷ ︸
k

⎡
⎢⎢⎣

V1

V2

V3

V4

⎤
⎥⎥⎦

︸ ︷︷ ︸
u

(20)

which can be rewritten in a compact form

Hv̇w +Cvw = ku⇒Hv̇w =−Cvw + ku⇒
v̇w =−H−1C︸ ︷︷ ︸

A

vw + kH−1︸ ︷︷ ︸
B

u⇒ v̇w = Avw +Bu. (21)

E. Constraints

The controlled system has a first constraint on the manipu-

lated variable, in this case, the voltage applied to the motors’

terminals. This voltage can not surpass the maximum voltage

supplied Vm, i.e.,

⎡
⎢⎢⎣
−Vm
−Vm
−Vm
−Vm

⎤
⎥⎥⎦≤ u≤

⎡
⎢⎢⎣

Vm
Vm
Vm
Vm

⎤
⎥⎥⎦ . (22)

In order to avoid slipping, the maximum torque supplied

by the motor to the robot is constrained by the maximum

friction torque τmax, directly related to the maximum friction

force given by

fmax = μn, (23)

in which μ is the friction coefficient between the wheel

and ground, and n the normal force between the wheel and

ground. A relation between the friction forces under the 4

wheels and the normal force generated by the contact of the

robot with the ground can be found in [4]

⎡
⎢⎢⎣

n1

n2

n3

n4

⎤
⎥⎥⎦

︸ ︷︷ ︸
n

=
h
2l

⎡
⎢⎢⎣

0 1 0 −1

−1 0 1 0

0 −1 0 1

1 0 −1 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
N

⎡
⎢⎢⎣

f1

f2

f3

f4

⎤
⎥⎥⎦

︸ ︷︷ ︸
f

+
1

4

⎡
⎢⎢⎣

mg
mg
mg
mg

⎤
⎥⎥⎦

︸ ︷︷ ︸
M

, (24)

in which h is the CoM height above the ground. The direction

of each friction force fi of each wheel is considered parallel

to vi.

The friction forces are also related to the acceleration

parallel to v, vn and ω . If the robot’s CoM is in the geometric

center of the robot, the friction forces will have a distance

of l to the CoM. Summing all the friction components in x,

y and the torques in the z axis, the following equations are

obtained ⎡
⎣ a

an
α

⎤
⎦=

⎡
⎢⎣

√
2

2m −
√

2
2m −

√
2

2m

√
2

2m
−
√

2
2m −

√
2

2m

√
2

2m

√
2

2m
l
Iz

l
Iz

l
Iz

l
Iz

⎤
⎥⎦

︸ ︷︷ ︸
O

f,
(25)

in which Iz is the robot’s moment of inertia in the z axis.

Substituting (25) and (21) in (4),

f = O+rMv̇ω ⇒
f = O+rMA︸ ︷︷ ︸

F

vω +O+rMB︸ ︷︷ ︸
E

u. (26)

Substituting (26) and (24) into (23), we obtain

f≤ μn⇒
f≤ μNf+μM⇒

(I4−μN)(Eu+Fvw)≤ μM,

(27)

which is also valid for negative friction forces like in

f≥−μn⇒
(I4 +μN)(Eu+Fvw)≥−μM.

(28)

It is important to notice that the constraints in (27), (28)

and (22) are linear.

F. Robot parameters

The parameters used in the equations of the model can be

found in the Table II.

TABLE II

ROBOT PARAMETERS.

m 0.71 kg r 25 mm

ICoM 0.0092 kgm2 Jm 9.25 kgmm2

l 85 mm Bm 8.12 kg mm2/s

Jω 32.8 kg mm2 Bω 0.0467 kg mm2/s
N 3 η 0.94
K 25.5 N mm/A R 1.24 Ω
μ 0.60

III. MODEL BASED PREDICTIVE CONTROL

In order to optimize a cost function while inequality

constrains are satisfied, the idea is to use MPC. Since the

constraints involved in this problem are linear, a classical

MPC using quadratic programming [11] [12] suffices.

The discretized linear state equation are obtained by

approximating the original model equations in 21 by keeping

the first order terms of the Taylor expansion to yield

xk+1 = Adxk +Bduk

yk = Cdxk.
(29)
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The state disturbances p are accommodated using an

expanded state representation

xk =

[
(vw)k
(p)k

]
, (30)

in which T is the closed loop sample time. Hereafter, kT will

be replaced by k, if the meaning is clear from the context.

The sample time, T = 0.01s is the one currently used in the

actual robot. For the predictions, the state space equations

are

x̂k+1|k = Adxk +Bd ûk|k
x̂k+2|k = Ad x̂k+1|k +Bd ûk+1|k

...

x̂k+N|k = Ad x̂k+N−1|k +Bd ûk+N−1|k,

(31)

in which Ad and Bd are the model matrices in the discrete

state space. Considering the output prediction vector, given

by ŷk+i|k = Cd x̂k+i|k the control input uk is required to

minimize the quadratic cost function J(ŷ, û) subject to the

linear inequalities dependent on the voltage and friction

constraints. The cost function is, therefore, of quadratic form

and weights the cost of deviating from the reference r against

the cost of spending u.

J(ŷ, û) = (ŷ− r)T Rqp(ŷ− r)+ ûT Qqpû, (32)

in which Rqp and Qqp are matrices with values to be chosen

by the designer. The complete problem is the following

quadratic programming optimization problem

min
û

J(ŷ, û)

subject to Aqpû+Cqpx̂≤ bqp.
(33)

The constraints obtained in (22), (27) and (28) can be

written in the matrix form Aqpû+Cqpx̂≤ bqp.

A. State Observer

A state observer can be implemented following the

predictor-corrector formulation. The prediction of ”future”

values of x, given the control signals u, are obtained using

x̂k|k−1 = Ad x̂k−1|k−1 +Bduk−1, (34)

followed by a posterior correction, given the measurement

yk, as in

x̂k|k = x̂k|k−1 +A−1
d L(yk− ŷk). (35)

IV. RESULTS

For the simulations depicted in this session, the YALMIP

[14] framework was used to write the optimization problem.

A. System with no disturbance

For this first result, a fixed prediction horizon of N = 100,

and an time interval of t = 2 s was considered for controlling

the wheels’ speed. The reference angular speed on the

wheels was set at t = 0 s to r = [50 25 -25 -50]T rad/s.

After t = 0.5 s, the reference angular speed was set to r =
[25 12.5 -12.5 -25]T rad/s. The Figure 4 shows the obtained

step response in closed loop. The dashed lines shows the

0 0.5 1 1.5 2
-60

-40

-20

0

20

40

60

Fig. 4. Angular speed controlled.

0 0.5 1 1.5 2
-15

-10

-5

0

5

10

15

Fig. 5. Voltage applied to motors’ terminals. The color magenta is
representing the voltage limits.

step response for a closed loop system without the friction

constraints (27) and (28). The continuous lines show the step

response for a closed loop system with the constraints.

Therefore, the friction constraints slows down the system

response to avoid slippages. In the case of a real robot, fast

control responses lead to slippages, which could drastically

reduce the robot’s performance when following paths. The

Figure 5 shows the control signal variation with time to

the corresponding step response, and the dashed plot shows

the input for the system with no friction constraints. It is

another evidence of the range of voltage variation limitation

associated to the constraint.

B. System with disturbance

For this case, a disturbance is included in the input

signal and the same simulation time adopted is t = 1 s.

The disturbance will be active up to t < 0.5 s and for the
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Fig. 6. Angular speed controlled.
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Fig. 7. Voltage applied to motors’ terminals.

remaining time there will be no disturbance. Considering

a constant disturbance in the input voltage as the vector

pk = [0.5 0.5 -0.5 -0.5]T ,t < 0.5s, the result is shown in the

figures 6 and 7. The state observer estimates the perturbation

and the system can still converge to the reference speed used

(r = [10 20 -10 -20]T rad/s ). After the disturbance ceases

the controller does not respond so fast, keeping the friction

constraints satisfied.

V. CONCLUSION AND FURTHER WORK

A. Conclusions

In this paper we contributed with a linear model for the

robots and its physical constraints. This linear version of the

model it’s a cornerstone for implementing linear classical

MPCs. Linear MPCs are more feasible in real time problems

due to its reduced computation cost.

Although, the results show that under the presence of the

constraints, the performance of the controller is reduced,

but the non-slipping conditions will be satisfied. These

conditions are important for trajectory planning, since the

robot strategy could command the robot to go to a partic-

ular position, avoiding obstacle collisions during the path.

Slippages could make the robot go out of the planned path.

B. Further work

A real time implementation of the MPC obtained in

this paper could be done in the future, using also Multi-

Parametric Programming (MPP) techniques. It is possible to

make a benchmarking between the two approaches, compar-

ing computation costs and other trade-offs. Besides this, the

current analysis was done under the presence of disturbances.

We are not considering the effects of measurement noises

and model mismatches. For the first case, a Kalman Filter

[15] could be used to enhance the work. For the latter,

linear matrix inequalities could be used to obtain a robust

controller, reducing the side effects of mismatches, but

eventually with more conservative performance.
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