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Neural Network Control of a Robotic Manipulator
With Input Deadzone and Output Constraint
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Abstract—In this paper, we present adaptive neural network
tracking control of a robotic manipulator with input deadzone
and output constraint. A barrier Lyapunov function is employed
to deal with the output constraints. Adaptive neural networks
are used to approximate the deadzone function and the unknown
model of the robotic manipulator. Both full state feedback control
and output feedback control are considered in this paper. For the
output feedback control, the high gain observer is used to esti-
mate unmeasurable states. With the proposed control, the output
constraints are not violated, and all the signals of the closed loop
system are semi-globally uniformly bounded. The performance
of the proposed control is illustrated through simulations.

Index Terms—Adaptive control, barrier Lyapunov function,
constraints, deadzone, neural networks, robotic manipulator.

I. INTRODUCTION

ARTIFICIAL neural networks are simple mathematical
models of biological neural networks that help in the

design of intelligent control systems. Robotic manipulators are
among the many motion control systems that are subject to
nonlinearities such as deadzone. Nonlinearities are not analyt-
ical and it is quite difficult to know their exact models [1]–[3].
Ignoring nonlinearities with the aim of simplifying the control
design can lead to steady-state errors, poor transient response,
and limited performance during operation [4], [5].

Neural networks have been widely used in the control of
robotic manipulators in recent years [6]–[11], because they
can approximate the dynamics of the robot and its non-
linearities such as deadzone. In [12], adaptive fuzzy neural
networks are used to approximate a nonlinear stochastic sys-
tem with unknown functions. In [13], radial basis function
neural networks are used to approximate the uncertain non-
linear dynamics of a multiagent time delay system. In [14],
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neural networks are used to propose controllers for a robotic
manipulator in the presence of modeling uncertainties and fric-
tional forces. A novel neural network architecture, referred to
as a variable neural network, is proposed in [15] to approx-
imate the unknown nonlinearities of a dynamical system.
In [16] and [17], neural networks are employed to approx-
imate nonlinear models of friction and backlash hysteresis.
In [18], a trajectory tracking controller for a unicycle like
mobile robot, including a neural adaptive compensator, is pro-
posed. The radial basis function neural network controller
compensates for the difference between a known nominal
dynamics structure and the actual dynamics structure of the
robot. An adaptive neural network controller for dual-arm
co-ordination of a humanoid robot has been proposed in [19].
The controller takes into account unknown output hysteresis
nonlinearity and unknown robotic dynamics. In [20] and [21],
a higher order neural network is used to design an adaptive
controller for a class of uncertain multiple-input multiple-
output (MIMO) nonlinear systems.

Some papers, however, consider nonlinear systems without
constraints [22]–[29]. Neural networks are just used to approx-
imate the unknown nonlinearities and dynamics of the system.
This can degrade system performance when constraints are
present in the system. There is, therefore, the need to con-
sider both nonlinearities and constraints in the control design
of systems.

There have been quite a number of researches aimed at
addressing or tackling the problem of nonlinear systems with
input deadzone and output constraint [30]–[35]. In [36], a
deadzone compensator is designed for a motion control sys-
tem using fuzzy logic control. A tuning algorithm is given
for a fuzzy logic controller, which guarantees small track-
ing errors and bounded parameter estimates. In [37], a new
iterative learning control for systems with input deadzone is
proposed. Through rigorous proof, it is shown that despite the
presence of the input deadzone, the simplest iterative learning
control scheme retains its ability to achieve the satisfactory
performance. A robust nonlinear controller is proposed in [38],
to overcome deadzone nonlinearities which are unavoidable in
many physical systems due to the imperfections of system
components. The proposed control employs an ideal linear
model of the system and a model controller to generate an
ideal reference output. A nonlinear robust loop controller con-
taining a deadzone is included to force the actual output to
follow the ideal reference output. Both simulation and experi-
mental results have shown that the unknown deadzone effects
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are substantially suppressed and satisfactory robust system
performance is achieved.

Another method to compensate for the deadzone effect, is
by adding in the controller output, an inverse of the deadzone
function, to cancel or compensate for the deadzone effect [39].
Deadzone functions are, however, not analytical and there-
fore not easy to know. Such a controller might not perform
well with real life applications. A sliding mode control for
uncertain nonlinear systems with multiple inputs with dead-
zone has been proposed in [40]. In the case of sliding mode
control, in order to force the system states to move along the
prescribed sliding surface, the control law has to be discon-
tinuous across the sliding surface. With a finite sampling rate
this will inevitably lead to chattering [41], [42]. Neural net-
works are able to approximate the deadzone function suitably.
In [43]–[45], neural networks have been used for deadzone
compensation. By using tuning algorithms and neural net-
work weights, the neural network deadzone compensation
scheme becomes adaptive, resulting in bounded parameter esti-
mates and smaller errors [46]. In [47], an adaptive neural
network control algorithm for MIMO nonlinear systems in
strict-feedback form are proposed. The unknown functions,
the external disturbance, and the unknown deadzone input are
considered in the systems. Coordinate transformations are used
to transform the systems into a new special form which is suit-
able for backstepping design technique. The adaptation laws
and the controllers are designed based on the transformed sys-
tems. The authors have shown that the tracking errors and the
adaptation laws are semiglobally uniformly bounded.

To handle output constraints, many techniques have been
developed [48]–[50]. Some are based on notions of invari-
ant set theorems using Lyapunov analysis [51], [52]. Position
and force control techniques are developed as a means of pre-
venting output violations [53]–[55]. In [53], a force control
algorithm is proposed for a robot whose motion is constrained
by a point contact between the robot tool and a smooth rigid
environment. The force control algorithm utilizes a sliding
mode controller and provides asymptotic tracking of the end-
effector position and contact force. It is difficult to determine
an exact model of a constraint surface in force control appli-
cations. A visually adaptive controller is proposed in [54] for
motion and force tracking with uncertainties in the constraint
surface, kinematics, and dynamics.

An adaptive motion/force control is proposed for nonholo-
nomic robots in [56]. The constraints of the system consist of
kinematic constraints for the mobile platform and dynamic
constraints for the under-actuated joint. The nonholonomic
constraint force between the wheels and the ground is consid-
ered in the control design such that the slipping or slippage is
avoided during the motion. In [55], an adaptive force/position
controller for robotic manipulators during constrained motion
has been proposed. The control strategy ensures semiglobal
asymptotic tracking performance for the end-effector posi-
tion and the interaction force between the constraint and
the end-effector. A minimum time trajectory planner is pro-
posed in [57]. The planner includes torque joint constraints
in order to fully utilize the joint actuators. Other articles and
papers have shown that by using a barrier Lyapunov function,

constraints demands can be met. The barrier Lyapunov func-
tion grows to infinity, whenever it approaches some limits. If
the barrier Lyapunov function is kept bounded, then the desired
constraint will be met [58]–[60]. The main contributions of
this paper include the following.

1) An adaptive neural network controller with both full
state and output feedback is proposed to approximate the
dynamics and the deadzone nonlinearity of the robotic
manipulator.

2) The output violation of the robotic manipulator is pre-
vented by incorporating a barrier Lyapunov function in
the controller design.

The rest of this paper is organized as follows. Section II cov-
ers the problem formulation and preliminaries using the neces-
sary lemmas, properties and assumptions. The neural network
control design with state and output feedback and stability
analysis are illustrated in Section III. Section IV shows the
simulations of this paper, and Section V concludes this paper.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

Considering an n-link rigid robotic system, the dynamics of
the system can be written as [61]

M(q)q̈ + C(q, q̇)q̇ + G(q)+ fdis(t) = D(τ ) (1)

where q ∈ R
n is the vector of joint displacements, D(τ ) is

the deadzone function, τ ∈ R
n is the vector of joint torques

supplied by the actuators, M(q) ∈ R
n×n is the symmetric pos-

itive definite inertia matrix, C(q, q̇) ∈ R
n×n is the Coriolis

and centrifugal matrix, G(q) ∈ R
n is the gravitational force

and fdis(t) ∈ R
n represents an external disturbance to the

manipulator.
Property 1 [43]: The inertia matrix M(q) is symmetric and

positive definite.
Property 2 [43]: The matrix Ṁ − 2C(q, q̇) is skew-

symmetric.
The deadzone nonlinearity can be expressed as [62]

D(τ ) =

⎧
⎪⎨

⎪⎩

hr(τ − br), τ ≥ br

0, bl < τ < br

hl(τ − br), τ ≤ bl

(2)

where τ is the input to the deadzone, bl and br are unknown
parameters of the deadzone, hr(·) and hl(·) are functions of
the deadzone, which are unknown. Fig. 1 shows the structure
of the dead zone model.

The control objective is to design an adaptive neural net-
work controller for the robotic system so that it follows a
desired trajectory, while the output is bounded. The following
assumptions will help achieve our control objective.

Assumption 1 [63]: We assume that the disturbance fdis is
uniformly bounded, i.e., there exists a constant f̄ ∈ R

+, such
that | fdis| ≤ f̄ , ∀t ∈ [0,∞).

Assumption 2 [62]: The desired trajectory is known, con-
tinuous and bounded.

Assumption 3 [62]: The deadzone parameters, br and bl

are unknown constants which satisfy the condition that br >

0 and bl < 0.
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Fig. 1. Deadzone model.

B. Technical Lemmas and Definitions

Definition 1 [64]: A barrier Lyapunov function is a scalar
function V(x), defined with respect to the system ẋ = f (x) on
an open region D containing the origin, that is continuous, pos-
itive definite, has continuous first-order partial derivatives at
every point of D, has the property V(x) → ∞ as x approaches
the boundary of D, and satisfies V(x(t)) ≤ b ∀ t ≥ 0 along the
solution of ẋ = f (x) for x(0) ∈ D and some positive constant b.

Lemma 1 [65]: A Lyapunov function candidate V(x) is
bounded if the initial condition V(0) is bounded, V(x) is
positive definite and continuous and if

V̇(x) ≤ −ρV(x)+ C (3)

where ρ > 0 and C > 0.
For output feedback control, some output information may

not be measurable. The lemma below is the high gain observer,
which will be used to estimate the unmeasurable output.

Lemma 2 [66]: Suppose the system output and its first
derivatives are bounded, so that |y(k)| < Yk with a positive
constant Yk. Consider the following linear system:

επ̇i = πi+1, i = 1, . . . n − 1 (4)

επ̇n = −λ̄1πn − λ̄2πn−1 − · · · − λ̄n−1π2 − π1 + x1(t) (5)

where ε is any small positive constant and the terms
λ̄1 to λ̄n−1 are chosen such that sn + λ̄1sn−1 +· · ·+ λ̄n−1s+1
is Hurwitz. Then the following property is valid:

ξk = πk

εk−1
− x(k−1)

1 = −εψ(k), k = 1, . . . , n − 1 (6)

where ψ = πn + λ̄n−1 + · · · + λ̄n−1π1 with ξ(k) denoting the
k(th) derivative of ξ . Also, ∃ t∗ > 0 and hk > 0 which only
depends on Yk, ε and λ̄i, i = 1, 2, . . . , n−1 such that ∀ t > t∗
we have |ψ(k)| ≤ hk, k = 2, 3, . . . , n.

Lemma 3 [67]: The basis function of the Gaussian radial
basis function neural network with X̂ = X − γψ being the
input vector, where ψ is a bounded vector and γ is positive
is given as

sk(X̂) = exp

⎡

⎢
⎣

−
(

X̂ − μk

)T(
X̂ − μk

)

η2
k

⎤

⎥
⎦, k = 1, 2, . . . n (7)

S(X̂) = S(X)+ γ St (8)

where St is a bounded vector function.

Lemma 4 [59]: For any positive constant vector b ∈ R
n,

the following inequality holds for any vector x ∈ R
n in the

interval |x| < |b|:

ln
bTb

bTb − xTx
≤ xTx

bTb − xTx
. (9)

III. CONTROL DESIGN

Both state feedback and output feedback control schemes
are presented in this section. For full state feedback control, we
assume the system states, x1 and x2 are known. The adaptive
neural network, is used to approximate the unknown dynamics
of the robot and the deadzone. For output feedback control,
x2 cannot be measured. The high gain observer is used to
estimate x2.

A. Full State Feedback Control

We first consider the case where full state information x1
and x2 are available. From (1), if we let x1 = [q1, q2, . . . , qn]T

and x2 = [q̇1, q̇2, . . . , q̇n]T , the dynamics of the robotic
manipulator can be expressed as

ẋ1 = x2 (10)

ẋ2 = M−1[D(τ )− C(x1, x2)x2 − fdis − G(x1)]. (11)

The error variable e1 is defined as

e1 = x1 − xd (12)

where xd is the desired trajectory. We define the second error
variable

e2 = x2 − α. (13)

Its time derivative is

ė2 = ẋ2 − α̇. (14)

The barrier Lyapunov function chosen is

V1 = 1

2

n∑

i=1

ln
b2

i

b2
i − e2

1i

. (15)

Its time derivative is given as

V̇1 =
n∑

i=1

e1iė1i

b2
i − e2

1i

=
n∑

i=1

e1i(e2i + αi − ẋdi)

b2
i − e2

1i

(16)

we can choose the virtual control α as

α = −

⎡

⎢
⎢
⎢
⎣

k1e11 − ẋd1
k2e12 − ẋd2

...

kne1n − ẋdn

⎤

⎥
⎥
⎥
⎦
. (17)

Substituting (17) into (16) yields

V̇1 = −
n∑

i=1

kie2
1i

b2
i − e2

1i

+
n∑

i=1

e1ie2i

b2
i − e2

1i

. (18)

Choosing a second Lyapunov function candidate as

V2 = V1 + 1

2
eT

2 M(x1)e2. (19)
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Its derivative yields

V̇2 = V̇1 + eT
2 M(x1)ė2 + eT

2
1

2
Ṁ(x1)e2. (20)

Substituting (14) into (20) leads to

V̇2 = V̇1 + eT
2

[

M(x1)(ẋ2 − α̇)+ 1

2
Ṁ(x1)e2

]

. (21)

Substituting (11) and (13) into (21) results in

V̇2 = V̇1 + eT
2

[

D(τ )− fdis − G(x1)− C(x1, x2)α

− M(x1)α̇ + 1

2
(Ṁ(x1)− 2C(x1, x2))e2

]

. (22)

Applying Property 1, (22) is simplified as

V̇2 = V̇1 + eT
2 [D(τ )− fdis − G(x1)− C(x1, x2)α − M(x1)α̇].

(23)

Substituting (18) into (23) and letting D(τ ) = τ −�τ , �τ is
the error, results in

V̇2 = −
n∑

i=1

kie2
1i

b2
i − e2

1i

+
n∑

i=1

e1ie2i

b2
i − e2

1i

+ eT
2

[
τ −�τ − fdis − G(x1)− C(x1, x2)α − M(x1)α̇

]
. (24)

We design the model-based control as

τ = −K2e2 −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

e11
b2

1−e2
11e12

b2
2−e2

12
...

e1n

b2
n−e2

1n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ C(x1, x2)α +�τ

+ G(x1)+ M(x1)α̇1 + fdis (25)

where α̇ is given as [64]

α̇ =
n−1∑

i=1

δα

δx1
xi +

n−1∑

i=0

δα

δxd
i

xi+1
d (26)

substituting (25) into (24) results in

V̇2 = −
n∑

i=1

kie2
1i

b2
i − e2

1i

− eT
2 K2e2 (27)

where the gains ki > 0 and K2 = KT
2 > 0n×n. However, most

of these terms such as �τ , M, C are unknown. A radial basis
function neural network will be used to approximate these. We
propose the controller as

τ = −K2e2 − e2 −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

e11
b2

1−e2
11e12

b2
2−e2

12
...

e1n

b2
n−e2

1n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ ŴTS(X)+ ŴT
τ S(Xτ ). (28)

The network updating law is designed as

˙̂Wi = −�i

(
Si(X)e2i + σiŴi

)
(29)

˙̂Wτ,j = −�τ,j
(

Sτ,j(Xτ )e2j + στ,jŴτ,j

)
. (30)

ŴTS(X) and ŴT
τ S(Xτ ) are used to approximate W∗TS(X) and

W∗T
τ S(Xτ ), which are given as

W∗TS(X) = C(x1, x2)α + G(x1)+ M(x1)α̇ − ε (31)

W∗T
τ S(Xτ ) = �τ − ετ (32)

where W∗T and W∗T
τ are the ideal neural network weights,

ε and ετ are approximation errors of the neural network
and X = [xT

1 , xT
2 , α

T
1 , α̇1

T ]T and Xτ = [τT , xT
1 , xT

2 , α
T
1 ]T .

Substituting (28), (31), and (32) into (24) yields

V̇2 = −eT
2 K2e2 − eT

2 e2 − eT
2 fdis − eT

2 ε − eT
2 ετ

+ eT
2 (W̃

TS(X)+ W̃T
τ S(Xτ ))

−
n∑

i=1

kie2
1i

b2
i − e2

1i

(33)

where −eT
2 fdis ≤ eT

2 e2 + (1/4)fdis ≤ eT
2 e2 + (1/4)f̄ , then, we

have

V̇2 = −eT
2 K2e2 + 1

4
f̄ − eT

2 ε − eT
2 ετ −

n∑

i=1

kie2
1i

b2
i − e2

1i

+ eT
2 (W̃

TS(X)+ W̃T
τ S(Xτ )) (34)

where W̃ = Ŵ − W∗, W̃τ = Ŵτ − W∗
τ . The Lyapunov

function candidate below is suggested, considering the effect
of W̃ and W̃τ on system stability

V3 = V2 + 1

2

n∑

i=1

W̃T
i �

−1
i W̃i + 1

2

n∑

j=1

W̃T
τ,j�

−1
τ,j W̃τ,j. (35)

Differentiating V3 with respect to time yields

V̇3 = V̇2 +
n∑

i=1

W̃T
i �

−1
i

˙̂Wi +
n∑

j=1

W̃T
τ,j�

−1
τ,j

˙̂Wτ,j. (36)

Substituting (29), (30), and (33) into (36) and applying
Lemma 4 results in

V̇3 ≤ −eT
2 K2e2 − eT

2 ε − eT
2 ετ + 1

4
f̄ −

n∑

i=1

σiW̃
T
i Ŵi

−
n∑

j=1

στ,jW̃
T
τ,jŴτ , j −

n∑

i=1

ki ln
b2

i

b2
i − e2

1i

since −W̃TŴ = −W̃T(W∗ + W̃) = −W̃TW̃ − W̃TW∗
and −W̃TW∗ ≤ (1/2)(W̃TW̃ + W∗TW∗). It simply implies
−W̃TŴ ≤ −(1/2)W̃T W̃ + (1/2)W∗T

W∗. Also −eT
2 ε− eT

2 ετ ≤
eT

2 e2 + (1/2)‖ε‖2 + (1/2)‖ετ‖2 implies

V̇3 ≤ −eT
2 (K2 − I)e2 + 1

2
‖ε‖2 + 1

2
‖ετ‖2 + 1

4
f̄

−
n∑

i=1

σi

2

(
‖W̃i‖2 − ∥∥W∗

i

∥
∥2
)

−
n∑

j=1

στ,j

2

(
‖W̃τ,j‖2 − ‖W∗

τ,j‖2
)

−
n∑

i=1

ki ln
b2

i

b2
i − e2

1i

≤ −ρV3 + C (37)
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where

ρ = min

{

2min(ki),
2λmin(K2 − I)

λmax(M)
,
σi

�−1
i

,
στ,j

�−1
τ,j

}

(38)

C =
n∑

i=1

σi

2

∥
∥W∗

i

∥
∥2 +

n∑

j=1

στ,j

2

∥
∥
∥W∗

τ,j

∥
∥
∥

2

+ 1

2
‖ε‖2 + 1

2
‖ετ‖2 + 1

4
f̄ . (39)

To ensure that ρ > 0, the gains ki and K2 are chosen to satisfy

min(ki) > 0, λmin(K2 − I) > 0. (40)

It can be shown that e1, e2, and W are semi-globally uni-
formly bounded. Fig. 2 shows the control strategy for the state
feedback control.

Remark 1: If C is equal to zero, we can say that the system
could achieve exponential stability. However, for our con-
troller, C = (1/2)‖ε‖2 + (1/2)‖ετ‖2 +∑n

i=1(σi/2)‖W∗
i ‖2 +∑n

j=1(στ,j/2)‖W∗
τ,j‖2 + (1/4)f̄ , where σi and στ,j are control

parameters designed in the adaptive law and which improve
the robustness of the system. If σi and στ,j are set to zero, the
term left is (1/2)‖ε‖2+(1/2)‖ετ‖2, which is the approximation
error of neural network, which is a positive constant. Therefore,
we can achieve stability but not exponential stability.

Theorem 1: Consider the robotic manipulator system (1)
with unknown disturbance, input deadzone, and output con-
straint. The proposed state feedback radial basis function
neural network control law (28), neural network updating
laws (29), (30), and the closed loop signals e1, e2, W̃, and W̃τ

are semi-globally bounded. Furthermore, the tracking errors
e1, e2 and the weights W̃, W̃τ converge automatically to the
compact sets �e1 , �e2 , �W̃ , and �W̃τ

, respectively, defined by

�e1 :=
{

e1 ∈ R
n, ‖e1i‖ ≤

√

b2
i

(
1 − e−D

)
}

(41)

�e2 :=
{

e2 ∈ R
n, ‖e2i‖ ≤

√
D

λmin(M)

}

(42)

�W̃ :=
{

W̃ ∈ R
n, ‖W̃‖ ≤

√
D

λmin
(
�−1

)

}

(43)

�W̃τ
:=

⎧
⎪⎨

⎪⎩
W̃ ∈ R

n,
∥
∥W̃τ

∥
∥ ≤

√
√
√
√

D

λmin

(
�−1
τ

)

⎫
⎪⎬

⎪⎭
(44)

where D = 2(V3(0) + (C/ρ)). ρ and C are defined
in (38) and (39).

Proof: The proof of Theorem 1 is shown in the
Appendix.

B. Output Feedback Control

In the design of the state feedback control law (28), we
assumed that the output states can be measured. It is not practi-
cal to assume that all output states can be measured [68], [69].
In this section, we present the output feedback control, which
uses the high gain observer to approximate the unmeasur-
able terms [70]. The unmeasurable state x2 is approximated

as (π2/ε) [71]. e2 can, therefore, be estimated as

ê2 = π2

ε
− α (45)

where π2 is described as

επ̇i = π2 (46)

επ̇2 = λ1π2 − π1 + x1. (47)

According to Lemma 2, we have

ξ2 = π2

ε
− ẋ1 = −εψ(2) (48)

ẽ2 = ê2 − e2 = π2

ε
− α1 − ẋ1 + α1 = ξ2 (49)

where ε is a small constant, ψ = π2 + λ1π1 and there exits
positive constants t∗ and h2 such that ∀t > t∗, we have
‖ξ2‖ ≤ εh2. Therefore, we can use (π2/ε) to estimate ẋ1 and
x2, e2 can be estimated as follows:

x̂2 = π2

ε
(50)

ê2 = π2

ε
− α. (51)

We can choose the virtual control α as

α = −

⎡

⎢
⎢
⎢
⎣

k1e11 − ẋd1
k2e12 − ẋd2

...

kne1n − ẋdn

⎤

⎥
⎥
⎥
⎦
. (52)

Substituting (52) into (16) yields

V̇1 = −
n∑

i=1

kie2
1i

b2
i − e2

1i

+
n∑

i=1

e1ie2i

b2
i − e2

1i

. (53)

From the state feedback control law (28) and radial basis func-
tion neural network updating laws (29), (30) we rewrite the
output feedback control law and its updating laws as

τ = −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

e11
b2

1−e2
11e12

b2
2−e2

12
...

e1i

b2
i −e2

1i

⎤

⎥
⎥
⎥
⎥
⎥
⎦

− K2ê2 − ê2 + ŴTS
(

X̂
)

+ ŴT
τ S
(

X̂τ
)

(54)
˙̂Wi = −�i

(
Si

(
X̂
)

ê2i + σiŴi

)
(55)

˙̂Wτ,j = −�τ,j
(

Sτ,j
(

X̂τ
)

ê2j + στ,jŴτ,j

)
. (56)

Consider the following Lyapunov function candidate:

V2 = V1 + 1

2
eT

2 M(x1)e2 + 1

2

n∑

i=1

W̃T
i �

−1
i W̃i

+ 1

2

n∑

j=1

W̃T
τ,j�

−1
τ,j W̃τ,j. (57)

Differentiating (57) yields

V̇2 = V̇1 + eT
2

(
τ − fdis − W∗TS(X)− ε − W∗T

τ Sτ (Xτ )− ετ
)

+
n∑

i=1

W̃T
i �

−1
i

˙̂Wi +
n∑

j=1

W̃T
τ,j�

−1
τ,j

˙̂Wτ,j. (58)
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Substituting (53)–(56) into (58) yields

V̇2 = eT
2

(
−K2ê2 − ê2 − fdis + ŴTS

(
X̂
)

+ ŴT
τ S
(

X̂τ
)

− W∗TS(X)− W∗T
τ S(Xτ )

)

− eT
2 (ε + ετ )−

n∑

i=1

W̃T
i Si

(
X̂
)

ê2,i

−
n∑

i=1

W̃T
i σiŴi −

n∑

j=1

W̃T
τ,jSτ,j(Xτ )ê2,j

−
n∑

j=1

W̃T
τ,jστ,jŴτ,j −

n∑

i=1

kie2
1i

b2
i − e2

1i

. (59)

Substituting (8) into (59) yields

V̇2 = −
n∑

i=1

kie2
1i

b2
i − e2

1i

− eT
2 K2ê2 + eT

2 e2 − eT
2 ê2 + 1

4
f̄

+ eT
2

[
W̃TS

(
X̂
)

+ W̃T
τ Sτ
(

X̂τ
)]

− eT
2 (ε + ετ )

+ eT
2

[
W∗T
τ (γτSτ t)+ W∗T(γ St)

]

−
n∑

i=1

W̃T
i Si

(
X̂
)

ê2,i −
n∑

i=1

W̃T
i σiŴi

−
n∑

j=1

W̃T
τ,jSτ,j(Xτ )ê2,j −

n∑

j=1

W̃T
τ,jστ,jŴτ,j. (60)

Defining ê2 = ẽ2 + e2 and substituting it into the above
equation yields

V̇2 = −
n∑

i=1

kie2
1i

b2
i − e2

1i

− eT
2 K2e2 − eT

2 K2ẽ2 − eT
2 ẽ2

− eT
2 (ε + ετ )+

n∑

i=1

[

W∗T
i (γ Sti)e2,i + 1

4
f̄

− W̃T
i Si

(
X̂
)

ẽ2,i − W̃T
i σiŴi

]

+
n∑

j=1

[
W∗T
τ,j

(
γ Stτ,j

)
e2,j − W̃T

i Sτ,j
(

X̂
)

ẽ2,j − W̃T
τ,jστ,jŴτ,j

]
.

(61)

However

− eT
2 K2ẽ2 ≤ 1

2
eT

2 e2 + 1

2
(K2ẽ2)

T(K2ẽ2) (62)

−eT
2 ẽ2 ≤ 1

2
eT

2 e2 + 1

2
ẽT

2 ẽ2. (63)

Also, −W̃TŴ = −W̃T(W∗ + W̃) = −W̃TW̃ − W̃TW∗ and
−W̃TW∗ ≤ (1/2)(W̃TW̃ + W∗TW∗). It simply implies

− W̃T
i Ŵi ≤ −1

2

∥
∥W̃i

∥
∥2 + 1

2

∥
∥W∗

i

∥
∥2 (64)

−W̃T
τ,jŴτ,j ≤ −1

2

∥
∥W̃τ,j

∥
∥2 + 1

2

∥
∥
∥W∗

τ,j

∥
∥
∥

2
. (65)

Moreover

− eT
2 ε − eT

2 ετ ≤ eT
2 e2 + 1

2
‖ε‖2 + 1

2
‖ετ‖2 (66)

Fig. 2. State feedback control strategy.

W∗
i γ Stie2,i ≤ 1

2
e2

2,i + 1

2
‖γ Sti‖2

∥
∥W∗

i

∥
∥2 (67)

W∗
τ,jγτStτ,je2,i ≤ 1

2
e2

2,i + 1

2

∥
∥γ Stτ,j

∥
∥2
∥
∥
∥W∗

τ,j

∥
∥
∥

2
(68)

−W̃T
i Si

(
X̂
)

ẽ2,i ≤ σi

4

∥
∥W̃i

∥
∥2 + 1

σi

∥
∥
∥Si

(
X̂
)∥
∥
∥

2
ẽ2

2,i (69)

−W̃T
τ,jSτ,j

(
X̂τ
)

ẽ2,j ≤ στ,j

4

∥
∥W̃τ,j

∥
∥2

+ 1

στ,j

∥
∥
∥Sτ,j

(
X̂τ
)∥
∥
∥

2
ẽ2

2,j. (70)

Substituting ‖Si(X̂i)‖2 ≤ li and ‖Sτ,j(X̂τ )‖2 ≤ lτ,j into (69)
and (70) yields

− W̃T
i Si

(
X̂
)

ẽ2,i ≤ σi

4

∥
∥W̃i

∥
∥2 + 2li

σi

1

2
ẽ2

2,i (71)

−W̃T
τ,jSτ,j

(
X̂τ
)

ẽ2,j ≤ στ,j

4

∥
∥W̃τ,j

∥
∥2 + 2lτ,j

στ,j

1

2
ẽ2

2,j. (72)

Substituting (62)–(72) into (61) and applying Lemma 4
we have

V̇2 ≤ −
n∑

i=1

ki ln
b2

i

b2
i − e2

1i

− eT
2 (K2 − 3)e2

−
n∑

i=1

σi

4

∥
∥W̃i

∥
∥2 −

n∑

j=1

στ,j

4

∥
∥W̃τ,j

∥
∥2

+
n∑

i=1

γ 2‖Sti‖2 + σi

2

∥
∥W∗

i

∥
∥2 + 1

2
‖ετ‖2 + 1

4
f̄

+
n∑

j=1

γ 2
τ

∥
∥Stτ,j

∥
∥2 + στ,j

2

∥
∥
∥W∗

τ,j

∥
∥
∥

2 + 1

2
‖ε‖2

+ 1

2
ẽT

2

(
KT

2 K2 + diag[2li/σi] + diag
[
2lτ,j/στ,j

]+ I
)
ẽ2.

(73)
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Substituting (49) into (73) and applying (1/2)ξT
2 ξ2 ≤

(1/2)ε2h2
2 yields

V̇2 ≤ −
n∑

i=1

ki ln
b2

i

b2
i − e2

1i

− eT
2 (K2 − 3I)e2

−
n∑

i=1

σi

4

∥
∥W̃i

∥
∥2 −

n∑

j=1

στ,j

4

∥
∥W̃τ,j

∥
∥2

+
n∑

i=1

γ 2‖Sti‖2 + σi

2

∥
∥W∗

i

∥
∥2 + 1

2
‖ετ‖2 + 1

4
f̄

+
n∑

j=1

γ 2
τ

∥
∥Stτ,j

∥
∥2 + στ,j

2

∥
∥
∥W∗

τ,j

∥
∥
∥

2 + 1

2
‖ε‖2

+ (
KT

2 K2 + diag[2li/σi]

+ diag
[
2lτ,j/στ,j

]+ I
)1

2
ε2h2

2

≤ −ρV2 + C (74)

where ρ and C are defined as

ρ = min

⎛

⎝2min(ki),
2λmin(K2 − 3I)

λmax(M)
,

min
i=1,2,...n

⎧
⎨

⎩

2σi

4λmax

(
�−1

i

)

⎫
⎬

⎭

min
j=1,2,...n

⎧
⎨

⎩

2στ,j

4λmax

(
�−1
τ,j

)

⎫
⎬

⎭

⎞

⎠ (75)

C =
n∑

i=1

γ 2‖Sti‖2 + σi

2

∥
∥W∗

i

∥
∥2

+ (
KT

2 K2 + diag[2li/σi] + diag
[
2lτ,j/στ,j

]+ I
)1

2
ε2h2

2

+ 1

2
‖ε‖2 + 1

2
‖ετ‖2 + 1

4
f̄

+
n∑

j=1

γ 2
τ

∥
∥Stτ,j

∥
∥2 + στ,j

2

∥
∥
∥W∗

τ,j

∥
∥
∥

2
. (76)

To ensure ρ > 0, the gains ki and K2 are chosen to satisfy

min(ki) > 0, λmin(K2 − 3I) > 0. (77)

Fig. 3 shows the control strategy for the output feedback
control.

Remark 2: If C is equal to zero, we can say that the sys-
tem could achieve exponential stability. However, for our
controller, C = ∑n

i=1(γ
2‖Sti‖2 + σi/2)‖W∗

i ‖2 + (KT
2 K2 +

diag[2li/σi] + diag[2lτ,j/στ,j] + I)(1/2)ε2h2
2 + (1/2)‖ε‖2 +

(1/2)‖ετ‖2 + ∑n
j=1(γ

2
τ ‖Stτ,j‖2 + στ,j/2)‖W∗

τ,j‖2 + (1/4)f̄ ,
where σi and στ,j are control parameters in the adaptive con-
trol law and which improve the robustness of the system. If
σi and στ,j are set to zero, there are still some terms left, like
errors (1/2)‖ε‖2 and (1/2)‖ετ‖2. Therefore, we can achieve
stability but not exponential stability.

Theorem 2: Consider the robotic manipulator system (1)
with unknown disturbance, input deadzone and output con-
straint. The proposed output feedback radial basis function

Fig. 3. Output feedback control strategy.

neural network control law (54), neural network updating
laws (55), (56), and the closed loop signals e1, e2, W̃, and W̃τ

are semi-globally bounded. Furthermore, the tracking errors
e1, e2, and the weights W̃, W̃τ converge automatically to the
compact sets �e1 , �e2 , �W̃ , and �W̃τ

, respectively, defined by

�e1 :=
{

e1 ∈ R
n, ‖e1i‖ ≤

√

b2
i

(
1 − e−D

)
}

(78)

�e2 :=
{

e2 ∈ R
n, ‖e2i‖ ≤

√
D

λmin(M)

}

(79)

�W̃ :=
{

W̃ ∈ R
n, ‖W̃‖ ≤

√
D

λmin
(
�−1

)

}

(80)

�W̃τ
:=

⎧
⎪⎨

⎪⎩
W̃ ∈ R

n,
∥
∥W̃τ

∥
∥ ≤

√
√
√
√

D

λmin

(
�−1
τ

)

⎫
⎪⎬

⎪⎭
(81)

where D = 2(V2(0) + (C/ρ)). ρ and C are defined
in (75) and (76).

Proof: The proof of Theorem 2 is shown in the
Appendix.

IV. SIMULATION

Through simulations, we verified the effectiveness of our
proposed control schemes. A two-DOF robotic manipulator is
used for the simulation. The inertia matrix M(x1), centripetal
and coriolis torques C(x1, x2) and the gravitational force G(x1)

are expressed as

M(x1) =
[

M11 M12
M21 M22

]

(82)

C(x1, x2) =
[

C11 C12
C21 0

]

(83)

G(x1) =
[

G11
G21

]

(84)
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Fig. 4. Diagram of a two-DOF robotic manipulator.

Fig. 5. Tracking performance of constrained controllers at k1 = k2 = 5 and
K2 = diag[5, 5].

where M11 = m1l21 + m2(l21 + l22 + 2l1l2 cos q2), M12 = M21 =
m2(l22 + l1l2 cos q2), M22 = m2l22, C11 = −m2l1l2q̇2 sin q2,
C12 = −m2l1l2(q̇1 + q̇2) sin q2, C21 = −m2l1l2q̇1 sin q2,
G11 = (m1l2 + m2l1)g cos q1 + m2l2g cos(q1 + q2), G21 =
m2l2g cos(q1 + q2). Mass of link 1 m1 = 1 kg, mass of link 2
m2 = 1 kg, length of link 1 l1 = 0.8 m, length of link 2
l2 = 0.7 m. The initial positions of the robot is given as
q0 = [0, 0] and q̇0 = [0, 0]. The desired trajectory is chosen
as qd = [0.1 sin(0.5t), 0.1 sin(0.5t)] where t ∈ [0, 20]. Digram
of a two-DOF robotic manipulator is shown in Fig. 4.

The robotic manipulator is under external disturbance
composed of Gaussian white noise. fdis is chosen as
1.5[1 − exp(−0.28t)(sin(0.5π t))]. The output constraint is set
as b = 0.005. The unknown deadzone is defined as br = 2.5
and bl = −4.5, with

hr(τ ) = 2(τ − br)(sin(τ )+ 1) (85)

hl(τ ) = (τ − bl)
3. (86)

Different cases are considered for the simulation. We exam-
ined the model-based control with input deadzone and output
constraint proposed in (25), the state feedback control law
in (28) and the output feedback control law in (54). We
also compare our constrained control schemes with uncon-
strained ones. Two radial basis function neural networks
are used for each case. One is used to compensate for the
unknown deadzone function and the other to approximate the

Fig. 6. Error of constrained controllers at k1 = k2 = 5 and K2 = diag[5, 5].

Fig. 7. Torque inputs of constrained controllers.

Fig. 8. Norms of radial basis function neural network.

unknown dynamics of the robotic manipulator. The control
gains are chosen as k1 = k2 = 5 and K2 = diag[5, 5].
Sixteen nodes are used with centers chosen in the area of
[−0.5, 0.5]×[−0.5, 0.5]×[−0.5, 0.5]×[−0.5, 0.5], σ = 100,
�i = �τ,j = 100I, and σi = στ,j = 0.02. The initial weights
Ŵi and Ŵτ i = 0, (i = 1, 2, 3, . . . , 16), ε = 0.0005, λ = [4, 2].
The initial conditions of the high gain observer are set as
π1 = π2 = π̇1 = π̇2 = 0.

The tracking performance of the constrained model based,
state feedback and output feedback controllers are shown in
Fig. 5. From the figure, it can be seen that all three controllers
successfully track the desired trajectory. The controllers also
never violate the set constraint. This is because the barrier

Authorized licensed use limited to: Indian Institute of Technology - Jodhpur. Downloaded on April 06,2022 at 03:13:47 UTC from IEEE Xplore.  Restrictions apply. 



HE et al.: NEURAL NETWORK CONTROL OF A ROBOTIC MANIPULATOR WITH INPUT DEADZONE AND OUTPUT CONSTRAINT 767

Fig. 9. Tracking performance of constrained controllers at k1 = k2 = 50
and K2 = diag[50, 50].

Fig. 10. Error of constrained controllers at k1 = k2 = 50 and
K2 = diag[50, 50].

Fig. 11. Tracking performance of unconstrained controllers at k1 = k2 = 5
and K2 = diag[5, 5].

Lyapunov function will approach infinity whenever its argu-
ments are approaching the set constraint. Hence, the output
states will never violate the set constraint. The system error
as shown in Fig. 6, converges to a small value close to zero.
The absolute value of the error is always less than 0.005,
which is the value of our set constraint. This ensures that our
controller is always bounded. The model-based control has the
best tracking performance and the least error. This is because it
uses dynamics of the robotic manipulator and hence has more
information. The state feedback controller also has lesser error

Fig. 12. Error unconstrained of controllers at k1 = k2 = 5 and
K2 = diag[5, 5].

Fig. 13. Tracking performance of unconstrained controllers at k1 = k2 = 50
and K2 = diag[50, 50].

Fig. 14. Error unconstrained of controllers at k1 = k2 = 50 and
K2 = diag[50, 50].

than the output feedback controller, because it assumes that all
output information is measurable. However, it is not practical
to measure all output information. The control gains k1, k2,
and K2 are set to 50, 50, and diag[50, 50], respectively. The
control inputs and the norm of neural network weights are
shown in Figs. 7 and 8 respectively. From Fig. 10, it can be
seen that an increase in the gain values made the error signals
less oscillatory. The output constraint is also not violated as
shown in Fig. 9.
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The performance of the state feedback and output feed-
back controller, with deadzone compensation but no output
constraints is also investigated using the same simulation
parameters defined for the constrained controllers. The track-
ing performance and the error in Figs. 11 and 12 show an
unsuccessful tracking of the desired trajectory and also a clear
violation of the output constraint. The error overshoots to high
value before settling. In a bid to reduce the error and improve
the tracking of the unconstrained controller, the gains k1, k2,
and K2 are increased to 50, 50, and diag[50, 50], respectively.
From Fig. 13, the unconstrained controllers appear to be within
bounds of the output constraint. The tracking performance is
also better. The error, Fig. 14, is higher than that of the con-
strained controller even though the unconstrained controller
operates at a higher gain value. It is also observed that the
external disturbance has negligible impact on all schemes.

V. CONCLUSION

In this paper, we have introduced an adaptive neural net-
work to control a robotic manipulator with input deadzone
and output constraint. Model based, state feedback and out-
put feedback control have been considered. Simulation results
have shown that the constrained controllers have good track-
ing performance and also keep the output within bounds.
Further work includes implementation of the proposed con-
trol schemes and control design for the robotic manipulator
with other input constraints.

APPENDIX

PROOF OF THEOREM 1

Proof: Multiplying (37) by eρt yields

d

dt

(
V3eρt) ≤ Ceρt. (87)

Integrating the above inequality, we obtain

V3 ≤
(

V3(0)− C

ρ

)

e−ρt + C

ρ
. (88)

Thus, for e1 we obtain

1

2
ln

b2
i

b2
i − e2

1i

≤ V3(0)+ C

ρ

‖e1i‖ ≤
√

b2
i

(
1 − e−D

)
. (89)

Similarly for e2, W̃, and W̃τ , we obtain

‖e2i‖ ≤
√

D

λmin(M)
(90)

∥
∥W̃
∥
∥ ≤

√
D

λmin
(
�−1

) (91)

∥
∥W̃τ

∥
∥ ≤

√
√
√
√

D

λmin

(
�−1
τ

) . (92)

PROOF OF THEOREM 2

Proof: Multiplying (73) by eρt yields

d

dt

(
V2eρt) ≤ Ceρt. (93)

Integrating the above inequality, we have

V2 ≤
(

V2(0)− C

ρ

)

e−ρt + C

ρ
. (94)

Thus, for e1, we obtain

1

2
ln

b2
i

b2
i − e2

1i

≤ V2(0)+ C

ρ

‖e1i‖ ≤
√

b2
i

(
1 − e−D

)
. (95)

Similarly for e2, W̃ and W̃τ , we obtain

‖e2i‖ ≤
√

D

λmin(M)
(96)

∥
∥W̃
∥
∥ ≤

√
D

λmin
(
�−1

) (97)

∥
∥W̃τ

∥
∥ ≤

√
√
√
√

D

λmin

(
�−1
τ

) . (98)
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