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a b s t r a c t

This paper leverages the predictor-based model reference adaptive control (PMRAC) architecture to
develop an adaptive compensation scheme for uncertain nonlinear systems with multiple input and
state delays. The controller is composed of a state predictor, an auxiliary system, and adaptive laws.
The adaptive laws are designed through a Lyapunov function in such a way that the predictor state
and the auxiliary state asymptotically converge to the system state given that a stability condition
holds. Satisfying this delay-dependent stability condition, formulated in the form of a linear matrix
inequality (LMI), also ensures the input-to-state stability of the closed-loop control system. Numerical
case studies with a standard F-16 aircraft model are discussed to illustrate the efficacy of the proposed
control framework.
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1. Introduction

Designing a control scheme capable of compensating for time
delays that destabilize closed-loop systems is a notoriously chal-
lenging problem. The key issue is that when the feedback signals
go through the control channels, they are lagging behind in time
with respect to the system state due to the delays in the con-
trol inputs and/or feedback channels. As a result, the feedback
signals do not have the stabilizing effect they are designed to
achieve (Fridman, 2014; Hale & Lunel, 2013). To overcome the
challenge, many standard methods have been developed. For
example, the classical Smith predictor was proposed in Smith
(1959) for stable delay systems with its notable modifications
in Astrom, Hang, and Lim (1994), Matausek and Micic (1996) and
Watanabe and Ito (1981) which produce improved performances
for systems with an integral mode. Other extensions in Paor
(1985) and Majhi and Atherton (2000) enable the stabilization of
unstable processes with delays. Subsequent classical methods in-
clude the Artstein reduction scheme, which transforms a system
with an input delay into one without a delay, the Padé approxi-
mants (Lam, 1993) and Hankel operators (Curtain & Zwart, 2012),
which approximate the delay terms by rational transfer functions,
sliding mode control (Roh & Oh, 1999), and H∞ control via a
descriptor system (Fridman & Shaked, 2002).

One of the most common methods to compensate for an input
delay is to include linear feedback in terms of a predicted state.

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Fouad Giri
under the direction of Editor Miroslav Krstic.

E-mail address: doang.nguyen@sdstate.edu.

The predicted states are usually formulated in the form of an
integral over the past values of the control input. These predictor
feedback algorithms are often referred to as finite-spectrum as-
signment controllers, in which the desired placement of a finite
number of eigenvalues can be achieved by designing the feedback
gain matrices (see Kwon & Pearson, 1980; Manitius & Olbrot,
1979; Mondie & Michiels, 2003).

The predictor feedback methods provide the basic structures
for subsequent innovations in delay compensation. Specifically,
recent seminal developments in Krstic (2009, 2010), Tsubakino,
Krstic, and Oliveira (2016) and Zhu, Krstic, and Su (2017) trans-
form a delay system into a cascade PDE-ODE structure, where
boundary control techniques are employed for stabilization. No-
table boundary controllers include the backstepping design that
leads to an output feedback predictor scheme for LTI systems
with input delays in Cacace and Germani (2017), with both state
and input delays in Kharitonov (2017), and an observer-predictor
controller in Mazenc and Malisoff (2017). Work in Bekiaris-Liberis
and Krstic (2010) developed a predictor-feedback algorithm to
compensate for unknown state and input delays in linear feed-
forward systems. A local-stabilization PDE boundary control tech-
nique is formulated in Zhu, Krstic, and Su (2018b) to mitigate
the effects of distinct and unknown input delays in LTI sys-
tems. This technique was then modified in Zhu, Krstic, and Su
(2018a) assuming that the actuator state is measurable to achieve
the stronger global stabilization. Work in Zhu, Krstic, and Su
(2019) extended this framework to cover output feedback linear
systems.

Recent work in Liu and Zhou (2016, 2018) and Zhou (2014)
proposes a class of modifications, named nested prediction, to
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Table 1
Comparison between the related papers with respect to the present paper.

Nonlinear Uncertain I-D S-D

Tsubakino et al. (2016) and Zhu et al. (2018b) No No Multiple No
Zhu et al. (2017) No Yes Single No
Cacace and Germani (2017), Kharitonov (2017) and Liu and Zhou (2018) No No Multiple Yes
Bekiaris-Liberis and Krstic (2010) and Mazenc and Malisoff (2017) No No Single No
Zhu et al. (2018a) and Zhu et al. (2019) No Yes Multiple No
Liu and Zhou (2016) and Zhou (2014) No No Single Yes
Bekiaris-Liberis and Krstic (2012), Bresch-Pietri and Krstic (2014) and Karafyllis and Krstic (2016) Yes No Single No
Bekiaris-Liberis and Krstic (2013), Deng, Yao, and Ma (2017) and Sharma, Bhasin, Wang, and Dixon (2011) Yes No Single No
Bekiaris-Liberis and Krstic (2016) Yes No Multiple No
Chakrabarty, Fridman, Zak, and Buzzard (2018) Yes No No Yes
Nguyen (2018) Yes Yes Single No

This paper Yes Yes Multiple Yes

the integral that results in the predicted state. The goal is to
deal with delays in both state and control input, which the tradi-
tional predictor-feedback controllers are not designed to handle
when the input delay is larger than the state delay. Several re-
cent papers addressing nonlinear systems include the predictor-
feedback schemes in Bekiaris-Liberis and Krstic (2012, 2016) and
Bresch-Pietri and Krstic (2014) with a delay estimation algorithm,
in Karafyllis and Krstic (2016) for systems with a compact ab-
sorbing set, in Sharma et al. (2011) for an Euler–Lagrange system,
in Bekiaris-Liberis and Krstic (2013) for an state-dependent in-
put delay, in Deng et al. (2017) for output-feedback systems
with additive disturbance, and in Chakrabarty et al. (2018) for
delayed-measurement systems. However, these schemes were
designed to compensate for a single input delay. Furthermore,
all mentioned controllers for nonlinear systems require that the
governing dynamical equations (the plants) are known to the
controllers.

One critical property of predictor-feedback schemes is that
their control implementation requires approximating the integral
terms by a finite sum. As shown in Engelborghs, Dambrine, and
Roose (2001), this approximation may cause stability loss. Fur-
thermore, when the number of discretization points is large to
improve accuracy, the implementation requires excessive com-
putation time. For example, as reported in Table 1 in Liu and
Zhou (2018), it takes 432 s to complete a 30-s simulation with 40
discretization points used to approximate the predictor-feedback
integral. This raises issues regarding the practicality of the dis-
cretization schemes for predictor-feedback approaches in actual
applications since the computation of the controls must be com-
pleted within a loop, which is usually sub-millisecond.

In this paper, we develop a control framework capable of
compensating for multiple delays in the states and control inputs
of an uncertain nonlinear system while maintaining desirable
transient and steady-state performances. Systems with multiple
delays in the control inputs and states have different structures
as compared to the single delay counterparts. Furthermore, when
the input delay is larger than the state delay, the computation
of the state predictor requires the future state, hence is not
implementable (Zhou, 2014).

To address the challenges with multiple delays, we leverage
the PMRAC framework in Lavretsky, Gadient, and Gregory (2010),
Nguyen (2018), Nguyen and Dankowicz (2019) and Nguyen, Li,
and Dankowicz (2018) which was shown to produce improved
transient characteristics as compared to the classical MRAC al-
gorithms. In particular, the architecture proposed in this paper is
composed of four key components: the auxiliary system, the state
predictor, the adaptive laws, and the control input formulation.
The auxiliary system and state predictor are constructed in such
a way that the deviations between each of these systems and the
system state are independent of the input delays. The adaptive
laws are then formulated so that a Lyapunov function is negative,
and hence, the deviations converge to zero asymptotically given

that a delay-dependent stability condition is maintained. Finally,
the control law is designed for the adaptive estimates to minimize
the effects of uncertain elements in the system dynamics.

This delay-compensation structure entails several advantages.
It is able to stabilize uncertain nonlinear systems with multi-
ple input and state time delays. Every component in the con-
trol architecture is simple and easily implementable and does
not require functional integrals to calculate the predicted state
and controls. Hence, there is no concern regarding the inte-
gral discretization and implementation associated with predictor-
feedback controllers. Furthermore, since it leverages the classical
MRAC structure, the work has very low barriers to entry. Any
control engineer familiar with MRAC should be able to deploy
the delay-compensation schemes for specific tasks. The proposed
scheme also inherits the ability to achieve excellent transient
tracking performance from the original MRAC.

To emphasize the contributions of this paper to the current
literature on the topic, Table 1 provides an exhaustive comparison
between the recent closely related papers with respect to the
present paper in terms of whether or not the system of interest
is nonlinear, uncertain, in the presence of input delays (I-D) and
state delays (S-D).

The limitations of this work are: (i) It assumes the coefficients
of the control inputs are known; (ii) There is an upper bound for
the input delays, beyond which the closed-loop control system
is destabilized; and (iii) The norm of the nonlinearity must grow
linearly with the norm of the state.

2. Model definition and problem statement

We investigate an efficient compensation scheme for multiple
delays in an uncertain nonlinear system of the form:

ẋp = Apxp + Bp

(
J⊤p xp(t − h) + d(xp)

)
+

mc∑
i=1

Bpiui(t − τi), xp(t) = xp0(t) ∀t ∈ [−h, 0] (1)

and y = Cpxp, where xp0(t) is a continuous function, xp ∈ Rnp ,
y ∈ Rm, and u =

[
u1 u2 ... umc

]
∈ Rm represent the state,

output, and control input of the dynamical system, respectively,
u(t) = 0 ∀t ∈ [−max{τi}, 0], for i = 1, . . . ,mc , Ap ∈ Rnp×np ,
Jp ∈ Rnp×m, and Bp =

[
Bp1 Bp2 ... Bpmc

]
∈ Rnp×m. Here, Bp

and Cp are known constant matrices, while Ap and Jp are unknown
constant matrices. In addition, the nonnegative constant h is the
known time delay in the state, the quantities τi ≥ 0, i =

1, 2, . . . ,mc denote known constant time delays in the control
inputs ui(t) ∈ Rmc .

The nonlinear function, d(xp), is uncertain and can be param-
eterized as d(xp) = Θ⊤Φ(xp), where Θ ∈ RN×m is a matrix that
contains unknown parameters, and the state-dependent nonlinear
regressor Φ(xp) ∈ RN satisfies the following assumption.
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Assumption 1. The nonlinearity Φ(xp) satisfies

∥Φ(xp)∥2 ≤ bΦ∥xp∥2, (2)

where bΦ is a positive constant.

Indeed, the parameterization of the nonlinearity is a standard
property and can be applied to all Lagrangian systems. It has
been used extensively in control and robotics literature, especially
adaptive control. See Craig, Hsu, and Sastry (1987) and Slotine and
Li (1987), and the vast literature therein, for robotics applications
and Lavretsky and Wise (2013) for aerospace applications.

The control objective is for y(t) to track a desired reference
trajectory r(t) despite the destabilizing effects of multiple state
and input delays. Inspired by Lavretsky et al. (2010), we define a
new state variable

x⊤
:=

[∫ t

0

(
y(λ) − r(λ)

)⊤

dλ x⊤

p

]
, (3)

where x ∈ Rn with n = np + m. The reason for defining this
new state variable is to incorporate the integrated tracking error
into the extended system state vector in (3). This helps reduce
not only the tracking error itself, i.e. y(t) − r(t), but also over
the duration of the error, i.e. the integral operation. As a result,
this integral term accelerates the movement of the output y(t)
toward the reference r(t) and eliminate the residual steady-state
error, This is similar to the action of adding an integral term to a
proportional controller to form a PI controller.

By taking (3) into account, Eq. (1) is equivalently reformulated
into the following augmented system:

ẋ = Ax + B
(
J⊤xh + Θ⊤Φ(x)

)
(4)

+

mc∑
i=1

Biui(t − τi) + Bcr, x(t) = x0(t) ∀t ∈ [−h, 0]

and y = Cx, where xh := x(t − h), x0(t) is a continuous function,
and

A =

[
0m×m Cp
0np×m Ap

]
∈ Rn×n, Bc =

[
−Im×m
0np×m

]
∈ Rn×m,

J =

[
0m×m
Jp

]
∈ Rn×m, C =

[
0m×m Cp

]
∈ Rm×n,

Bi =

[
0m×m
Bpi

]
, B =

[
B1 B2 ... Bmc

]
∈ Rn×m. (5)

We assume that these matrices satisfy the following matching
condition.

Assumption 2. The system is stabilizable, i.e. there exists a
matrix K such that Am = A+ BK⊤, where Am is a Hurwitz matrix.

The next section presents a strategy to compensate for the
state and input delays to drive y(t) toward r(t).

3. The delay-compensation framework

Using the matching condition in Assumption 2, Eq. (4) can be
written as

ẋ = Amx + B
[
−K⊤x + J⊤xh + Θ⊤Φ(x)

]
+

mc∑
i=1

Biui(t − τi) + Bcr. (6)

By partitioning the coefficient matrices in (6) as follows: K =[
K1 K2 ... Kmc

]
, J =

[
J1 J2 ... Jmc

]
, Θ =[

Θ1 Θ2 ... Θmc

]
, we obtain

ẋ = Amx + Bcr (7)

+

mc∑
i=1

Bi

[
ui(t − τi) − K⊤

i x + J⊤i xh + Θ⊤

i Φ(x)
]
.

Consider the control law

ui = K̂⊤

i x − Ĵ⊤i xh − Θ̂⊤

i Φ(x). (8)

where K̂i(t), Ĵi(t), and Θ̂i(t) are the adaptive estimates to be
designed. Substituting the law in (8) into (7) yields

ẋ = Amx +

mc∑
i=1

Bi

[
K̃⊤

i x − J̃⊤i xh − Θ̃⊤

i Φ(x)
]

+ f (t, X) + Bcr, (9)

where K̃i := K̂i − Ki, J̃i := Ĵi − Ji, Θ̃i := Θ̂i − Θi, and

f (t, X) :=

mc∑
i=1

Bi

[
K̂⊤

i (t − τi)x(t − τi) − K̂⊤

i x

− Ĵ⊤i (t − τi)x(t − h − τi) + Ĵ⊤i x(t − h)

− Θ̂⊤

i (t − τi)Φ
(
x(t − τi)

)
+ Θ̂⊤

i Φ(x)
]

(10)

gathers delay related terms with X⊤
=

[
x⊤(t), x⊤(t − τ1), ...,

x⊤(t − τmc), x⊤(t − h − τ1), ..., x⊤(t − h − τmc), x⊤

h

]
. Next, we

design the auxiliary system:

ẋa = Amxa + f (t, X) + Bcr, xa(0) = xa0 (11)

and ya = Cxa. The motivation for including f (t, X) in the design
of the auxiliary system (11) is so that this term is canceled when
taking the difference between (9) and (11) to get the tracking
error equation as follows

ė = Ame +

mc∑
i=1

Bi

[
K̃⊤

i x − J̃⊤i xh − Θ̃⊤

i Φ(x)
]
, (12)

with e(t) := x(t) − xa(t), independent of input delays.
We next construct the state predictor as follows

˙̂x = Amx + Ar ê + Bcr (13)

+

mc∑
i=1

Bi

[
ui(t − τi) − K̂⊤

i x + Ĵ⊤i xh + Θ̂⊤

i Φ(x)
]

and ŷ = Cx̂, where x̂(0) = x̂0, ê := x̂− x, and Ar is a loop-shaping
Hurwitz matrix. Similarly, this design of the state predictor elim-
inates the input-delay related terms when taking the difference
between (7) and (13) to obtain the following prediction error
equation:

˙̂e = Ar ê −

mc∑
i=1

Bi

[
K̃⊤

i x − J̃⊤i xh − Θ̃⊤

i Φ(x)
]
. (14)

With the errors defined, we can now design the adaptive esti-
mates as follows:
˙̂Ki = −Γxix∆eBi, (15)
˙̂Ji = Γhixh∆eBi, (16)
˙̂
Θi = ΓΘ iΦ(x)∆eBi, (17)

where ∆e = e⊤Pm − ê⊤Pr , K̂i(0) = K̂i0, Ĵi(0) = Ĵi0, Θ̂i(0) =

Θ̂i0, and Γxi, Γhi, and ΓΘ i are the adaptive gains. In addition, the
positive definite matrices Pm and Pr are the unique solutions to
the Lyapunov equations:

A⊤

mPm + PmAm = −Qm, (18)

A⊤

r Pr + PrAr = −Qr , (19)

where Qm and Qr are positive definite matrices.
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The stability of this control framework are analyzed in the
following section.

4. Stability analysis

In this section, we establish the input-to-state stability of the
closed-loop system and the asymptotic stability of the tracking
and prediction errors under a delay-dependent stability condi-
tion.

Lemma 1. The errors e(t), ê(t), K̃i(t), J̃i(t) and Θ̃i(t), for i =

1, . . . ,mc , are all uniformly ultimately bounded. Here, a trajectory
z(t) is uniformly ultimately bounded if there exist b and c and for
every 0 < a < c, there is a T ≥ 0 such that

∥z(t0)∥ ≤ a ⇒ ∥z(t)∥ ≤ b, ∀t ≥ t0 + T . (20)

Proof. Consider the Lyapunov function candidate:

V (e, ê, K̃i, J̃i, Θ̃i) = e⊤Pme + ê⊤Pr ê

+

mc∑
i=1

tr
(
K̃⊤

i Γ −1
xi K̃i + J̃⊤i Γ −1

hi J̃i + Θ̃⊤

i Γ −1
Θ i Θ̃i

)
, (21)

where tr(·) denotes the trace of a matrix. It follows from (12),
(14), (18), (19), and the time derivative of (21) that

V̇ + e⊤Qme + ê⊤Qr ê = 2
mc∑
i=1

∆eBiK̃⊤

i x

− 2
mc∑
i=1

∆eBi J̃⊤i xh − 2
mc∑
i=1

∆eBiΘ̃
⊤

i Φ(x)

+ 2
mc∑
i=1

tr
(
K̃⊤

i Γ −1
xi

˙̂Ki + J̃⊤i Γ −1
hi

˙̂Ji + Θ̃⊤

i Γ −1
Θ i

˙̂
Θi

)
. (22)

Using the property that tr(ab⊤) = b⊤a, we have

V̇ + e⊤Qme + ê⊤Qr ê = 2
mc∑
i=1

tr
[
K̃⊤

i x∆eBi

]
− 2

mc∑
i=1

tr
[
J̃⊤i xh∆eBi

]
− 2

mc∑
i=1

tr
[
Θ̃⊤

i Φ(x)∆eBi

]
+ 2

mc∑
i=1

tr
(
K̃⊤

i Γ −1
xi

˙̂Ki + J̃⊤i Γ −1
hi

˙̂Ji + Θ̃⊤

i Γ −1
Θ i

˙̂
Θi

)
. (23)

By rearranging relevant terms, we get

V̇ + e⊤Qme + ê⊤Qr ê

= 2
mc∑
i=1

tr
[
K̃⊤

i

(
x∆eBi + Γ −1

xi
˙̂Ki

)]
− 2

mc∑
i=1

tr
[
J̃⊤i

(
xh∆eBi − Γ −1

hi
˙̂Ji
)]

− 2
mc∑
i=1

tr
[
Θ̃⊤

i

(
Φ(x)∆eBi − Γ −1

Θ i
˙̂
Θi

)]
. (24)

Now substituting (15), (16), and (17) in (24) to eliminate its
right-hand side leads to

V̇ = −e⊤Qme − ê⊤Qr ê ≤ 0. (25)

This implies the uniform ultimate boundedness of e, ê, K̃i, J̃i, and
Θ̃i, for i = 1, . . . ,mc . □

It is noted that to this point, the boundedness of the errors
and the adaptive estimates is independent of the input-delay

values since their governing equations in (12), (14), (15), (16),
and (17) are all free of the input delays. The dependence on the
input delays only arises as a sufficient condition for the input-to-
state stability of the closed-loop adaptive system in the following
lemma.

Lemma 2. Suppose that there exist matrices P1, P2, scalars λ and
ϵ, and Ri, i = 1, . . . , 2mc + 1, that satisfy the delay-dependent LMI

W ≤ 0, (26)

where W is a symmetric matrix whose components are

Wii = −Rie−2ϵ1τi + λbg I, for i = 1, . . . , 2mc + 1

Wi(2mc+5) = Rie−2ϵ1τi , for i = 1, . . . , 2mc + 1

W(2mc+2)(2mc+2) = −P⊤

2 − P2 +

2mc+1∑
i=1

τ 2
i Ri

W(2mc+2)(2mc+3) = P⊤

2 , W(2mc+2)(2mc+4) = P⊤

2 Bc

W(2mc+2)(2mc+5) = −P1 + P⊤

2 Am

W(2mc+3)(2mc+3) = −λI, W(2mc+3)(2mc+5) = Pm + P1
W(2mc+4)(2mc+4) = −ϵ2I
W(2mc+4)(2mc+5) = B⊤

c (Pm + P1)

W(2mc+5)(2mc+5) = −Qm −

2mc+1∑
i=1

Rie−2ϵ1τi + 2ϵ1Pm

+ λbg I + P⊤

1 Am + A⊤

mP1,

and all other elements are zero. The closed-loop system in (6) is
input-to-state stable with respect to r(t) for all τi small enough. In
other words, there exist a class KL function β and a positive constant
c such that (cf. Fridman, 2014)

∥x(s)∥2 ≤ β(x0, s) + c
∫ s

0
∥r(t)∥2

2dt, ∀s > 0.

Proof. By substituting (8) in (6), the closed-loop adaptive system
becomes the following delay-differential equation:

ẋ = Amx + Bcr + g(t, X), (27)

where g(t, X) :=
∑mc

i=1 Bi

[
K̂⊤

i (t − τi)x(t − τi)− Ĵ⊤i (t − τi)x(t − h−

τi) − Θ̂⊤

i (t − τi)Φ
(
x(t − τi)

)
+ J⊤i xh − K⊤

i x + Θ⊤

i Φ(x)
]
. Because

of the property of Φ(x) stated in Assumption 1 and since K̂i(t),
Ĵi(t), and Θ̂i(t), for i = 1, . . . ,mc , are uniformly bounded as per
Lemma 1, there exists bg > 0 such that:

∥g∥
2
2 ≤ bgX⊤X . (28)

To investigate the stability of the delay system in (27), consider
the following Lyapunov-Krasovskii functional

V (t) = x⊤(t)Pmx(t) (29)

+

2mc+1∑
i=1

τi

∫ 0

−τi

∫ t

t+θ

e−2ϵ1(t−s)ẋ⊤(s)Riẋ(s)dsdθ  
Vi(t)

for some positive definite matrix Ri and some scalar constant
ϵ1 > 0. Here, τmc+1 := h+τ1, . . . , τ2mc := h+τmc , and τ2mc+1 := h,
for convenience. Applying integration by part with

v =

∫ t

t+θ

e−2ϵ1(t−s)ẋ⊤(s)Riẋ(s)ds

⇒ dv = −e2ϵ1θ ẋ⊤(t + θ )Riẋ(t + θ )dθ (30)
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and w = θ , which means dw = dθ , leads to

Vi(t) = τi

∫ 0

−τi

vdw = τi
[
vw

]θ=0
θ=−τi

− τi

∫ 0

−τi

wdv

= τi

∫ t

t−τi

τie−2ϵ1(t−s)ẋ⊤(s)Riẋ(s)ds

+ τi

∫ 0

−τi

θe2ϵ1θ ẋ⊤(t + θ )Riẋ(t + θ )dθ (31)

= τi

∫ t

t−τi

(τi + s − t)e−2ϵ1(t−s)ẋ⊤(s)Riẋ(s)ds.

Here, a change in variables with s = t + θ is used. It then follows
from the Leibniz integral rule that

V̇i(t) = τ 2
i ẋ

⊤(t)Riẋ(t) − 2ϵ1Vi(t)

− τi

∫ t

t−τi

e−2ϵ1(t−s)ẋ⊤(s)Riẋ(s)ds. (32)

As e−2ϵ1(t−s)
≥ e−2ϵ1τi for s ∈ [t − τi, t], we have

V̇i(t) ≤ τ 2
i ẋ

⊤(t)Riẋ(t) − 2ϵ1Vi(t)

− τie−2ϵ1τi

∫ t

t−τi

ẋ⊤(s)Riẋ(s)ds. (33)

Keeping this in mind, we obtain:

V̇ (t) ≤ 2x⊤(t)Pmẋ(t) +

2mc+1∑
i=1

τ 2
i ẋ

⊤(t)Riẋ(t)

− 2ϵ1
(
V (t) − x⊤(t)Pmx(t)

)
−

2mc+1∑
i=1

τie−2ϵ1τi

∫ t

t−τi

ẋ⊤(s)Riẋ(s)ds. (34)

Therefore,

V̇ (t) + 2ϵ1V (t) − ϵ2∥r(t)∥2
2 ≤ 2x⊤(t)Pmẋ(t)

+

2mc+1∑
i=1

τ 2
i ẋ

⊤(t)Riẋ(t) + 2ϵ1x⊤(t)Pmx(t)

−

2mc+1∑
i=1

τie−2ϵ1τi

∫ t

t−τi

ẋ⊤(s)Riẋ(s)ds − ϵ2∥r(t)∥2
2

+λ
[
bgX⊤X − ∥g∥

2
2

]  
≥ 0 due to (28)

+2
[
x⊤(t)P1 + ẋ⊤(t)P⊤

2

]

.

[
Amx(t) + g + Bcr(t) − ẋ(t)

]
  

= 0 due to (27)

. (35)

It follows from Jensen’s inequality that (see Fridman, 2014, p. 87)

τi

∫ t

t−τi

ẋ⊤(s)Riẋ(s)ds ≥

∫ t

t−τi

ẋ⊤(s)dsRi

∫ t

t−τi

ẋ(s)ds

=
[
x(t) − x(t − τi)

]⊤Ri
[
x(t) − x(t − τi)

]
. (36)

Hence,

V̇ (t) + 2ϵ1V (t) − ϵ2∥r(t)∥2
2 ≤

2x(t)⊤Pm
[
Amx(t) + g + Bcr(t)

]
−

2mc+1∑
i=1

[
x(t) − x(t − τi)

]⊤Rie−2ϵ1τi
[
x(t) − x(t − τi)

]
+

2mc+1∑
i=1

τ 2
i ẋ

⊤(t)Riẋ(t) + 2ϵ1x⊤(t)Pmx(t) − ϵ2∥r(t)∥2
2

+ λ
[
bgX⊤X − ∥g∥

2
2

]
+ 2

[
x⊤(t)P⊤

1 + ẋ⊤(t)P⊤

2

]
.

[
Amx(t) + g + Bcr(t) − ẋ(t)

]
≤ ζ⊤(t)Wζ (t), (37)

where ζ is a column vector of x(t−τ1), . . . , x(t−τmc ), x(t−h−τ1),
. . . , x(t − h − τmc ), xh, ẋ, g, r , and x, in this particular order, and
W is defined below (26). Therefore, if there exist matrices Ri, P1,
P2, and scalars λ and ϵ such that W ≤ 0, by multiplying e2ϵ1(t−s)

to both sides of (37), we have:

e2ϵ1(t−s)
[
V̇ (t) + 2ϵ1V (t) − ϵ2∥r(t)∥2

2

]
≤ 0. (38)

Integrating both sides from 0 to s leads to∫ s

0

d
dt

[
e2ϵ1(t−s)V (t)

]
dt ≤ ϵ2

∫ s

0
e2ϵ1(t−s)

∥r(t)∥2
2dt.

⇒ V (s) − e−2ϵ1sV (0) ≤ ϵ2

∫ s

0
e2ϵ1(t−s)dt

∫ s

0
∥r(t)∥2

2dt.

Therefore,

λmin(Pm)∥x∥2 ≤ x⊤(s)Pmx(s) ≤ V (s) (39)

≤ e−2ϵ1sV (0) +
ϵ2

2ϵ1

(
1 − e−2ϵ1s

) ∫ s

0
∥r(t)∥2

2dt.

Thus, the closed-loop system in (6) is input-to-state stable with
respect to r(t). □

Remark 1. For a given set of parameters that satisfy the delay-
dependent stability condition (26) for τi = 0, all eigenvalues of
W are negative. When the delay is increased, the eigenvalues
gradually move closer to the 0 axis because of the continuous
dependence of the LMI on the delays (Fridman, 2014). Beyond
some critical delay max{τi} > τm, they start crossing the 0
axis and W is no longer negative definite. Hence, the stability
condition (26) is satisfied with the input delays small enough.

To numerically check the feasibility of the LMI (26) given a sys-
tem, one will need to know the bound bg . It follows from (28) that
the bound bg depends on the bounds on the adaptive estimates
K̂i(t), Θ̂i(t), and Ĵi(t), among other terms. Though Lemma 1 proves
the uniform ultimate boundedness, i.e. the existence of bounds,
of K̂i(t), Θ̂i(t), and Ĵi(t), the theory does not provide a closed-form
expression to compute the bounds. Therefore, numerically check-
ing the LMI feasibility here is not a practical task. Nonetheless,
if bg is known, solving the LMI is possible, though not trivial,
with the help of optimization toolboxes, such as YALMIP (Lof-
berg, 2004), together with an efficient solver, e.g. MOSEK. The
illustrative example below demonstrates how checking of the LMI
feasibility may be done using these computational tools.

Illustrative example: Consider a simple closed-loop adaptive con-
trol system in which mc = 1, Bc = 1, bg = 0.1, and the baseline
control parameters Am = −1, Qm = 1, and Pm = 0.5. The
variables in the LMI problem in (26) are λ, ϵ2, R1, R2, R3, P1, and P2.
To avoid solving a nonlinear LMI problem, which is unnecessarily
complicated and most tools are not capable of solving, we set
ϵ1 = 0.01 instead of considering it a variable.

In the optimization toolbox YALMIP, we use the sdpvar to
define the decision variables as symbolic scalars or matrices.
We employ blkvar to define the block matrix W with the
symbolic variables as shown in (26). The LMI problem can be
then defined by LMIs=[W<=0, λ>=0, ϵ2>=0, R1>=0, R2>=0,
R3>=0], the same way a semidefinite programming optimization
problem is set up. While YALMIP is a very efficient parsing
tool to construct the LMI problem into an appropriate struc-
ture, it requires a solver to actually solve the problem. The
off-the-shelf solver MOSEK can be declared in the setting: op-
tions=sdpsettings(‘solver’,‘mosek’). The problem is
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then solved using the command optimize(LMIs,[],options).
The output of this function will indicate whether or not the LMI
is feasible.

For instance, for the particular problem in this example, the
outcome of this process indicates that the LMI in (26) is feasible
for τ1 = 0.25 s and h = 1.7 s. A specific solution is when
λ = 0.50781, ϵ2 = 33.0902, R1 = 0.20426, R2 = 0.071516,
R3 = 0.074088, P1 = 0.020647, and P2 = 0.50067. For validation,
with these values, the eigenvalues of W are −33.1067, −1.9235,
−0.4679, −0.0976, −0.0194, −0.0007, and −7.1999 × 10−5,
showing that W is indeed a negative definite matrix.

The results of Lemmas 1 and 2 lead to the following theorem
on the asymptotic stability of the errors.

Theorem 1. Suppose the delay-dependent stability condition in
Lemma 2 is satisfied. The tracking and prediction errors e(t) and ê(t)
are asymptotically stable. Here, a trajectory z(t) is asymptotically
stable if there exists a > 0 and for any b > 0, there is a T ≥ 0 such
that

∥z(t0)∥ ≤ a ⇒ ∥z(t)∥ ≤ b, ∀t ≥ t0 + T . (40)

Proof. From (22) we have

V̈ (t) = −2e⊤Qmė − 2ê⊤Qr
˙̂e. (41)

Since the errors e(t) and ê(t), estimates K̂ (t), Ĵ(t), and Θ̂(t), and
system state x(t) are all bounded according to Lemmas 1 and 2,
it follows from (12) and (14) that the derivatives ė(t) and ˙̂e(t) are
both bounded. Hence, V̈ (t) is bounded and, consequently, V̇ (t) is
uniformly continuous. In addition, as V (t) is lower bounded and
V̇ (t) ≤ 0, we have V̇ (t) → 0 as t → ∞ in light of the Barbalat
lemma (Khalil, 1992, p.186). The claim then follows. □

5. Numerical experiments

5.1. Comparison with the delay compensator in Nguyen (2018)

For comparison, we employ the F-16 aircraft model imple-
mented in Lavretsky et al. (2010), Nguyen (2018) and Stevens and
Lewis (2003). In particular, the state xp = [α q]⊤ contains the
aircraft angle of attack, α, and the pitch rate, q. The parameters
in (1) are:

Ap =

[
−1.0189 0.9051
0.8223 −1.0774

]
, d(xp) = 0.5e−

(α−αc )2

2σ2 − d0,

d0 = 0.5e−
α2c
2σ2 , B =

[
−0.0022
−0.1756

]
, J =

[
7
9

]
, Cp =

[
1 0

]
,

with the center of the Gaussian αc = 2 deg π
180 , and the width

σ = 0.0233. The state delay is h = 2 s and the input delay is
τ = 0.2 s. The system is then transformed into the extended form
in (3).

We design the proposed delay-compensation scheme with
Am having eigenvalues of −1.0, −0.8, and −0.7. We then use
a standard pole placement algorithm to arrive at Am and K as
follows:

Am =

[ 0 0 1
−0.0068 −1.0292 0.9002
−0.5441 −0.0024 −1.4708

]
, K =

[3.0986
4.6963
2.2401

]
.

Other control parameters are Γx = 10I, ΓΘ = 10I, Γh =

50I, Qm = I, Ap = 10Am, Pr = 5Pm. The estimates K̂ (t), Θ̂(t), and
Ĵ(t) are all initialized at zero initial conditions. The closed-loop
adaptive system, the auxiliary system, and the state predictor are
initialized arbitrarily as follows: x0 = [0 0 0]⊤, xa0 = [0 0 1]⊤,
and x̂0 = [0 0 −1]⊤. The output is tasked to track a square-wave
trajectory with different step amplitudes.

Fig. 1. Tracking performance of the proposed delay compensator as compared
with the controller in Nguyen (2018). In this case, the input and state delays
are τ = 0.2 s and h = 2 s, respectively.

To illustrate the efficacy of the proposed scheme, we compare
its performance with that of the controller in Nguyen (2018),
which is implemented with the same values of Am, Ap, and the
adaptation gains. The comparative results are shown in Fig. 1
with the red solid line representing the output of the proposed
controller and the blue dotted line representing the output of the
controller in Nguyen (2018). As shown, the proposed controller is
able to compensate for the input delay and the large state delay,
while the effect of the state delay is evident in the output of the
controller developed in Nguyen (2018).

There are several reasons we compare the performance of the
controller proposed here against the controller in Nguyen (2018):
(i) To show that a delay in the state may cause catastrophic dam-
age to the control system’s performance as evident by the blue
dotted line in Fig. 1. Hence, this delay needs to be compensated
to achieve desirable performance and this compensation is not
trivial. (ii) To illustrate the effect of the components added to
compensate for the state delay, which is shown to deteriorate the
performance of the previous controller. (iii) As shown in Table 1,
the previous controller in Nguyen (2018) is the most closely
related work to the present paper.

5.2. Performance with a higher-order system

In this section, we demonstrate the performance of the pro-
posed compensator when there are multiple input delays. For this
purpose, another control channel is added to the case study in the
last section. In this case, by applying the transformation in (3), we
obtain the extended system (4) with the following parameters:

A =

⎡⎢⎣0 0 1 0
0 0 0 1
0 0 −1.0189 0.9051
0 0 0.8223 −1.0774

⎤⎥⎦ , Bc =

⎡⎢⎣−1 0
0 −1
0 0
0 0

⎤⎥⎦ , (42)

B1 =

⎡⎢⎣ 0
0

−0.0022
−0.1756

⎤⎥⎦ , B2 =

⎡⎢⎣ 0
0
0.1
0.2

⎤⎥⎦ , J =

⎡⎢⎣0 0
0 0
6 7
9 8

⎤⎥⎦ , (43)

C =

[
0 0 1 0
0 0 0 1

]
, d(xp) =

[
0.5e−

(α−αc )2

2σ2 − d0
sin(q)

]
.

The control parameters are set to

Am =

⎡⎢⎣ 0 0 1 0
0 0 0 1

−0.4705 0.0404 −1.3768 0.0641
0.0404 −0.5501 0.0641 −1.5032

⎤⎥⎦ ,
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Fig. 2. Tracking performance of the proposed delay compensator. In this case,
the input and state delays are τ1 = 0.5 s, τ2 = 0.2 s, and h = 5 s, respectively,
for the system controlled by the controller proposed in this paper.

K =

⎡⎢⎣−5.7323 −4.8310
3.6849 0.4848
0.2476 −3.5737

−7.3378 −8.5715

⎤⎥⎦ . (44)

In addition, we set Γx = 10I, ΓΘ = 10I, Γh = 50I, Qm =

I, Ap = 10Am, Pr = 30Pm. The estimates K̂ (t), Θ̂(t), and Ĵ(t) are
all initialized at zero initial conditions. The closed-loop adaptive
system, the auxiliary system, and the state predictor are initial-
ized as follows: x0 = [0 0 0 0]⊤, xa0 = [0.5 − 0.5 1.5 1]⊤,
x̂0 = [1.5 0.5 −0.5 −1]⊤. The two control channels have delays
of 0.5 s and 0.2 s and the state delay is 5 s.

Fig. 2 shows the performance of the proposed adaptive con-
troller while tracking a square wave reference trajectory. We can
see that the proposed delay compensator is able to stabilize the
system in the presence of the given delays. Nonetheless, the pro-
posed scheme, inheriting the great tracking ability of the PMRAC,
exhibits a desirable tracking capability with virtually no over-
shoot. The proposed delay-compensation scheme achieves this
performance despite knowing very little about the system and
has to adapt itself to the system uncertainties and nonlinearity.

5.3. Asymptotic behaviors

In this section, we illustrate the asymptotic behaviors of the
tracking error governed by (12) and prediction error governed by
(14). These asymptotic behaviors are concluded in Theorem 1 in
light of Lemmas 1 and 2. For this purpose, we use the same non-
linear systems and control parameters of the proposed scheme as
in the last section. Here, the outputs aim to track a step reference
trajectory that jumps from 0 to 5 at t = 1 s.

The top panel of Fig. 3 shows the four components of the track-
ing error e(t), while the bottom panel shows the four components
of the prediction error ê(t). As expected, despite starting from
non-zero initial conditions, all error trajectories converge to zero
asymptotically in the presence of input delays of 0.5 s and 0.2 s, a
state delay of 5 s, and the system nonlinearity and uncertainties.

The asymptotic stability of ê(t) ensures that the uncertainty
Θ⊤Φ(x) in (4) is closely estimated and canceled. In addition,
the asymptotic stability of e(t) implies that the dynamics of the
closed-loop adaptive system converge to the dynamics of the
auxiliary system. Thus, the system output y(t) closely tracks r(t)
since the output ya of the auxiliary system (11) closely tracks r(t).
This close tracking behaviors can be seen in Figs. 1 and 2.

5.4. Limitation: Upper bound of input delays

This section demonstrates a key limitation of the proposed
controller that it has an upper bound of input delays. When the

Fig. 3. The top panel shows the time histories of the tracking error e(t) =

x(t) − xa(t). The bottom panel shows the time histories of the prediction error
ê(t) = x̂(t)−x(t). In this case, the input and state delays are τ1 = 0.5 s, τ2 = 0.2 s,
and h = 5 s, respectively, and the control system is tasked to track a step input.
Asymptotic stability is evident in both tracking and prediction errors despite the
large delay values.

Fig. 4. Tracking performance of the proposed delay compensator. In this case,
the input and state delays are τ1 = 5.7 s, τ2 = 0.2 s, and h = 5 s, respectively.

delays are larger than this upper bound, the closed-loop control
system is destabilized. For example, when we increase the input
delay τ1 to 5.7 s, the control performance is given in Fig. 4, which
shows undesirable tracking with an amplitude starting to grow.
Therefore, in this example, a delay of about 5.6 s is the upper
bound for the input delay. Further increase in the input delay
leads to instability. The controller is highly robust to the state
delay since no stability loss is observed for any large value of the
state delay.

6. Conclusion

We have developed a new adaptive delay-compensation
framework using the PMRAC architecture as the foundation.
The proposed approach is able to stabilize uncertain nonlinear
systems with multiple delays in the control inputs and states. A
delay-dependent stability condition is formulated using a
Lyapunov-Krasovskii functional which implies delay thresholds.
When the delay values are below the thresholds, the asymptotic
stability of the error signals and the input-to-state stability of the
closed loop adaptive control system are guaranteed. In addition,
unlike most other delay-compensation controllers, the proposed
scheme does not require the discretization of integral terms.
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Therefore, it is more computationally efficient than predictor-
feedback controllers, whose control laws are formulated in terms
of integrals, and does not suffer from the issue of long processing
time, reported in Liu and Zhou (2018) for example. These prop-
erties are demonstrated by numerical experiments, which also
include comparative results to illustrate the performance of the
proposed scheme with respect to existing delay-compensation
controllers.

Future research will address the limitations identified at the
end of Section 1 and extend this framework to control systems
governed by partial differential equations with relevant struc-
tures. Furthermore, the issues of deriving a formula for the upper
bound of input delays are currently under study.
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