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Abstract The paper addresses the formation con-
trol of unmanned aerial vehicles (UAVs) in the
presence of permanent and intermittent faults
in each UAV. A fault tolerant control (FTC)
scheme is developed to accommodate the perma-
nent fault. It further shows that for the intermit-
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tent fault, the formation stability can be main-
tained under some conditions of fault appearance
and disappearance without requiring to take any
FTC action. Simulation results show the efficiency
of the proposed method.
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1 Introduction

Formation flight of UAVs has attracted a great
deal of interest in recent years. The structure of
formation can be generally classified as leader-
follower, virtual-leader and so on [1]. At present,
studies of UAVs formation commonly use sim-
ple first-order or second-order kinematic UAV
model, which can not describe dynamic behaviors
of UAVs in details. Moreover, these models can-
not reflect the influences of UAV’s own controller
on formation flight and the type of fault as well.

On the other hand, a fault is an unpermitted
deviation of at least one characteristic property or
parameter of the system from the standard condi-
tion. The impact of a fault can be a small reduction
in efficiency, but could also lead to overall system
failure. Thus, an FTC scheme could have been
designed to accommodate the fault. Faults can be
classified according to their time characteristics
as permanent and intermittent. They can also be
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classified according to their location of occurrence
in the system as actuator faults, sensor faults and
component faults [3].

As for the permanent faults, once they occur,
they will exist in the system all the time. It is
necessary to design a fault tolerant controller to
stabilize the faulty system [4–7]. However, unlike
permanent faults, the intermittent fault we pay
attention to is a kind of fault that may be active at
one instant of time causing a malfunction of sys-
tem or may be inactive at another instant allowing
the system to operate correctly. The intermittent
fault often exists in electronic equipments and
may be caused by noise, wind, magnetic or any
other disturbance in the environment. It is well
known that FTC takes time and cost. It is often
not admissible to apply FTC scheme every time,
since intermittent fault may occur frequently.

In this paper we consider the FTC problem of
a UAVs formation in leader-follower structure,
where each UAV may have both permanent and
intermittent faults. Inspired by the idea proposed
in [2], we divide the UAVs formation into outer-
loop and inner-loop: the outer-loop controls the
whole formation; the inner-loop controls UAV’s
own dynamics and kinematics behavior.

The main contributions of this paper are as
follows:

1. As for the permanent fault, a compensation
term is added to the nominal controller of the
UAV to eliminate the influences caused by
the fault such that formation stability is still
maintained.

2. The fault tolerance under intermittent faults
is analyzed by the switched system approach.
It shows that under some conditions of fault
appearance and disappearance, the formation
stability can be maintained without requiring
to take any FTC action.

The rest of this paper is arranged as follows.
Section 2 provides some preliminaries. Section 3
discusses the design method of inner-loop and
outer-loop. Sections 4 and 5 respectively focus on
the FTC design for permanent faults and intermit-
tent faults. Section 6 provides simulation results,
followed by conclusions in Section 7.

2 Preliminaries

2.1 Outer-Loop Model

Consider the flight formation consists of q(q ≥ 2)
UAVs, the topology considered here is leader-
follower structure, and each UAV has only one
reference UAV. UAVi’s kinematic model is

⎧
⎨

⎩

ẋi = vi cosφi

ẏi = vi sinφi

φ̇i = wi, i = 1, 2, . . . , q
(1)

where xi, yi represent UAV i’s position, vi is for-
ward speed, φi is the angle between x-axis and vi,
wi are angular velocities.

In standard leader-follower formation model,
forward error f̃ij

�= fij − f d
ij , lateral error l̃ij

�= lij −
ld
ij, fij

(
lij

)
, f d

ij

(
ld
ij

)
indicate actual and desired dis-

tance, as shown in Fig. 1. The information of
UAV j are all known. The error model can be
described as:

f̃ij = (
xi − x j

)
cosφ j +

(
yi − y j

)
sinφ j

+ d cos
(
φi − φ j

) − f d
ij

f̃ij = (
xi − x j

)
sinφ j −

(
yi − y j

)
cosφ j

− d sin
(
φi − φ j

) − ld
ij (2)
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Deriving Eq. 2 with regard to time leads to the
dynamics of outer-loop model as follows:
[ ˙̃fi˙̃li

]

=
[−v j − lijw j

fijw j

]

+
[

cos
(
φi −φ j

) − d sin
(
φi −φ j

)

− sin
(
φi −φ j

) − d cos
(
φi −φ j

)

] [
vi

wi

]

=
[−v j − lijw j

fijw j

]

+
[

cos
(
φi −φ j

) − d sin
(
φi −φ j

)

− sin
(
φi −φ j

) − d cos
(
φi −φ j

)

] [
v∗

i
w∗

i

]

+
[

cos
(
φi − φ j

) − d sin
(
φi − φ j

)

− sin
(
φi − φ j

) − d cos
(
φi − φ j

)

]

×
[
vi − v∗

i
wi − w∗

i

]

(3)

Note that vi and wi of UAVi can be regarded as
the inputs of outer-loop model, v∗

i , w
∗
i in Eq. 3 are

the virtual and ideal control laws. Designing v∗
i , w

∗
i

properly can make the system
[ ˙̃fi˙̃li

]

=
[−v j − lijw j

fijw j

]

+
[

cos
(
φi −φ j

) − d sin
(
φi −φ j

)

− sin
(
φi −φ j

) − d cos
(
φi −φ j

)

] [
v∗

i
w∗

i

]

stable. This will be discussed in Section 3.

2.2 Inner-Loop Model

Different from outer-loop model, the inner-loop
model describes UAVs’ own dynamical and kine-
matical behavior, and can be written as follows

⎧
⎪⎨

⎪⎩

ṁi (t) = Ami (t)+ Bδi (t) mi (0) = mi0

ni (t) = Cmi (t) = [
vi ψi − βi

]

zi (t) = Dṅi (t) = [
ψ̇i − β̇i

]

(4)

where mi = [
vi αi qi θi βi pi ri ψi

]T ∈ R
8

are state variables. They are forward veloc-
ity, angle of attack, pitch rate, pitch angle,
slideslip angle, roll rate, yaw rate and yaw
angle. The input variables of inner-loop are
δi = [

δie δiT δia δir
]T ∈ R

4, indicating eleva-
tor, throttle, flap and aileron. They are UAV’s

real physical control variables. ni (t), zi (t) are both
output variables, and zi (t) = [

ψ̇i − β̇i
] = wi. Note

that the inputs vi, wi of outer-loop are the same
as the outputs vi, ψ̇i − β̇i of the inner-loop. A, B,
C are matrices of certain dimension. mi(0) is the
initial state of the system.

2.3 Models of Faults

2.3.1 Permanent Fault Model

The model of permanent fault discussed here is
actuator fault. The type of fault under considera-
tion is the loss of actuator effectiveness. Let δF

i (t)
represent the signal from the ith actuator that has
failed. Then the permanent fault can be described
as follows:

δF
i (t) = ρiδi (t) (5)

ρi = diag
[
ρi1, ρi2, ρi3, ρi4

]

where 0 < ρij ≤ 1, j = 1, 2, 3, 4. If ρi equals to a
unit matrix, there is no fault.

2.3.2 Intermittent Fault Model

The intermittent fault consider here occurs in the
output channels of the onboard control processor,
under which the inner-loop model changes into

ṁi (t) = Ami (t)+ Bfiδi (t) (6)

where

fi =
{

f otherwise
1 the system is fault free

with 0 < f < 1.
A realistic model to represent the appearance

and disappearance property of intermittent fault
is continuous-parameter Markov chain [9, 10] as
shown in Fig. 2. Mode “0” and “1” represent
healthy and faulty situations respectively. The
probability for going from 0 to 1 at any time is λ,
and the probability for going from 1 to 0 at any
time is μ. The equations for these probabilities are
[15–17]
{

P { fi (t +�t) = f | fi (t) = 1 } = λ�t

P { fi (t +�t) = 1 | fi (t) = 0 } = μ�t
(7)
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Fig. 2 Continuous two-state model

where 0 ≤ λ < 1 represent the fault appearance
rates, 0 ≤ μ < 1 represent the fault disappearance
rates.�t ≥ 0 is the infinitesimal transition time in-
terval. Assume that the initial situation is healthy.

2.4 Problem Formulation

According to the analysis in Section 2.2, one can
obtain that wi = ψ̇i − β̇i. If ψi − βi can track the
given signal, then ψ̇i − β̇i can track w∗

i as well. The
ultimate goal is to design δi (t) in Eq. 4 to as sure
that the error system (3) is asymptotically stable
in both normal and faulty situations.

Given a reference signal yir(t), define

εi (t)
�= yir (t)− Sni (t) =

[
vi − v∗

i

ψi − ψ∗
i − (

βi − β∗
i

)

]

(8)

where S ∈ R2×2 is a known constant matrix,ψ∗
i , β

∗
i

are desired values.
Let ηi (t)=

∫ t
0 εi (τ )dτ , mi (t)=

[
ηT

i (t) mT
i (t)

]T

(4) and (5) can be combined and the following
augmented system can be obtained:
[
η̇i (t)
ṁi (t)

]

=
[

0 −SC
0 A

][
ηi (t)
mi (t)

]

+
[

0
B

]

δi (t)

+
[

I
0

]

yir (t) (9)

Where the augmented system can be described as:
{

ṁi (t) = Ami (t)+ Bδi (t)+ Gyir (t)

mi (0) = mi0

(10)

A =
[

0 −SC
0 A

]

, B =
[

0
B

]

,G =
[

I2×2

0

]

.

mi (0) is the initial state. At the occurrence of
a fault, the purpose of FTC scheme is to make
lim

t→∞ εi (t) = 0 and variables of mi(t) bounded.

This work assumes that the appearance and
disappearance of the fault can be detected rapidly
by using a certain fault diagnosis scheme which is
not the main focus of the paper. Interested readers
are referred to, e.g., [3, 8, 11, 12] for detailed
information.

3 Design of Controller

First of all, we design v∗
i , w

∗
i for outer-loop model

(3). Then the controller δi is designed for the
inner-loop system to make sure that the state vari-
ables mi are bounded and vi, wi can track v∗

i , w
∗
i .

3.1 Outer-Loop Controller Design

For the designed communication topology, UAV
i has only one reference vehicle j. The desired
v∗

i , w
∗
i are as follows

[
v∗

i

w∗
i

]

=
⎡

⎣
cos φ̃i − sin φ̃i

−1

d
sin φ̃i −1

d
cos φ̃i

⎤

⎦

[−k1 f̃i + v j + lijw j

−k2l̃i − fijw j

]

(11)

Where φ̃i
�= φi − φ j, f̃i

�= fij − f d
ij , l̃i

�= lij − ld
ij,

k1, k2 > 0 are feedback gain.
Apply Eqs. 10 to 3, one can get

⎡

⎣

˙̃fi

˙̃li

⎤

⎦ =
[ −k1 f̃i

−k2l̃i

] [
f̃i

l̃i

]

+
[

cos φ̃i −d sin φ̃i

− sin φ̃i −d cos φ̃i

][
vi − v∗

i

wi −w∗
i

]

Obviously, the above system is input-to-state

stable with regard to
[
vi − v∗

i
wi − w∗

i

]

[19–22]. If the

inner-loop controller can ensure that
[
vi − v∗

i
wi −w∗

i

]

approaches 0, then the formation error converges
to 0.
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3.2 Inner-Loop Controller Design

In order to make the inner-loop outputs track the
given ideal signal

[
v∗

i w
∗
i

]T
, we design the follow-

ing feedback controller of nominal system (10):

δi1 (t)=Ki1mi (t)=
[

Ki1ηi Ki1mi

]
[
ηi (t)

mi (t)

]

�δi1 (t)

(12)

where Ki1 is the feedback gain of the controller,
then the closed-loop system can be described as:

ṁi (t) =
(

A + BKi1

)
mi (t)+ Gyir (t) (13)

Lemma 1 For a given constant γ , if there ex-
ist symmetric matrices Z ∈ R

10×10 and W ∈ R
4×10

such that the following linear matrix inequality (14)
holds

⎡

⎢
⎢
⎣

AZ + Z A
T + BW + WT B

T
G WT R1/2 Z Q1/2

∗ −γ I 0 0
∗ ∗ −I 0
∗ ∗ ∗ −I

⎤

⎥
⎥
⎦ < 0 (14)

Then there exists control law δi1 (t)= Ki1mi (t) ,
Ki1 = W Z −1, such that ηi is asymptotically stable,
and mi is bounded.

Proof The proof is similar to [14], and thus is
omitted. �	

Lemma 2 (Bellman-Gronwall) If some numbers
tb ≥ ta, some constant C ≥ 0, N ≥ 0, and some
non-negative, piecewise-continuous-function g :
[ta, tb ] → R, w : [ta, tb ] → R is a continuous func-
tion satisfying

|w (t)| ≤ C + N
∫ t

ta

|g (τ )| |w (τ)| dτ , t ∈ [ta, tb ]

Then

|w (t)| ≤ CeN
∫ t

ta
|g(τ)|dτ t ∈ [

ta, tb
]

�	

Proof The proof is similar to [25], and thus is
omitted. �	

Theorem 1 If there exists a symmetric matrix Pi

such that the following inequality

AT Pi + Pi A + (BKi1)
T Pi + PiBKi1 < 0

holds, then the error ηi is exponential stable and mi

is bounded.

Proof We choose a Lyapunov function for ηi as
Vi = ηT

i (t) Piηi (t)
The time derivative of Vi along the solution of

Eq. 10 with Eq. 13 is

V̇i (t) = η̇T
i (t) Piηi (t)+ ηT

i (t) Piη̇i (t)

= [(
Aηi + Bηi Ki1

)
ηi (t)+ Gηi yr (t)

]T
Piηi (t)

+ηT
i (t)Pi

[(
Aηi +Bηi Ki1

)
ηi (t)+Gηi yir (t)

]

= ηT
i (t) AT

ηi
Piηi (t)+ ηi (t)

(
Bηi Ki1

)T Piηi (t)

+yT
ir GT

ηi
(t) Piηi (t)+ ηT

i (t) Pi Aηiηi (t)

+ηT
i (t) Pi Bηi Ki1ηi (t)+ ηT

i PiGηi yir (t)

= ηT
i (t)

(
Aηi Pi + Pi Aηi

)
ηi (t)

+ηT
i (t)

[(
Bηi Ki1

)T
Pi + PiBηi Ki1

]
ηi (t)

+GT
ηi

yT
ir (t) Piηi (t)+ ηT

i (t) PiGηi yir (t)

= ηT
i (t)

[
AT
ηi

Pi + Pi Aηi + (
Bηi Ki1

)T Pi

+PiBηi Ki1

]
ηi (t)+2ηT

i (t)PiGηi yir(t)

≤ ηT
i (t)

[
AT
ηi

Pi + Pi Aηi

+ (
Bηi Ki1

)T Pi + Pi Bηi Ki1

]
ηi (t)

+2
∣
∣ηT

i (t)
∣
∣ PiGηi |yir (t)|

≤ ηT
i (t)

[
AT
ηi

Pi + Pi Aηi + (
Bηi Ki1

)T
i P

+PiBηi Ki1

]
ηi (t) (15)
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It follows that

AT
ηi

Pi + Pi Aηi + (
Bηi Ki1

)T Pi + PiBηi Ki1 < 0

Let

AT
ηi

Pi + Pi Aηi + (
Bηi Ki1

)T Pi + PiBηi Ki1 = −Qi

We further have

V̇i ≤ −λi1 ‖ηi (t)‖2 (16)

where λi1 > 0 is the eigenvalue of Qi, which means
that the error ηi(t) of mi (t) is exponential stable.

As for mi(t) of mi (t), the reference signal yir(t)
is not considered at first, then

ṁi (t) = Amimi (t)+ Bmiδi (t) (17)

Assuming that the station transition matrix of
closed-loop system (17) is φi (t) = eAmi t, and the
following inequality holds

‖φi (t)‖ =
∥
∥
∥eAmi t

∥
∥
∥ ≤ m0e−αt, α > 0, ∀t ≥ 0

the solution of Eq. 17 can be described as:

mi (t) = φi (t, 0)mi (0)+
∫ t

0
φi (t − τ) Bmiδi (τ ) dτ

≤ ‖φi (t)‖ ‖mi (0)‖

+
t∫

0

‖φi (t − τ)‖
∥
∥
∥Bmi

∥
∥
∥ ‖δi (τ )‖ dτ

≤ ‖φi (t)‖ ‖mi (0)‖

+
t∫

0

‖φi (t − τ)‖
∥
∥
∥Bmi

∥
∥
∥

∥
∥
∥Ki1mi

mi (τ )

∥
∥
∥ dτ

≤ ‖φi (t)‖ ‖mi (0)‖

+
t∫

0

‖φi (t − τ)‖
∥
∥
∥Bmi Ki1mi

∥
∥
∥ ‖mi (τ )‖ dτ

≤ ‖φi (t)‖ ‖mi (0)‖

+
t∫

0

‖φi (t − τ)‖ βA ‖mi (τ )‖ dτ

‖mi (t)‖ ≤ m0e−αt ‖mi (0)‖

+
t∫

0

m0e−α(t−τ )βA ‖mi (τ )‖ dτ

‖mi (t)‖ eαt ≤ m0 ‖mi (0)‖

+
t∫

0

m0eατ βA ‖mi (τ )‖ dτ

According to Bellman-Gronwall Lemma, we have

‖mi (t)‖ eαt ≤ m0 ‖mi (0)‖ em0βA
∫ t

0 dt

≤ m0 ‖mi (0)‖ em0βAt

‖mi (t)‖ ≤ m0 ‖mi (0)‖ e−(α−m0βA)t

While − (α − m0βA) < 0, ‖mi (t)‖ is bounded.
Then take the reference yir(t) into considera-
tion, yir(t) and matrix G are known, they are all
bounded, so ‖mi (t)‖ is still bounded.

According to the above analysis, one can see
that the error ηi of the inner-loop system is ex-
ponential stable and the states mi of inner-loop
system are bounded. The proof is completed. �	

4 FTC of Permanent Faults

4.1 The Control Strategy

Once a permanent fault occurs, a fault tolerant
controller is needed to re-stabilize the system. Ac-
tuator fault is one of common permanent faults.

The augmented system (10) with permanent
fault can be described as:
⎧
⎪⎪⎨

⎪⎪⎩

˙̄mi (t) = Ām̄i (t)+ B̄ρiδi (t)+ Gyir (t)

ni (t) = Cm̄i (t)

zi (t) = Dṅi (t) = [
ψ̇i − ψ̇∗

i − (
β̇i − β̇∗

i

)]
(18)

If ψi, βi track the signal yir(t), ψ̇i, β̇i track the de-
sired signal as well, then wi = [

ψ̇i − β̇i
]

is tracked.
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4.2 Fault Tolerant Controller Design

In order to eliminate the influence of the faults, a
compensation controller is designed.

δiad (t) = Ki2mi (t) = [
Ki2ηi Ki2mi

]
[
ηi (t)

mi (t)

]

(19)

The whole control law δi (t) for the system is

δi (t) = δi1 (t)+ ciδiad (t) (20)

where ci is a function that satisfies

ci =
{

0 i f all actuators are f ault- f ree

1 otherwise

Once the permanent fault occurs, the system sta-
bilized by controller δi(t) becomes
{

ṁi (t) = Ãmi (t)+ B̃δiad (t)+ Gyir (t)

ni (t) = Cmi (t)
(21)

Ã = A + Bρi Ki1, B̃ = Bρi

The closed-loop system can be described as
⎧
⎨

⎩

ṁi (t) =
(

Ã + B̃Ki2

)
mi (t)+ Gyir (t)

ni (t) = Cmi (t)
(22)

where Â = Ã + B̃Ki2.

Lemma 3 (Schur Complement) For a partitioned

matrix X =
[

X11 X12

XT
12 X22

]

, where X11 is a block-

matrix, then the following three conditions are
equivalent:

a) X < 0
b) X11 < 0, X22 − XT

12 X−1
11 X12 < 0

c) X22 < 0, X11 − X12 X−1
22 XT

12 < 0

Proof The proof is similar to [14], and thus is
omitted. �	

Theorem 2 Given a constant γ f , if there exists
matrix X = XT > 0, Y, such that the following
inequality holds

⎡

⎢
⎢
⎣

ÃT X + X Ã + B̃Y + YT B̃T ∗ ∗
G −I ∗

CX 0 −γ 2
f I

⎤

⎥
⎥
⎦ < 0

(23)

Then compensate state feedback controller (19)
exists, such that the error ηi(t) is asymptotically
stable. The gain of controller (19) is

Ki2 = Y X−1

Proof According to [13], if
[

ÂT P + PÂ + CT C PG

GT P −γ 2
f I

]

< 0

holds, the system satisfies H∞ performance in-
dicators, left-multiply and right-multiply matrix
diag

(
P−1, I

)
,

⎡

⎣

�

A
T

P + P
�

A + CT C PG

GT P −γ 2
f I

⎤

⎦ =
⎡

⎣
P−1

�

A
T

PP−1 + P−1 P
�

AP−1 + P−1CT CP−1 P−1 PGP−1

P−1GT PP−1 P−1 − γ 2
f I P−1

⎤

⎦ < 0

Let X = P−1, we have

⎡

⎣
X

�

A
T

+ �

AX + XCT CX GX

XGT −γ 2
f I

⎤

⎦ < 0

⇒
⎡

⎣ X
�

A
T

+ �

AX + γ 2
f XCT CX GT

X −I

⎤

⎦ < 0

while
�

A = Ã + B̃Ki2,

⎡

⎣
X

�

A
T

+ �

AX + γ 2
f XCT CX GT

G −I

⎤

⎦

=
⎡

⎣
X

(
Ã + B̃Ki2

)T +
(

Ã + B̃Ki2

)
X + γ 2

f XCT CX GT

G −I

⎤

⎦

< 0
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then
⎡

⎣
X

(
Ã + B̃Ki2

)T +
(

Ã + B̃Ki2

)
X + γ 2

f XCT CX GT

G −I

⎤

⎦

=
⎡

⎣
X ÃT + ÃX + X KT

i2 B̃T + B̃Ki2 X + γ 2
f XCT CX GT

G −I

⎤

⎦

< 0

Denote Y = Ki2 X
[

X ÃT + ÃX + YT B̃T + B̃Y + γ 2
f XCT CX GT

G −I

]

< 0

By using Lemma 3,
⎡

⎢
⎢
⎣

ÃT X + X Ã + B̃Y + YT B̃T ∗ ∗
G −I ∗

CX 0 −γ 2
f I

⎤

⎥
⎥
⎦ < 0

One can get

[
ÃT X + X Ã + B̃Y + YT B̃ GT

G −I

]

+
[

XT CT

0

]

• γ 2
f I • [

CX 0
]
< 0

⇒
[

ÃT X + X Ã+ B̃Y +YT B̃+γ 2
f XT CT CX GT

G −I

]

< 0

Then the proof is completed. �	

It can be seen that the proposed fault tolerant
control method is decentralized since each UAV
just needs to know the information of its neighbor
[18], and the FTC scheme is needed only for the
faulty UAV rather than the whole formation, this
control strategy greatly reduces the amount of
computation and the efficiency of achievement is
extraordinary.

5 FTC of Intermittent Faults

The following lemma analyzes the UAV’s behav-
ior when there is an intermittent fault.

Lemma 4 If there exists an intermittent fault, even
if asymmetric matrix P′

i and a positive def ine ma-
trix Q′

i exist, the error ηi of the inner-loop system
may not be exponential stable.

Proof At the occurrence of intermittent faults,
Eq. 15 changes into

V̇i (t) = η̇T
i (t) P′

iηi (t)+ ηT
i (t) P′

iηi (t)

= 2ηT
i (t) P′

iGηi yir (t)

+ηT
i (t)

[

AT
ηi

P′
i + P′

i Aηi +
(

Bηi Ki1ηi
fi

)T
P′

i

+ P′
i Bηi Ki1ηi

fi

]

ηi (t)

≤ 2
∣
∣ηT

i (t)
∣
∣ P′

iGηi |yir (t)|

+ηT
i (t)

[

AT
ηi

P′
i + P′

i Aηi +
(

Bηi Ki1ηi
fi

)T
P′

i

+ P′
i Bηi Ki1ηi

fi

]

ηi (t)

≤ ηT
i (t)

[

AT
ηi

P′
i + P′

i Aηi +
(

Bηi Ki1ηi
fi

)T
P′

i

+ P′
i Bηi Ki1ηi

fi

]

ηi (t)

Then

Q′
i = AT

ηi
Pi′ + P′

i Aηi +
(

Bηi Ki1ηi
fi

)T
P′

i

+P′
i Bηi Ki1ηi

fi (24)

Equation 16 changes into

V̇i ≤ λi2 ‖ηi (t)‖2 (25)

where λi2 > 0 is the eigenvalue of Q′
i. The proof is

completed. �	

Let Pij(t) denote the probability for going from
state i(i = 0, 1) to state j( j = 0, 1). The equations
for these probabilities are

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P0,1 (t) = λ

λ+ μ

(
1 − e−(λ+μ)t) ≤ λ

λ+ μ

P0,0 (t) = 1 − P0,1 (t) = μ

λ+ μ
+ λ

λ+ μ
e−(λ+μ)t

≥ μ

λ+ μ

(26)

Then during time period [0, t), the time period the
system keeps stable is P0,0(t)t,and the time period
the system becomes unstable is P0,1(t)t.
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Define P0,1
�= λ

λ+μ, P0,0
�= μ

λ+μ . It is clear that at
each time instant, the probability of the healthy is
more than P0,0, while the probability of faulty is
less than P0,1 [23, 24]. E(•) indicates the expecta-
tion.

Theorem 3 Consider system (10) with intermittent.
There exists an initial condition of mi (0) and δi1,
such that the origin is asymptotically in probabil-
ity, if

λi2λ < λi1μ (27)

Proof According to Eqs. 15 and 16,

Vi (t) ≤ e−λi1�t1+λi2�t2 Vi (0)

while −λi1�t1 + λi2�t2 can be described as
−λi1 P0,0 (t) t + λi2 P0,1 (t) t

Then

E (Vi (t)) ≤ e
∫ t

0 (−λi1 P0,0(τ)+λi2 P0,1(τ))dτVi (0)

≤ e
(
−λi1

μ

μ+λ+λi2
λ

μ+λ
)

tVi (0) ∀t ≥ 0

If −λi1
λ

λ+μ + λi2
μ

λ+μ < 0, one can have λi2λ <

λi1μ. Condition (27) ensures that E (Vi (t)) <
Vi (0), which means that the control law (12) is
always available in probability. Hence, we can
have lim

t→∞ E (Vi (t)) = 0. The proof is completed.
�	

Condition (27) provides an explicit relation
among healthy and faulty situations for the main-
tenance of the stability, which implies that the
healthy situation can compensate for the negative
effect of faulty situations provided that λi1 and μ
are large enough compared with λi2 and λ. Note
that any active FTC design is not needed. Such
a result can be combined with other FTC design
method to improve the reliability of the flight
control system with respect to intermittent faults,
and to make the FTC scheme more flexible.

6 Simulation Results

In the simulation, the formation is composed of
5 UAVs as is shown in Fig. 3. Details of such
formation model can be found in [1].

4

l

32

5

Fig. 3 Topology of 5 UAVs in formation

The desired angle and velocity are V∗ = 30 m/s,
w∗ = 0.5 rad/s. As for the inner-loop variables,
ψ∗ = 32 deg/s, β∗ = 6 deg/s UAV 2 is faulty.

The system matrices take the form:

A =
[

A1 0

0 A2

]

, B =
[

B1 0

0 B2

]

A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0334 −2.977 0.00 −9.81

−0.0016 −4.133 0.98 0

0.0077 −140.2 −4.435 0

0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

A2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.732 0.0143 −0.996 0.0706

−893 −9.059 2.044 0

101.673 0.0186 −1.283 0

0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

B1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.075 0.2453

0.3470 −4.133

−140.22 0

0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B2 =

⎡

⎢
⎢
⎢
⎢
⎣

0 0.244

328.653 308.498

47.5280 102.891
0 0

⎤

⎥
⎥
⎥
⎥
⎦

C =
⎡

⎣
1 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 1

⎤

⎦

Ā =
[

0 −SC

0 A

]

, B̄ =
[

0

B

]

,
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Fig. 4 Velocity error of normal system

Choose

S =
[

1 0

0 1

]

By using LMI, one obtain state feedback control

gain of normal system K21 =
[

K211 0
0 K212

]

K211 =
[ −1.1350 0.1979 −1.0130 0.1079 0.5988

86.7668 −25.9686 4.0673 1.1980 26.8821

]

K212 =
[

13.5138 2.8178 −0.0577 0.4109 −0.5078

−14.3884 −0.1090 0.0292 −0.4442 0.2494

]
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Fig. 5 Angular velocity error of normal system
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Fig. 6 Velocity error under incipient fault

As for the normal system, the velocity error and
angular velocity error are showed in Figs. 4 and 5.

6.1 Permanent Faults

The incipient permanent fault happens at 5 s.

ρ2 = diag [0.95, 0.99, 0.95, 0.97]

Compensate control gain is K22 =
[

K221 0
0 K222

]

K221 =
[ −0.0598 0.0104 −0.0534 0.0057 0.0315

0.8764 −0.2623 0.0411 0.0121 0.2716

]

K222 =
[

0.7112 0.1483 −0.0030 0.0216 −0.0267

−0.1453 −0.0011 0.0003 −0.0045 0.0025

]
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Fig. 7 Angular velocity error under incipient fault
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Fig. 8 Change of control surfaces δe2, δT2 under incipient
fault

Figures 6 and 7 show velocity and angular
velocity error under incipient fault respectively.
Figures 8 and 9 show the changes of control sur-
faces δ2e, δ2T and δ2a, δ2r under incipient fault
respectively.

The severe permanent fault happens at 5 s.

ρ′
2 = diag [0.3, 0.3, 0.3, 0.3]

Compensate control gain is K22 =
[

K221 0
0 K222

]

K221 =
[ −2.6484 0.4598 −2.3638 0.2517 1.3971

202.4558 −60.5935 9.4904 2.7953 62.7249

]
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Fig. 9 Change of control surfaces δe2, δr2 under incipient
fault
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Fig. 10 Velocity error under severe fault

K222 =
[

31.5320 6.5748 −0.1345 0.9587 −1.1848

−33.5729 −0.2542 0.0682 −1.0366 0.5818

]

Figures 10 and 11 show velocity and angular
velocity error of severe fault respectively. Figures
12 and 13 show changes of control surfaces δ2e, δ2T

and δ2a, δ2r under severe fault respectively.

6.2 Intermittent Faults

At the occurrence of intermittent fault, the fault’s
appearance and disappearance are showed in
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Fig. 11 Angular velocity error under severe fault
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Fig. 12 Change of control surfaces δe2, δT2 under severe
fault
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Fig. 13 Change of control surfaces δa2, δr2 under severe
fault
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Fig. 14 Intermittent fault model
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Fig. 15 Velocity error of intermittent fault
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Fig. 16 Angular velocity error of intermittent fault
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Fig. 17 Changing fault model
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Fig. 18 Velocity error of intermittent fault

Fig. 14. The faults happened at 9 s and 15.5 s
respectively and disappeared at 10 s and 16 s
respectively.

According to Figs. 14, 15 and 16, one can see
that the intermittent model satisfies the probabil-
ity proposed by Theorem 1. And the faulty system
is stable without designing a new controller.

By changing the fault model, one can see from
Figs. 17, 18 and 19 that the fault model does
not satisfy the probability, so the system becomes
unstable. The first time the fault happens at 2 s
and disappears at 10 s, the second time the fault
happens at 12 s and disappears at 16 s.
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Fig. 19 Angular velocity error of intermittent fault

7 Conclusion

This paper considers the FTC problem of UAVs
formation in the presence of permanent and inter-
mittent faults. FTC is achieved in each individual
UAV, the future work still focus on cooperative
FTC design under which the FTC goal can be
achieved by cooperation among UAVs.

Open Access This article is distributed under the terms of
the Creative Commons Attribution License which permits
any use, distribution, and reproduction in any medium,
provided the original author(s) and the source are credited.
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