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system. The methods are an alternative for tuning this kind of system leading the process to the best 
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1. INTRODUCTION 

Nonminimum phase systems are called due to their specific 
phase response produced by right half-plane (RHP) 
transmission zero(s) and/or pure time delay. Such systems are 
seen in a wide processing units, such a drum boiler and 
distillation columns and their synthesis procedure becomes 
complex and challenging (Sun, Zhang, Zhang, & Li, 2014). 
The system who presents this features when disturbed in the 
direction of this RHP-zero(s) presents inverse response that is 
an additional difficulty for the controller stability during its 
operation.  

Single-Input-Single-Output (SISO) Proportional-Integral-
Derivative (PID) controllers are widespread in industry due 
to their robustness and simplicity (presenting three adjustable 
parameters which need to be properly chosen according to the 
process dynamics). Tuning rules as Ziegler-Nichols, Cohen-
Coon and ITAE can provide these parameters for SISO 
systems, or MIMO PIDs (decentralized SISO PIDs) each at 
time in successive loop closure (Sung, Lee, & Lee, 1998). An 
alternative to multi-loop SISO PIDs is to design a MIMO 
PID controller which uses matrix coefficients and all sensors 
are used to drive all actuators, with the disadvantages related 
to the tuning, which require the specification of these three 
matrices (Boyd, Hast, & Åström, 2008) .  

The tuning procedures for MIMO PID controllers are lesser 
reported than SISO ones, and are basically based on genetic 
algorithms, evolutionary algorithms, etc. presenting multi-
agent based optimization, where the computational times are 
proportional to the number of these agents, requiring heavy 
computational time (Ahmad, Azuma, & Sugie, 2014). 
Besides that, the presence of nonminimum phase systems is 

still a gap among these techniques, due to its particularities 
and stability requirements even in SISO PID controllers. 

Based on that, it is proposed here, before the tuning 
procedures, to estimate an (stable) attainable trajectory which 
the system can follows, with robustness and performance 
factors embedded. This attainable trajectory will be used as a 
limit for a MIMO PID tuning via iterated LMI restriction and 
a MIMO PID tuning for a simulated system. 

The paper is divided as follows: in Section 2 is presented 
how is determined the attainable trajectory; in Section 3 are 
described the tuning procedures; in Section 4 are shown the 
case study and the simulations which corroborate the 
presented techniques and, in Section 5, the conclusions are 
drawn.   

2. ATTAINABLE TRAJECTORY DETERMINATION 

The stabilization of a system and the improvement of 
performance in the presence of uncertainty (in the model and 
the signals) are the main reasons for the introduction of 
feedback control (Trierweiler, 1997). Thus, the controller 
should be tuned in order to attenuate the effect of 
disturbances providing a good servo/regulatory tracking in a 
robustly way. A one degree-of-freedom (1-DOF) control 
system is presented in Fig. 1. 

In Fig. 1, 𝐾𝐾 is the controller, 𝐺𝐺 is the plant model, 𝐺𝐺𝑑𝑑 is the 
disturbance model, 𝑟𝑟 are the reference inputs, 𝑢𝑢 are the 
control signals, 𝑦𝑦 are the plant outputs, 𝑛𝑛 are the noise to the 
outputs, 𝑑𝑑 are the disturbances and 𝑦𝑦𝑚𝑚 are the measured 
outputs. 
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Fig. 1. Block diagram of 1-DOF feedback control system 
(Skogestad & Postlethwaite, 2005). 

Based on Fig. 1, are derived some closed-loop transfer 
functions: 

Sensitivity function (S). This function represents the closed-
loop transfer function from the reference signal 𝑟𝑟 to error 𝑒𝑒 
and also, for this control system, the function from the output 
disturbances 𝑑𝑑 to the outputs 𝑦𝑦, defined as 𝑆𝑆 = (𝐼𝐼 + 𝐺𝐺𝐾𝐾)−1. 

Complementary Sensitivity function (T). Represents the 
closed-loop transfer function from the reference signals 𝑟𝑟 to 
the outputs 𝑦𝑦, defined as 𝑇𝑇 = 𝐺𝐺𝐾𝐾(𝐼𝐼 + 𝐺𝐺𝐾𝐾)−1. 

Q-function. Transfer function from the reference signal 𝑟𝑟 to 
control signals 𝑢𝑢, defined as 𝑄𝑄 = 𝐾𝐾(𝐼𝐼 + 𝐺𝐺𝐾𝐾)−1. 
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the stability (Skogestad & Postlethwaite, 2005). The benefits 
from high gain are crucial and increase the danger of loop 
instability, actuator saturation and sensor noise amplification. 

The desired performance of the system can be specified on 
the desired (output) complementary sensitivity function 𝑇𝑇𝑑𝑑, 
that relates the outputs 𝑦𝑦 with the reference signal 𝑟𝑟. For the 
SISO case, these specifications can be casted in a second 
order transfer function (1). 

𝑇𝑇𝑑𝑑 ≜
1 − 𝜀𝜀∞

� 𝑠𝑠𝜔𝜔𝑛𝑛
�
2

+ 2𝜁𝜁𝑠𝑠
𝜔𝜔𝑛𝑛

+ 1
⇔ 𝑇𝑇𝑑𝑑�𝑟𝑟𝑟𝑟,𝑀𝑀𝑝𝑝[%], 𝜀𝜀∞� (1) 

where 𝑟𝑟𝑟𝑟 is the rise time, 𝑀𝑀𝑝𝑝 is the maximal overshoot, and 
𝜀𝜀∞ are the permitted offset (steady-state error), easily 
calculated from the specifications in the time domain. For the 
MIMO case, an extension of such specification is to describe 
the system as a decoupled (or almost decoupled) response, 
i.e., 𝑇𝑇𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑇𝑇𝑑𝑑,1, … ,𝑇𝑇𝑑𝑑,𝑛𝑛𝑛𝑛� (Trierweiler & Farina, 2003). 

To compute this function are proposed by Santos, 
Trierweiler,  Farenzena (2017) to find the smallest value for 
the rise time, respecting the control actions constraints and 
considering maximal sensitivity robustness criterion. Thus, 
the following optimization problem is employed: 

𝑚𝑚𝑑𝑑𝑑𝑑
𝛺𝛺

𝜙𝜙(𝛺𝛺) = 𝑚𝑚𝑑𝑑𝑑𝑑
𝛺𝛺

�(𝑟𝑟𝑟𝑟𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (2) 

subject to 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐺𝐺) ≤ 1.0 

𝑀𝑀𝑠𝑠(𝐺𝐺) ≤ 2.2 

𝑀𝑀𝑀𝑀(𝐺𝐺) ≤ 10.0 

where Ω = [𝑟𝑟𝑟𝑟1, … , 𝑟𝑟𝑟𝑟𝑖𝑖] with 𝑑𝑑 = 1 …𝑛𝑛 being the number of 
outputs of the complete transfer matrix, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐺𝐺) is the 
relative Robust Performance Number, 𝑀𝑀𝑠𝑠(𝐺𝐺) corresponds 
the maximal sensitivity value and 𝑀𝑀𝑀𝑀(𝐺𝐺) the maximal value 
of the Q-function. Considering the value of 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐺𝐺) ≤ 1, it 
is granted that the system correspond to an acceptable Robust 
Performance Number, that is a measure of a system 
controllability (Trierweiler, 2002). 𝑀𝑀𝑀𝑀(𝐺𝐺) ≤ 10.0 ensures 
that no abrupt control actions are sent to the plant and, the 
maximal sensitivity function (𝑀𝑀𝑠𝑠 ≤ 2.0) ensures a 
robustness compromise (according to (Aström & Hägglund, 
1995)). Besides that, are considered, for the design of the 
complementary sensitivity function that is no allowed steady-
state error (𝜀𝜀∞ = 0) and a maximal overshoot of 𝑀𝑀𝑝𝑝 = 5%. 

For systems with RHP-poles, RHP-zeros and dead time there 
are additional performance limitations which result from 
internal stability conditions. These constraints consider that 
the transfer function 𝑇𝑇 must preserve the RHP-zero (𝑧𝑧) with 
the same direction as 𝐺𝐺(𝑠𝑠). In a similar way the RHP-poles 
(𝑝𝑝) and the dead time (𝜃𝜃) must not be cancelled by the 
controller 𝐾𝐾. These constraints are satisfied through the 
Blaschke factorization providing an attainable transfer 
function, 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 (more details about this factorization could be 
found in Trierweiler (1997)): 

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) = 𝐵𝐵𝑂𝑂,𝑧𝑧(𝑠𝑠)𝐵𝐵𝑂𝑂,𝑧𝑧
† (0)𝑇𝑇𝑑𝑑(𝑠𝑠) (3) 

where 𝐵𝐵𝑂𝑂,𝑧𝑧(𝑠𝑠) is the zero output Blaschke factorization, 

𝐵𝐵𝑂𝑂,𝑧𝑧
† (0) denotes the pseudoinverse of 𝐵𝐵𝑂𝑂,𝑧𝑧 and, 𝑇𝑇𝑑𝑑 is the 

desired closed-loop performance function. The factorization 
over the poles and dead time were omitted in this 
representation.  

3. DESIGN PROBLEM 

In this section are proposed two tuning procedures for a 
MIMO PID controller. The controller is given by: 

𝐶𝐶(𝑠𝑠) = 𝐾𝐾𝑃𝑃 +
1
𝑠𝑠
𝐾𝐾𝐼𝐼 +

𝑠𝑠
1 + 𝜏𝜏𝑠𝑠

𝐾𝐾𝐷𝐷 (4) 

where 𝐾𝐾𝑃𝑃,𝐾𝐾𝐼𝐼,𝐾𝐾𝐷𝐷  ∈ 𝑹𝑹𝑚𝑚×𝑝𝑝, are the proportional gain matrix, 
integral gain matrix, and derivative gain matrix, respectively, 
and 𝑝𝑝 and 𝑚𝑚 the number of outputs and inputs, respectively. 
The constant 𝜏𝜏 > 0 is the derivative action time constant 
(assumed to be fixed and chosen as a modest fraction of the 
desired closed-loop response time). 

3.1 MIMO PID tuning via iterated LMI restriction 

This tuning procedure was proposed by Boyd, Hast, & 
Åström (2008) and assumes that for a plant 𝑟𝑟, 𝑟𝑟(0)𝐾𝐾𝐼𝐼 is 
nonsingular, providing 𝑆𝑆(0) = 0, which means to have zero 
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error for constant reference signals. The objective is to attain 
the best possible low-frequency sensitivity, by minimizing 
‖(𝑟𝑟(0)𝐾𝐾𝐼𝐼)−1‖. Besides that, the authors propose constraints 
as upper limits related to the 𝑯𝑯∞-norm of the functions 𝑆𝑆,𝑇𝑇 
and 𝑄𝑄, in the way: 

𝑚𝑚𝑑𝑑𝑑𝑑
𝐾𝐾𝑃𝑃,𝐾𝐾𝐼𝐼,𝐾𝐾𝐷𝐷

‖(𝑟𝑟(0)𝐾𝐾𝐼𝐼)−1‖ 

subject to 

‖𝑆𝑆‖∞ ≤ 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 

‖𝑇𝑇‖∞ ≤ 𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚 

‖𝑄𝑄‖∞ ≤ 𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚 

(5) 

where 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 > 1 and reasonable values are in the range 1.1 to 
1.6. The same occurs to 𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚. 𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚 is chosen as a multiple 
(3 to 10) of 1/𝜎𝜎min (𝑟𝑟(0)). These constraints can be 
expressed as sampling semi-infinite constraints, for example, 
‖𝑆𝑆(𝑑𝑑𝜔𝜔𝑘𝑘)‖ = ‖𝑆𝑆𝑘𝑘‖ ≤ 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚, one for each 𝜔𝜔 ≥ 0. The 
frequency sampled design problem (5) is then casted in a 
simple form which every constraint has the same quadratic 
matrix inequality (QMI) form:  

𝑍𝑍∗𝑍𝑍 ≽ 𝑌𝑌∗𝑌𝑌 (6) 

where both 𝑍𝑍 and 𝑌𝑌 are affine functions of the variables, 𝑍𝑍∗ is 
the (Hermitian) conjugate transpose and, the symbol ≽ is 
used to denote matrix inequality, being 𝑍𝑍 ≽ 0 means that 𝑍𝑍 is 
Hermitian and positive semidefinite. The objective function 
and the constraints become:  

(𝑟𝑟(0)𝐾𝐾𝐼𝐼)∗(𝑟𝑟(0)𝐾𝐾𝐼𝐼) ≽ 𝑟𝑟2𝐼𝐼 

(𝐼𝐼 + 𝑟𝑟𝑘𝑘𝐶𝐶𝑘𝑘)∗(𝐼𝐼 + 𝑟𝑟𝑘𝑘𝐶𝐶𝑘𝑘) ≽ (1/𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚2 )𝐼𝐼 

(𝐼𝐼 + 𝑟𝑟𝑘𝑘𝐶𝐶𝑘𝑘)∗(𝐼𝐼 + 𝑟𝑟𝑘𝑘𝐶𝐶𝑘𝑘) ≽ (1/𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚2 )(𝑟𝑟𝑘𝑘𝐶𝐶𝑘𝑘)∗(𝑟𝑟𝑘𝑘𝐶𝐶𝑘𝑘) 

(𝐼𝐼 + 𝑟𝑟𝑘𝑘𝐶𝐶𝑘𝑘)∗(𝐼𝐼 + 𝑟𝑟𝑘𝑘𝐶𝐶𝑘𝑘) ≽ (1/𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚2 )𝐶𝐶𝑘𝑘 

(7) 

In order to form a convex LMI restriction for the QMI (6), it 
is necessary to guarantee that the QMI is convex in 𝑍𝑍, since it 
is already convex in 𝑌𝑌. Considering an arbitrary matrix 𝑍𝑍�, are 
proposed the LMI (8b) that implies the QMI (6), called LMI 
restriction of the QMI, obtained at point 𝑍𝑍�. The optimization 
problem proposed is: 

maximize  𝑟𝑟 (8a) 

subject to 

�𝑍𝑍𝑘𝑘
∗  𝑍𝑍�𝑘𝑘 + 𝑍𝑍�𝑘𝑘∗𝑍𝑍𝑘𝑘 −  𝑍𝑍�𝑘𝑘∗  𝑍𝑍�𝑘𝑘 𝑌𝑌𝑘𝑘∗

𝑌𝑌𝑘𝑘 𝐼𝐼 � ≽ 0 
(8b) 

This problem has linear objective and LMI constraints, and 
so it is an SDP. More details about the implementation could 
be found in (S Boyd, El Ghaoui, Feron, & Balakrishnan, 
1994; Stephen Boyd et al., 2008). 

The assumptions of the limits for the transfer functions 
(𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚,𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚,𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚) that compose the control system are that 
they are fixed and considered the same through the range of 
frequencies [𝜔𝜔1, … ,𝜔𝜔𝑁𝑁]. However for systems who present 
nonminimum phase dynamics, these assumptions may not be 

feasible or present instabilities for the obtained controller. 
Considering this premise together with the attainable transfer 
function previously determined, 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎, that is stable and 
presents performance e robustness metrics embedded (as in 
Section 2) , it is then proposed to set for the range of 
frequencies [𝜔𝜔1, … ,𝜔𝜔𝑁𝑁] the values: 

 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚,𝑘𝑘 = �𝐼𝐼 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘� 

𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚,𝑘𝑘 = �𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘� 

𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚,𝑘𝑘 = �𝑟𝑟𝑘𝑘−1𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘� 

being 𝑀𝑀 = [𝑗𝑗𝜔𝜔1, … , 𝑗𝑗𝜔𝜔𝑁𝑁] 

(9) 

Considering (9) as the limits in the optimization problem (8) 
we ensure that the obtained control system will correspond to 
the attainable trajectory 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎.  

Another two considerations could be taken for the limits in 
the transfer functions (9): (i) the attainable function 
determination does not take into account about the order of 
the controller, so an slack 𝜖𝜖 in each constraint should be 
considered; (ii) in order to give more flexibility to the 
controller 𝐶𝐶, the maximal value of each constraint are also an 
alternative for the parameter determination. 

3.2 MIMO PID tuning via simulated system 

This alternative for tuning the MIMO-PID controller 𝐶𝐶, 
considers again the attainable transfer function determined in 
Section 2, 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎. 

The definition of the Complementary sensitivity function 
analytically, 𝑇𝑇 = 𝑟𝑟𝑟𝑟(𝐼𝐼 + 𝑟𝑟𝑟𝑟)−1, here purposely changed 𝐺𝐺 
and 𝐾𝐾, for 𝑟𝑟 and 𝐶𝐶, respectively, gives us the closed-loop 
transfer function from the reference signals to the outputs. In 
this way, it is proposed an optimization problem (10), in time 
domain, which minimizes the error between the attainable 
and simulated outputs, for the same reference input signals.  

min
𝐾𝐾𝑃𝑃,𝐾𝐾𝐼𝐼,𝐾𝐾𝐷𝐷

𝐽𝐽 = min
𝐾𝐾𝑃𝑃,𝐾𝐾𝐼𝐼,𝐾𝐾𝐷𝐷

�𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠).Δ𝑟𝑟�������
𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎

− 𝑇𝑇(𝑠𝑠).Δ𝑟𝑟�����
𝑦𝑦�

� (10) 

where Δ𝑟𝑟 is the variation of the reference signals, since the 
𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) and 𝑇𝑇(𝑠𝑠) are transfer matrix.  

This procedure aims at finding controller parameters that fit 
the output response of the original system according to the 
attainable response. Since the attainable response is stable 
and presents performance and robustness constraints, the 
controlled system will present the same features.  

4. CASE STUDY 

The case study used to exemplify these procedures is the 
Quadruple-Spherical-Tank (QST) system. This system, 
presented in Fig. 2, is composed by 4 spherical tanks, 
connected and fed by two different flow rates 𝐹𝐹1 and 𝐹𝐹2. A 
portion 𝑥𝑥1 and 𝑥𝑥2 are sent to the lower tanks while the 
complementary (1 − 𝑥𝑥1) and (1 − 𝑥𝑥2) are sent to the upper 
tanks.  
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error for constant reference signals. The objective is to attain 
the best possible low-frequency sensitivity, by minimizing 
‖(𝑟𝑟(0)𝐾𝐾𝐼𝐼)−1‖. Besides that, the authors propose constraints 
as upper limits related to the 𝑯𝑯∞-norm of the functions 𝑆𝑆,𝑇𝑇 
and 𝑄𝑄, in the way: 

𝑚𝑚𝑑𝑑𝑑𝑑
𝐾𝐾𝑃𝑃,𝐾𝐾𝐼𝐼,𝐾𝐾𝐷𝐷

‖(𝑟𝑟(0)𝐾𝐾𝐼𝐼)−1‖ 

subject to 

‖𝑆𝑆‖∞ ≤ 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 

‖𝑇𝑇‖∞ ≤ 𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚 

‖𝑄𝑄‖∞ ≤ 𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚 

(5) 

where 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 > 1 and reasonable values are in the range 1.1 to 
1.6. The same occurs to 𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚. 𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚 is chosen as a multiple 
(3 to 10) of 1/𝜎𝜎min (𝑟𝑟(0)). These constraints can be 
expressed as sampling semi-infinite constraints, for example, 
‖𝑆𝑆(𝑑𝑑𝜔𝜔𝑘𝑘)‖ = ‖𝑆𝑆𝑘𝑘‖ ≤ 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚, one for each 𝜔𝜔 ≥ 0. The 
frequency sampled design problem (5) is then casted in a 
simple form which every constraint has the same quadratic 
matrix inequality (QMI) form:  

𝑍𝑍∗𝑍𝑍 ≽ 𝑌𝑌∗𝑌𝑌 (6) 

where both 𝑍𝑍 and 𝑌𝑌 are affine functions of the variables, 𝑍𝑍∗ is 
the (Hermitian) conjugate transpose and, the symbol ≽ is 
used to denote matrix inequality, being 𝑍𝑍 ≽ 0 means that 𝑍𝑍 is 
Hermitian and positive semidefinite. The objective function 
and the constraints become:  

(𝑟𝑟(0)𝐾𝐾𝐼𝐼)∗(𝑟𝑟(0)𝐾𝐾𝐼𝐼) ≽ 𝑟𝑟2𝐼𝐼 

(𝐼𝐼 + 𝑟𝑟𝑘𝑘𝐶𝐶𝑘𝑘)∗(𝐼𝐼 + 𝑟𝑟𝑘𝑘𝐶𝐶𝑘𝑘) ≽ (1/𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚2 )𝐼𝐼 

(𝐼𝐼 + 𝑟𝑟𝑘𝑘𝐶𝐶𝑘𝑘)∗(𝐼𝐼 + 𝑟𝑟𝑘𝑘𝐶𝐶𝑘𝑘) ≽ (1/𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚2 )(𝑟𝑟𝑘𝑘𝐶𝐶𝑘𝑘)∗(𝑟𝑟𝑘𝑘𝐶𝐶𝑘𝑘) 

(𝐼𝐼 + 𝑟𝑟𝑘𝑘𝐶𝐶𝑘𝑘)∗(𝐼𝐼 + 𝑟𝑟𝑘𝑘𝐶𝐶𝑘𝑘) ≽ (1/𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚2 )𝐶𝐶𝑘𝑘 

(7) 

In order to form a convex LMI restriction for the QMI (6), it 
is necessary to guarantee that the QMI is convex in 𝑍𝑍, since it 
is already convex in 𝑌𝑌. Considering an arbitrary matrix 𝑍𝑍�, are 
proposed the LMI (8b) that implies the QMI (6), called LMI 
restriction of the QMI, obtained at point 𝑍𝑍�. The optimization 
problem proposed is: 

maximize  𝑟𝑟 (8a) 

subject to 

�𝑍𝑍𝑘𝑘
∗  𝑍𝑍�𝑘𝑘 + 𝑍𝑍�𝑘𝑘∗𝑍𝑍𝑘𝑘 −  𝑍𝑍�𝑘𝑘∗  𝑍𝑍�𝑘𝑘 𝑌𝑌𝑘𝑘∗

𝑌𝑌𝑘𝑘 𝐼𝐼 � ≽ 0 
(8b) 

This problem has linear objective and LMI constraints, and 
so it is an SDP. More details about the implementation could 
be found in (S Boyd, El Ghaoui, Feron, & Balakrishnan, 
1994; Stephen Boyd et al., 2008). 

The assumptions of the limits for the transfer functions 
(𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚,𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚,𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚) that compose the control system are that 
they are fixed and considered the same through the range of 
frequencies [𝜔𝜔1, … ,𝜔𝜔𝑁𝑁]. However for systems who present 
nonminimum phase dynamics, these assumptions may not be 

feasible or present instabilities for the obtained controller. 
Considering this premise together with the attainable transfer 
function previously determined, 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎, that is stable and 
presents performance e robustness metrics embedded (as in 
Section 2) , it is then proposed to set for the range of 
frequencies [𝜔𝜔1, … ,𝜔𝜔𝑁𝑁] the values: 

 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚,𝑘𝑘 = �𝐼𝐼 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘� 

𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚,𝑘𝑘 = �𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘� 

𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚,𝑘𝑘 = �𝑟𝑟𝑘𝑘−1𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘� 

being 𝑀𝑀 = [𝑗𝑗𝜔𝜔1, … , 𝑗𝑗𝜔𝜔𝑁𝑁] 

(9) 

Considering (9) as the limits in the optimization problem (8) 
we ensure that the obtained control system will correspond to 
the attainable trajectory 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎.  

Another two considerations could be taken for the limits in 
the transfer functions (9): (i) the attainable function 
determination does not take into account about the order of 
the controller, so an slack 𝜖𝜖 in each constraint should be 
considered; (ii) in order to give more flexibility to the 
controller 𝐶𝐶, the maximal value of each constraint are also an 
alternative for the parameter determination. 

3.2 MIMO PID tuning via simulated system 

This alternative for tuning the MIMO-PID controller 𝐶𝐶, 
considers again the attainable transfer function determined in 
Section 2, 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎. 

The definition of the Complementary sensitivity function 
analytically, 𝑇𝑇 = 𝑟𝑟𝑟𝑟(𝐼𝐼 + 𝑟𝑟𝑟𝑟)−1, here purposely changed 𝐺𝐺 
and 𝐾𝐾, for 𝑟𝑟 and 𝐶𝐶, respectively, gives us the closed-loop 
transfer function from the reference signals to the outputs. In 
this way, it is proposed an optimization problem (10), in time 
domain, which minimizes the error between the attainable 
and simulated outputs, for the same reference input signals.  

min
𝐾𝐾𝑃𝑃,𝐾𝐾𝐼𝐼,𝐾𝐾𝐷𝐷

𝐽𝐽 = min
𝐾𝐾𝑃𝑃,𝐾𝐾𝐼𝐼,𝐾𝐾𝐷𝐷

�𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠).Δ𝑟𝑟�������
𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎

− 𝑇𝑇(𝑠𝑠).Δ𝑟𝑟�����
𝑦𝑦�

� (10) 

where Δ𝑟𝑟 is the variation of the reference signals, since the 
𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) and 𝑇𝑇(𝑠𝑠) are transfer matrix.  

This procedure aims at finding controller parameters that fit 
the output response of the original system according to the 
attainable response. Since the attainable response is stable 
and presents performance and robustness constraints, the 
controlled system will present the same features.  

4. CASE STUDY 

The case study used to exemplify these procedures is the 
Quadruple-Spherical-Tank (QST) system. This system, 
presented in Fig. 2, is composed by 4 spherical tanks, 
connected and fed by two different flow rates 𝐹𝐹1 and 𝐹𝐹2. A 
portion 𝑥𝑥1 and 𝑥𝑥2 are sent to the lower tanks while the 
complementary (1 − 𝑥𝑥1) and (1 − 𝑥𝑥2) are sent to the upper 
tanks.  
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Fig. 2. The QST process. 

This system, adapted from Escobar & Trierweiler (2013), 
presents a subset 2 × 2, composed by the levels ℎ1 and ℎ2 as 
outputs and the feed flow rates 𝐹𝐹1 and 𝐹𝐹2 as inputs, in which 
the arrangement of the fraction valves (𝑥𝑥1 + 𝑥𝑥2 < 1) allows 
the appearing of the RHP transmission zero in the system.  

The plant transfer function is: 

𝑟𝑟(𝑠𝑠)

=

⎣
⎢
⎢
⎢
⎡ 0.00073255

(𝑠𝑠 + 0.001029)
2.9224 × 10−6

(𝑠𝑠 + 0.001862)(𝑠𝑠 + 0.001029)
3.6665 × 10−6

(𝑠𝑠 + 0.002639)(𝑠𝑠 + 0.00129)
0.00053596

(𝑠𝑠 + 0.00129) ⎦
⎥
⎥
⎥
⎤
 

Each entry is composed by a first-order function (main 
diagonal) and second-order function. The RHP-zero is 
𝑧𝑧 = +0.0030 and its value limits the performance of the 
entire system. When the system is disturbed in the directions 
of this zero, the process will present inverse response.  

All simulations were made at Matlab R2012b in an Intel Core 
I7-4770S CPU@ 3.10 GHz with 12 GB (RAM). 

The attainable trajectory determination was made, taking 
account the presence of the RHP-zero, robustness and 
performance factors.  

To solve the optimization problem (8) considering the 
constraints (9), it was used CVX, a package for specifying 
and solving convex problems (Grant & Boyd, 2008, 2014). 
The derivative action time constant is chosen 𝜏𝜏 = 300 and 
the semi-infinite constraints are sampled using 𝑟𝑟 = 500 
logarithmically spaced frequencies in the interval 
[10−5, 105]. 

For the consideration (i) it was used an slack variable 𝜖𝜖 in the 
optimization problem, which takes 220 seconds and 6 
iterations to converge to 

𝐾𝐾𝑃𝑃 = �0.7149 3.7516
3.0891 2.8821�,  

𝐾𝐾𝐼𝐼 = �0.0018 0.0039
0.0010 −0.0033�, 

 𝐾𝐾𝐷𝐷 = 103 × �0.2829 −0.1051
0.2186 −1.3542� 

Fig. 3 shows the attainable trajectories estimated for the 
tuning procedure (𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎) and the trajectory achievable by the 
system (𝑇𝑇) . Fig. 4 presents the step response of the obtained 
Q-function. The resulting closed-loop transfer function 
singular values are plotted in Fig. 5. 

 
Fig.3. Estimated attainable trajectory (𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎) and trajectory 
achievable by the system (𝑇𝑇) for the consideration (i). 

 
Fig. 4. Step Response of the Q-function for the consideration 
(i). 

 
Fig. 5.  Closed-loop transfer function singular values (blue 
line) and constraints (red line) for the consideration (i). 
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The same procedure was employed for the consideration (ii) 
that instead of evaluate for each frequency value a maximal 
limit for the closed-loop functions, the maximal value of each 
function in the range of frequencies was used. The 
optimization problem takes 286 seconds and 8 iterations to 
converge to 

𝐾𝐾𝑃𝑃 = �0.9132 3.0633
2.6173 2.1872�,  

𝐾𝐾𝐼𝐼 = �0.0021 0.0043
0.0010 −0.0038�, 

 𝐾𝐾𝐷𝐷 = 103 × �0.7720 0.2363
1.0447 −1.0909� 

The attainable trajectories are shown in Fig. 6, the step 
response of the 𝑄𝑄-function is presented in Fig.7 and the 
closed-loop singular values of the transfer functions are 
shown in Fig. 8.  

 

Fig. 6.  Estimated attainable trajectory (𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎) and trajectory 
achievable by the system (𝑇𝑇) for the consideration (ii). 

 

Fig. 7.  Step Response of the Q-function for the consideration 
(ii). 

 

Fig. 8.  Closed-loop transfer function singular values (blue 
line) and constraints (red line) for the consideration (ii). 

At the end, it was performed the tuning procedure 
considering the time domain optimization of the simulated 
system. To solve the optimization problem (10) it was used 
the fminsearch function at Matlab. The procedure takes 157 
seconds and converged to  

𝐾𝐾𝑃𝑃 = �0.0061 0.0048
0.0007 −0.0004�,  

𝐾𝐾𝐼𝐼 = �0.2528 3.2789
2.0295 −0.6267�, 

 𝐾𝐾𝐷𝐷 = � 2.2631 −0.1057
−6.3736 −0.3102� 

The step responses of the attainable trajectories and the Q-
function are presented in Fig. 9 and Fig. 10, respectively.  

 

Fig. 9.  Estimated attainable trajectory (𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎) and trajectory 
achievable by the system (𝑇𝑇) for the time domain 
optimization of the simulated system.  
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The same procedure was employed for the consideration (ii) 
that instead of evaluate for each frequency value a maximal 
limit for the closed-loop functions, the maximal value of each 
function in the range of frequencies was used. The 
optimization problem takes 286 seconds and 8 iterations to 
converge to 
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The attainable trajectories are shown in Fig. 6, the step 
response of the 𝑄𝑄-function is presented in Fig.7 and the 
closed-loop singular values of the transfer functions are 
shown in Fig. 8.  

 

Fig. 6.  Estimated attainable trajectory (𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎) and trajectory 
achievable by the system (𝑇𝑇) for the consideration (ii). 

 

Fig. 7.  Step Response of the Q-function for the consideration 
(ii). 

 

Fig. 8.  Closed-loop transfer function singular values (blue 
line) and constraints (red line) for the consideration (ii). 

At the end, it was performed the tuning procedure 
considering the time domain optimization of the simulated 
system. To solve the optimization problem (10) it was used 
the fminsearch function at Matlab. The procedure takes 157 
seconds and converged to  
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The step responses of the attainable trajectories and the Q-
function are presented in Fig. 9 and Fig. 10, respectively.  

 

Fig. 9.  Estimated attainable trajectory (𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎) and trajectory 
achievable by the system (𝑇𝑇) for the time domain 
optimization of the simulated system.  
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Fig. 10.  Step Response of the Q-function for the time 
domain optimization of the simulated system. 

It could be seen that the tuning procedures proposed here can 
guarantee that the system will remain stable what is not 
observed when the optimization problems considers the 
original values for 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚,𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚 ,𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚. 

The step response of the transfer function 𝑇𝑇 shows that the 
obtained system presents a similar behaviour to 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎, that is 
the attainable trajectory. In the same way, the step response 
of the 𝑄𝑄-function, shows that for a single variation in the 
reference signal values the system will present finite 
amplitude for the control actions, which is important for the 
servo/regulatory tracking robustness.  

5.  CONCLUSIONS 

In this paper it was proposed an alternative to tuning MIMO-
PID controllers for systems who present nonminimum phase 
behaviour. This strategy was based in the determination of an 
attainable trajectory function that englobes robustly 
performance and internal stability factors.  

By setting limits based on 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎, in the tuning procedures, it is 
ensured that the originated system will remain with these 
characteristics. The main reason of the attainable trajectory 
determination is that it provides a limit for a stable behaviour.  
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