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Consecutive Synchronization of a Delayed Complex Dynamical Network
via Distributed Adaptive Control Approach
Ali Kazemy and Jinde Cao*

Abstract: In this paper, a consecutive synchronization scheme is investigated to synchronize the nodes of a delayed
complex dynamical network with an isolated node via an adaptive control approach. The specific feature of this
scheme consists in the structure of the communication links: a communication connection is required between the
isolated node and one selected node in the network, and further communication links exist between any node and
one neighbor node. In this way, all nodes are connected together like a chain. Based on Lyapunov-Krasovskii theory,
some conditions are obtained in the form of linear matrix inequalities to guarantee the consecutive synchronization
by the designed distributed adaptive control. To make this synchronization scheme more practical, no constraints
have been considered for coupling connection matrix such as being symmetric or zero row sum. Finally, a numerical
example is presented to demonstrate the effectiveness of the proposed method.

Keywords: Complex dynamical network, distributed adaptive control, Lyapunov-Krasovskii theory, synchroniza-
tion, time-delay.

1. INTRODUCTION

Complex dynamical networks (CDNs) have become an
attractive research area due to their potential applications
to various disciplines such as neural networks [1], social
networks [2], ecological networks, communication net-
works [3], information sciences, and power distribution
networks [4]. These complex networks, which consist
of a large set of interconnected nodes, have been widely
utilized to describe many natural and man-made systems
[5, 6]. Among various collective behaviors of complex
networks [7], synchronization between the nodes is prob-
ably the most important and significant [8–11]. This phe-
nomenon has been discovered in nature such as fireflies
in the forest, applause, and description of hearts [12],
and also developed in man-made systems such as chaos-
based secure communication and distributed computing
systems [13]. Due to importance of this issue, various syn-
chronization concepts have been introduced in the litera-
ture including complete synchronization [14–16], lag syn-
chronization [17–19], local synchronization [20], cluster
synchronization [21, 22], and projective synchronization
[23, 24], etc.

In order to synchronize the CDN’s nodes with an in-
dividual node, conventional methods propose a one-to-

Manuscript received November 15, 2017; revised February 23, 2018; accepted March 26, 2018. Recommended by Associate Editor M.
Chadli under the direction of Editor Jessie (Ju H.) Park. This work was supported by the Jiangsu Provincial Key Laboratory of Networked
Collective Intelligence under Grant No. BM2017002.

Ali Kazemy is with the Department of Electrical Engineering, Tafresh University, Tafresh 39518-79611, Iran (e-mail: kazemy@
tafreshu.ac.ir). Jinde Cao is with School of Mathematics, Southeast University, Nanjing 210096, China; School of Electrical Engineer-
ing, Nantong University, Nantong 226000, China; and School of Mathematical Sciences, Shandong Normal University, Ji’nan 250014, China
(e-mail: jdcao@seu.edu.cn).
* Corresponding author.

one connection between every nodes of the network with
the individual node [25–30], as shown in Fig. 1(a). This
synchronization scheme creates many practical limitations
and difficulties. A one-to-one connection needs a direct
communication between every nodes of the network and
the isolated node where it may be impossible for many
practical applications. Furthermore, this will increase the
cost of implementation and make it inefficient in practice.
Lee et al. [31] proposed an improved scheme by introduc-
ing an arbitrary virtual target node in the network, which
has been shown in Fig. 1(b). In this way, the virtual node
synchronizes itself with the isolated node, and all other
nodes in the network synchronize themselves with this
virtual node. As a matter of fact, this method has tried
to eliminate the problems arising from direct connection
of all nodes to an isolated node, located outside of the
network, such as communication disturbances and uncer-
tainties. But, the need for direct connection between all
nodes and the virtual node still remains. To overcome the
drawbacks of this method, a consecutive synchronization
scheme is proposed in this paper where each node syn-
chronizes itself with another neighbor node (Fig. 1(c)). In
this way, a communication link is just needed to make a
route from the isolated node and the other nodes. There-
fore, all nodes have been connected together like a chain
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Fig. 1. The framework for synchronization of complex
dynamical network in (a) the most previous papers,
(b) the method proposed in [31], and (c) this paper.

whereas direct connections between nodes and the iso-
lated node or a virtual node have been eliminated. To
the best of the authors’ knowledge, this synchronization
scheme is presented for the first time, which is the main
contribution of this paper. In addition to the other advan-
tages of this synchronization scheme, the following bene-
fits can also be noted:

• Previous synchronization schemes need to broad-
cast information of the individual node, which yields
downgrade the network security. For increasing the
level of security, it is better to send the information
through some private or secured routes. Therefore,
the network designer can opt a route between the in-
dividual node and the other nodes based on the net-
work topology. Then, this route can be upgraded by
hardware and/or software considerations. Since our
proposed scheme has the capability to implement this
method, so it can be better in terms of security than
other schemes.

• In several cases, however, there is a "natural" ordering
of the nodes such that the communication between
two subsequent nodes is more advantageous than be-
tween every node and a fixed individual node. Appli-
cations such as sensor networks (especially for long
pipelines), cellular networks, and also some social
networks are examples of these networks.

To deal with the synchronization problem, several con-
trol methods have been introduced in the literature, in-
cluding sliding mode control [32–35], adaptive control
[36–39], impulsive control [40–43], guaranteed cost con-
trol [44], and intermittent control [36, 45]. Among these
methods, adaptive control methods have been widely used

for the synchronization of complex dynamical networks,
and the main reason for this can be seen in the simplic-
ity of controller design for networks with a large num-
ber of nodes [38, 46, 47]. Most of the published meth-
ods have considered some constraints on the coupling ma-
trix such as being symmetric and/or diffusive conditions
[38, 48, 49], which limits the application of these meth-
ods. In this paper, a distributed adaptive control method
has been used that does not consider any restrictive con-
dition on the coupling matrix. In addition, controller cal-
culations are performed at each node separately, only with
the adjacent node information. Since there is a delay in
many engineering applications and has been considered
by many researchers, we have considered the network
with delays. Since the time-delay in many engineering
applications is unavoidable and investigated by many re-
searchers [50–52], we consider the network with delayed
couplings. Based on Lyapunov-Krasovskii theory, some
criteria have been obtained in the form of linear matrix
inequalities to guarantee the consecutive synchronization
with the proposed distributed adaptive control.

This paper is organized as follows: The problem is
stated in section 2. Some useful lemmas are also pro-
vided in this section. Based on Lyapunov-Krasovskii the-
ory, some distributed adaptive control laws are designed
in Section 3. Some criteria are also presented to guarantee
the synchronization between all nodes. A numerical ex-
ample is presented to demonstrate the effectiveness of the
proposed method in Section 4. Finally, Section 5 summa-
rizes the paper.

Notations: The notation in this paper is standard. The
sign ⊗ stands for the Kronecker product and ∥ .∥ represent
the Euclidean vector norm.

2. PROBLEM STATEMENT

A CDN, comprises of N identical nodes coupled to-
gether with a constant delay, is considered as

ẋi(t) = f(xi(t))+
N

∑
j=1

ci jx j(t − τ)+ui(t), (1)

for i = 1, . . . ,N, where xi(t) = [xi1(t),xi2(t), . . . ,xin(t)]T ∈
Rn represents the state vector of the ith node, f : Rn → Rn

is a nonlinear vector-valued function, and ui(t) denotes the
control signal. C = [ci j]N×N is an arbitrary coupling con-
nection matrix and τ represents a known constant time-
delay.

Remark 1: It is worth to mention that the most pa-
pers have studied the synchronization of CDNs under
some constraints on the coupling connection matrix C,
such as being symmetric or zero row sum [53, 54], i.e.
cii = −∑N

j=1, j ̸=i ci j, i = 1,2, . . . ,N. These assumptions re-
strict the applicability of their methods to real-world prob-
lems.
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Assumption 1: The vector function f : Rn → Rn satis-
fies the Lipschitz condition, i.e., for any x,y ∈ Rn:

∥f(x)− f(y)∥ ≤ l∥x−y∥,

where l is a known positive constant.
Definition 1: The CDN (1) is said to be con-

secutively synchronized for any initial conditions if
lim
t→∞

∥x1 (t)− s(t)∥ = lim
t→∞

∥xi (t)−xi−1 (t)∥ = 0, i =

2,3, . . . ,N, where s(t) ∈ Rn is an isolated node‘s state
vector and satisfies

ṡ(t) = f(s(t)). (2)

Error vectors are introduced as{
e1(t) = x1(t)− s(t),
ei(t) = xi(t)−xi−1(t), i = 2,3, . . . ,N.

(3)

The aim is to achieve consecutive synchronization of
the CDN for any initial condition under the assumption
of the following information structure: for i = 1, . . . ,N,
vectors ei(t), xi(t − τ) and, for i = 2, . . . ,N, additionally
the control ui−1(t) are available for the controller of the ith
node at each time instant t ∈ [0,∞).

By differentiating the error vectors (3) and substituting
equations (1) and (2) into them, the synchronization error
dynamic can be written as

ė1(t) =f(x1(t))− f(s(t))+
N

∑
j=1

c1 jx j(t − τ)+u1(t),

ėi(t) =f(xi(t))− f(xi−1(t))+
N

∑
j=1

(ci j − c(i−1) j)

x j(t − τ)+ui(t)−ui−1(t), i = 2,3, . . . ,N.


(4)

Reformulating (4) yields

ė1(t) = f(x1(t))− f(s(t))+ c̄1x1(t − τ)

+
N

∑
j=2

(
N

∑
k= j

c1k

)
e j(t − τ)+u1(t),

ėi(t) = f(xi(t))− f(xi−1(t))

+
i

∑
j=2

(
j−1

∑
k=1

(c(i−1)k − cik)

)
e j(t − τ)

+
N

∑
j=i+1

(
N

∑
k= j

(cik − c(i−1)k)

)
e j(t − τ)

+(c̄i − c̄i−1)xi(t − τ)+ui(t)−ui−1(t),

i = 2,3, . . . ,N −1,

ėN(t) = f(xN(t))− f(xN−1(t))

+(c̄N − c̄N−1)xN(t − τ)

+
N

∑
j=2

(
j−1

∑
k=1

(c(N−1)k − cNk)

)
e j(t − τ)

+uN(t)−uN−1(t),


(5)

where c̄i = ∑N
j=1 ci j, i = 1,2, . . . ,N.

We are now in a position to ensure the stability of the
synchronization error dynamic (5) by providing a suitable
adaptive controller. This will be done in the next section.

3. MAIN RESULTS

In this section, we propose a distributed adaptive con-
troller to achieve the consecutive synchronization. The
following theorem provides this adaptive controller struc-
ture and corresponding adaptive laws.

Theorem 1: For any τ > 0, the CDN (1) will achieve
the consecutive synchronization asymptotically with the
isolated node s(t), based on Definition 1, by utilizing
adaptive controllers

u1(t) =−k1(t)e1(t)−a1(t)x1(t − τ), (6)

ui(t) =−ki(t)ei(t)−ai(t)xi(t − τ)+ui−1(t),

i = 2,3, . . . ,N, (7)

with update laws

k̇i(t) = ∥ei(t)∥2, i = 1,2, . . . ,N, (8)

ȧi(t) = eT
i (t)xi(t − τ), i = 1,2, . . . ,N, (9)

if there exist some positive constants pi and gi, i =
1, . . . ,N, satisfying the following LMI:

Ξ =

[
lIN −P+G Φ

∗ −G

]
< 0, (10)

where P= diag{p1, p2, . . . , pN}, G= diag{g1,g2, . . . ,gN},
and Φ = [Φi j]N×N is a matrix defined as follows

Φi j =


∑N

k= j (cik − c(i−1)k), i < j, i ̸= 1, j ̸= 1,
∑ j−1

k=1 (c(i−1)k − cik), i ≥ j, i ̸= 1, j ̸= 1,
∑N

k= j c1k, i = 1, j ̸= 1,
0, j = 1.

Proof: See Appendix A.1. □
As we mentioned before, consecutive synchronization

implies that every node in the network synchronize itself
with one another node, probably its neighbor, which we
call it "parent node". The control laws given in (6) and
(7) represent that every node in the network just needs the
information of its parent node to synchronize itself to the
isolated node without any direct connection. Therefore,
this synchronization scheme need local information for
each node to reach collective behavior of the whole net-
work, which makes it more practical than the other pub-
lished methods.

Remark 2: As it is clear, the adaptive controllers (6)
and (7), and update laws (8) and (9), do not need any pa-
rameters to be obtained from solving the LMI condition
(10). Therefore, the LMI (10) can be solved easily with a
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few number of decision variables even for very large net-
works. This advantage does not exist in methods such as
state feedback and sliding mode controllers, which makes
designing of them difficult for large networks. However,
the only drawback of this method is the need to control all
network nodes. This problem can be fixed with applying
pinning adaptive control strategy.

In some particular cases, we can suppose that the con-
ditions cii =−∑N

j=1, j ̸=i ci j, i = 1,2, . . . ,N, hold in the net-
work. For this situation, the Theorem 1 can be reduced to
the following corollary.

Corollary 1: For any τ > 0, the CDN (1), with zero
row sum condition of coupling connection matrix, will
achieve the consecutive synchronization asymptotically
with the isolated node s(t), based on Definition 1, by uti-
lizing adaptive controllers

u1(t) =−k1(t)e1(t), (11)

ui(t) =−ki(t)ei(t)+ui−1(t), i = 2,3, . . . ,N, (12)

with update laws

k̇i(t) = ∥ei(t)∥2, i = 1,2, . . . ,N, (13)

if there exist some positive constants pi and gi, i =
1, . . . ,N, satisfying the LMI (10).

Proof: See Appendix A.2. □

4. ILLUSTRATIVE EXAMPLE

Consider the well-known Lorenz chaotic system given
by 

ẋ1(t) = a(x2(t)− x1(t)),
ẋ2(t) = cx1(t)− x2(t)− x1(t)x3(t),
ẋ3(t) = x1(t)x2(t)−bx3(t),

(14)

where a = 10, b = 8/3, and c = 28, [55]. The chaotic
behavior of this system for initial state vector as x(0) =
[−0.2,−0.3,0.2]T is shown in Fig. 2. It can be calculated
that this dynamic system satisfies the Lipschitz condition,
defined in Assumption 1, with l = 50. Suppose a com-
plex dynamical network introduced in (1) with five nodes
where each node is described by (14). We consider τ = 0.5
and the coupling connection matrix as

C =


−1 1.5 −0.5 1 0.3
1 −2 1 0.2 −0.8
0 0.5 −1 −2 1
−1 −1 −2 −1 0.5
2 3 4 0.5 −2

 .
Regard to the considered coupling connection matrix,

one can obtain

Φ =


0 2.3 0.8 1.3 0.3
0 −2 −0.4 −1.9 −1.1
0 1 −1.5 −0.4 1.8
0 1 2.5 3.5 −0.5
0 −3 −7 −13 −14.5

 .
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Fig. 2. Chaotic behavior of the Lorenz system,
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Fig. 3. The state trajectories of all the nodes without con-
trol effort,

Note that sum of the elements in each row in the cou-
pling matrix is not necessarily to be zero. The state trajec-
tories of all nodes without control are shown in Fig. 3. It is
obvious that the states are not synchronized together with-
out applying the control effort. For this system, the LMI
(10) has feasible solution with the following matrices

P = 104 ×diag{2.0011,2.0011,2.0010,2.0009,2.0002},
G = 104 ×diag{1.0532,1.0532,1.0532,1.0532,1.0532}.

Therefore, Theorem 1 guarantees that control signals
(6) and (7) with update laws (8) and (9) synchronize the
complex dynamical network. By applying these con-
trollers, the state trajectories of the nodes have been syn-
chronized to the isolated node’s states (Fig. 4). Fig. 5
shows the synchronization errors converged to zero after
about 3 seconds. Figs. 6 and 7 also show the evolution of
ki(t) and ai(t), i = 1,2, . . . ,5, respectively. These figures
show that these parameters converge to their final value
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Fig. 5. Synchronization errors for all the nodes.

after forsaking the transient time. The control signals are
shown in Fig. 8.

Remark 3: Maybe, it can be thought that this syn-
chronization scheme will stretch the convergence time of
synchronization. This conception comes from the hierar-
chy structure of the proposed synchronization scheme. It
is worth to mention that the synchronization convergence
time for this scheme is not so different from the conven-
tional synchronization scheme, because every node syn-
chronize itself to its parent node and that node also to its
parent node until the first node simultaneously. For proof
of this claim, we consider conventional scheme with defin-
ing ei(t) = xi(t)− s(t), i = 1,2, . . . ,5. Fig. 9 shows the
synchronization errors with conventional method which
implies that the convergence time of synchronization is
about 3 seconds.
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5. CONCLUSION

For a delayed CDN, a new synchronization scheme has
been introduced in this paper to overcome some practical
limitations of conventional synchronization schemes. To
achieve the synchronization, a distributed adaptive control
was presented. With the help of Lyapunov-Krasovskii the-
ory, some conditions were obtained in the form of LMIs
that ensure the synchronization with respect to the pro-
posed controller. This method was finally applied and
simulated on the Lorenz chaotic system, which showed
the effectiveness of the proposed method. It has been
found that the proposed method has some limitations such
as the need to control all the network nodes. Removing
these restrictions, by utilizing adaptive pinning control,
outlines the road map of our future research.

APPENDIX A

A.1. Proof of Theorem 1
Consider the following Lyapunov functional:

V (t) =
N

∑
i=1

Vi(t), (A.1)

where

Vi(t) =
1
2

(
eT

i (t)ei(t)+(ki(t)− pi)
2 +(āi −ai(t))

2

+2
∫ t

t−τ
gieT

i (s)ei(s)ds
)
, i = 1,2, . . . ,N,

and ā1 = c̄1, āi = c̄i − c̄i−1, i = 2, 3, . . ., N.
Taking the derivative of Vi(t), i = 1, 2, . . ., N, along the

solutions of (5) yields:

V̇i (t) =eT
i (t)ėi(t)+(ki(t)− pi)k̇i(t)

− (āi −ai(t))ȧi(t)+gieT
i (t)ei(t)

−gieT
i (t − τ)ei(t − τ), i = 1,2, . . . ,N.

(A.2)

By substituting k̇i(t) and ȧi(t) from (8) and (9) into (A.2),
one yields

V̇i (t) =eT
i (t)ėi(t)+(ki(t)− pi)eT

i (t)ei(t)

− (āi −ai(t))eT
i (t)xi(t − τ)+gieT

i (t)ei(t)

−gieT
i (t − τ)ei(t − τ), (A.3)

for i = 1,2, . . . ,N. Taking ė1(t) from (5), and u1(t) from
(6) into V̇1(t), we have

V̇1 (t) =eT
1 (t)(f(x1(t))− f(s(t)))+ c̄1eT

1 (t)x1(t − τ)

+
N

∑
j=2

(
N

∑
k= j

c1k

)
eT

1 (t)e j(t − τ)

− k1(t)eT
1 (t)e1(t)−a1(t)eT

1 (t)x1(t − τ)
+(k1(t)− p1)eT

1 (t)e1(t)

− (ā1 −a1(t))eT
1 (t)x1(t − τ)+g1eT

1 (t)e1(t)

−g1eT
1 (t − τ)e1(t − τ). (A.4)

By application of Assumption 1, equation (A.4) can be
written as

V̇1 (t)≤eT
1 (t)(l1 +g1 − p1)e1(t)

−g1eT
1 (t − τ)e1(t − τ)

+
N

∑
j=2

(
N

∑
k= j

c1k

)
eT

1 (t)e j(t − τ). (A.5)

Same way as described in (A.3)–(A.5), V̇i(t), i =
2,3, . . . ,N, are obtained as

V̇i (t)≤eT
i (t)(li +gi − pi)ei(t)−gieT

i (t − τ)ei(t − τ)

+
i

∑
j=2

(
j−1

∑
k=1

(c(i−1)k − cik)

)
eT

i (t)e j(t − τ)

+
N

∑
j=i+1

(
N

∑
k= j

(cik − c(i−1)k)

)
eT

i (t)e j(t − τ),

i = 2,3, . . . ,N −1, (A.6)

and

V̇N (t)≤eT
N(t)(lN +gN − pN)eN(t)

+
N

∑
j=2

(
j−1

∑
k=1

(c(N−1)k − cNk)

)
eT

N(t)e j(t − τ)

−gNeT
N(t − τ)eN(t − τ). (A.7)

Considering (A.5)–(A.7), it is straightforward to show that

V̇ (t) =
N

∑
i=1

V̇i(t)≤ ξ T (t)(Ξ⊗ In)ξ (t), (A.8)
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where ξ (t) =
[
eT (t),eT (t − τ)

]T , e(t) =
[
eT

1 (t), . . . ,
eT

N(t)
]T , e(t − τ) = [eT

1 (t − τ), . . . ,eT
N(t − τ)]T , and the

other parameters are given in (10). If the LMI given in
(10) holds, then V̇ (t) < 0, which implies that e(t) → 0
when t → ∞. This completes the proof. □

A.2. Proof of Corollary 1
Zero row sum condition of coupling connection matrix,

i.e., c̄i = ∑N
j=1 ci j, i = 1,2, . . . ,N, implies that ā1 = c̄1 = 0,

āi = c̄i − c̄i−1 = 0, i = 2,3, . . . ,N. Therefore, the terms
xi(t − τ), i = 1,2, . . . ,N, will be removed from the er-
ror dynamic system (5). Thus, there is no need to esti-
mate and compensate these terms in control laws (6) and
(7). From this reason, the Lyapunov-Krasovskii functional
candidates are as

V (t) =
N

∑
i=1

Vi(t), (A.9)

where

Vi(t) =
1
2

(
eT

i (t)ei(t)+(ki(t)− p1)
2

+2
∫ t

t−τ
gieT

i (s)ei(s)ds
)
, i = 1,2, . . . ,N.

Rest of the proof is similar to the proof of Theorem 1. □
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