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Abstract 

 

This study focuses on the design of robust nonlinear controllers based on both conventional and hierarchical sliding mode techniques 

for double-pendulum overhead crane systems. In the first approach, a first-order sliding surface is provided and a proper control scheme 

is generated to stabilize the surface. In the second approach, two levels of sliding surfaces are proposed and the control scheme is de-

signed based on the stability of the second-level surface. We also prove the stability of the first-level sliding surface. To verify the quality 

of the proposed controllers, simulation for a particular type of overhead crane systems is implemented. Simulation results show that all 

state trajectories asymptotically converged to desired values.   
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1. Introduction 

Overhead cranes are frequently used in a number of indus-

trial fields to transfer cargo over a short distance. Productivity 

of cranes and their operating safety depend greatly on the 

skills of the operator. Therefore, control of overhead cranes 

composed of both anti-swing and tracking controls is an im-

portant engineering problem that has attracted the attention of 

numerous researchers. Linear control problems [1-3] of crane 

systems have been sufficiently treated. Numerous studies con-

cerning nonlinear control [4-6] of overhead cranes using vari-

ous techniques such as feedback linearization [7-10] and Lya-

punov-based methods [11-15] have been reported. However, 

these nonlinear control problems still have imperfect solutions. 

In this study, we design robust nonlinear controllers of over-

head cranes based on variable structure control approaches, 

also called sliding mode control (SMC) techniques. General 

theory of SMC for a class of under-actuated systems was in-

troduced by Lee [16], developed by Ashrafiuon [17], and 

completed by Sankaranarayanan [18]. Subsequently, a series 

of control crane papers using SMC was published. Karkoub 

[19] introduced a variable structure controller in conjunction 

with a state feedback control scheme and a µ-synthesis control 

scheme. Bartolini [20] constructed two SMC schemes, a pro-

portional-integral-based controller and a linear observer-based, 

time-varying feedback scheme. Ngo [21] discussed an SMC 

controller for container crane anti-sway. Bartolini [22] pro-

posed a second-order sliding modes controller for two-

dimensional overhead crane with a constant cable length. Lee 

[23] calculated a first-order SMC law to drive cargo swing 

and trolley motion concurrently. This scheme was derived 

from sliding surface stability analysis. Sliding surface was 

defined by linearly combining all state errors. Almutrairi [24] 

enhanced the study of Lee [23] and designed an SMC control-

ler for a three-dimensional crane system, in which a lifting 

cargo, a traveling trolley, and a moving bridge are concur-

rently included. A modified version of SMC technique, called 

hierarchical sliding mode control (HSMC) [25-28], has like-

wise been applied. Wang [25] and Qian [26] developed 

HSMC technique for a class of single-input-multiple-output 

(SIMO) systems and applied this method to an overhead sys-

tem and a pendulum as illustrated examples.  

The aforementioned studies dealt with SMC control prob-

lems for overhead cranes in which hook mass is not included 

in the dynamic model. In this research, we concentrate on 

robust nonlinear control of an overhead crane system modeled 

as a moving double-pendulum by considering hook mass. 

Both conventional sliding mode control (CSMC) and its mod-

ified version, HSMC [25, 26], are used. SMC technique and 

its modified version have been applied widely in a number of 

realistic systems. These techniques are extremely useful for 

under-actuated systems with uncertainties, in which the num-
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ber of outputs is greater than that of inputs. Generally, SMC 

design consists of two basic steps: defining proper manifold(s) 

and constituting robust control scheme involving switched 

actions. To stabilize the system, control inputs must pull sys-

tem states to switching manifold and slide them to desired 

positions on these manifolds. The pulling phase is normally 

sensitive and the sliding phase is insensitive with variations 

resulting from uncertainties and disturbances. Thus, the period 

of pulling (reaching) phase should be reduced and should be 

as short as possible. In CSMC, we determine a common first-

order sliding surface for state variables and generate control 

input to attract all system states to this surface. In HSMC, 

sliding surfaces are individually defined for three subsystems 

because total system dynamics is divided into three parts cor-

responding to the three pairs of state variables (displacement 

and its derivative). Next, we define a first-level sliding surface 

involving three components, in which each component corre-

sponds to each pair of state variables. A second-level sliding 

surface is provided by linearly combining the three compo-

nents of the first level. The control scheme is then designed 

based on the stability of the second-level manifold. Finally, 

we analyze stability of the first-level manifold. In this control 

problem for SIMO systems, the single control input acting as 

the trolley driving force must perform three duties: precisely 

tracking the trolley from its initial position to the desired point 

while simultaneously keeping swing angles of cargo and hook 

minimal during the transfer process, and totally suppressing 

them at payload destination.       

This paper is organized as follows. Section 2 introduces the 

mathematical model of an overhead crane system composed 

of three fully nonlinear, differential, highly coupled equations. 

Traditional SMC will be applied to design a robust controller 

in section 3. In section 4, we construct the other robust con-

troller using multi-level sliding mode technique. To obtain 

responses from the crane system driven by the proposed con-

trollers, simulation is carried out and its results are presented 

in section 5. Finally, conclusions are drawn in section 6.  

 

2. System modeling 

The overhead crane handling the cargo depicted in Fig. 1(a) 

[29] is considered. The cargo is normally suspended on the 

cable by a hook. If the hook mass mh is included, then the 

physical model of the crane system can be viewed as a mov-

ing double-pendulum described in Fig. 1(b). The system has 

three concentrated masses composed of trolley mass mt, cargo 

mass mc, and mh. Three generalized coordinates, which corre-

spond to the three degrees of freedom, are chosen: θ denotes 

swing angle of hook, ϕ is swing angle of the cargo, and x indi-

cates trolley displacement.  

In this study, we analyze the control problem of the crane 

system in the case where only the trolley moving mechanism 

is operated and driven by force u. Without the hoisting mech-

anism, lengths of cables l1 and l2 are considered as constants. 

An assumption is made that motion trajectories of all compo-

nents of the crane system are considered only on the Oxy 

plane. Based on virtual work principle and Lagrange’s equa-

tion, the dynamics of a SIMO crane system can be described 

as follows: 
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which can be rewritten in matrix form as 

 

( ) ( ) ( ),+ + =M q q C q q q G q Uɺɺ ɺ ɺ  (4) 

 

with [ ]
T

x ϕ θ=q , being a coordinate vector, and 

[ ]0 0
T

u=U , being a control force vector of the system.  

 

(a) Overhead crane system [29] 

 

 

(b) Physical model 
 

Fig. 1. Double-pendulum overhead crane system. 
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( ) ( )T=M q M q  denotes a symmetric mass matrix given by 

 

( )

( )

( ) ( ) ( )
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M q . 

 

( ),C q qɺ  is a damping and centrifugal matrix determined by 
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( )G q  is a gravity matrix with the form 

 

( ) ( ) 1

2

0

sin

sin

h c

c

m m gl

m gl

ϕ

θ

 
 
 = + 
 
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Physically, the cargo and hook can return to stable equilib-

rium point [ ]0 0 0
T

dx=q  through gravity without control. 

However, the swings of the cargo and hook can be decreased 

faster or slower, depending on the ability of the operator. The 

main objective of this study is to construct a proper control 

law u so that cargo and hook swings are kept small during the 

transfer process and completely vanished as fast as possible. 

Concurrently, trolley is driven to stop precisely at its destina-

tion. Based on system dynamics Eq. (4), controller design will 

be presented in the next sections. 

 

3. CSMC design 

3.1 Control scheme 

The main objective of this section is to design a CSMC-

based controller that can force the trolley to move to desired 

position xd, and cargo and hook swing angles to completely 

vanish at payload destination. This design means that state 

variables [ ]
T

x ϕ θ=q will reach their desired values 

[ ]0 0
T

d dx=q after minimum time. By assuming that all 

system states and their first-order derivatives are measurable, a 

sliding surface is defined as 

 

s e eλ αϕ βθ= + + +ɺ  (5) 

 

with ( )de x x= −  being the tracking error of trolley motion; 

and λ, α, and β being design parameters. 

CSMC design is based on making and retaining the value of 

switching surface s to be equally zero by means of discontinu-

ous control acting on the first-order derivative of s, and 

switching between high amplitude opposite values with high 

frequency [30]. By taking 0s=ɺ , we obtain  

 

0s x xλ αϕ βθ= + + + =ɺɺ ɺɺ ɺ ɺ . (6) 

By inserting Eq. (1) into Eq. (6), we obtain the equivalent 

control input 
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ɺɺ
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. (7) 

 

The equivalent input Eq. (7) causes all state trajectories to 

reach the sliding surface. However, to keep these system states 

on the sliding manifold, switching action should be added to 

expression Eq. (7) as 

 

( )

( )

( )( ) ( )
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2 2
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ɺɺ

ɺɺ ɺ

 (8) 

 

where K is a high amplitude of switching gain, and sgn(s) 

denotes a sign function with the form 

 

( )

1 if 0

sgn 0 if 0

1if 0

s

s s

s

 >= =
− <

. (9) 

 

A switching action normally causes chattering of state tra-

jectories around the switching surface. To reduce chattering, 

sgn(s) function should be replaced by a saturation function as 

follows: 

 

( )

1 if 1

sat if 1 1

1 if 1

s

s s s

s

 >= − < <
 <−

ε

ε ε

ε

 (10) 

 

where ε is a constant indicating the thickness of the boundary 

layer. 

 

3.2 Stability analysis 

Stability of system dynamics Eq. (4) driven by SMC force 

Eq. (8) is analyzed. Asymptotical stability of the sliding sur-

face is proven, and stability of tracking problem 
d≡q q  is 

investigated. Lyapunov lower bounded function 20.5V s=  is 

considered, the derivative of which is determined as 
 

( )V ss s x xλ αϕ βθ= = + + + ɺɺ ɺ ɺɺ ɺ ɺ . (11) 

 

Substituting Eqs. (1) and (8) into Eq. (11) results in 
 

( )
( )sign

t h c

K
V ss s s

m m m
= =−

+ +
ɺ ɺ  (12) 

 
which implies that 
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( )t h c

K
V s

m m m
=−

+ +
ɺ . (13) 

 

The fact that 0V ≤ɺ for every 0K >  is obvious. Alterna-

tively, the derivative of Vɺ is 
 

( ) ( )

2

2

t h c t h c

K K
V s

m m m m m m
=− =−

+ + + +
ɺɺ ɺ  . (14) 

 

Because Vɺɺ  is bounded, function Vɺ  is uniformly con-

tinuous in time. Application of Barbalat’s lemma indicates 

that lim 0
t

V
→∞

=ɺ  yields lim 0.
t

s
→∞
=  Thus, sliding surface s is 

asymptotically stable for every positive switching gain K. This 

finding means that all state trajectories are attracted to the 

aforementioned surface.  

We can easily see from Eq. (5) that lim 0
t

s
→∞
= is not a suffi-

cient basis for concluding the convergence of system outputs 

[ ]
T

x ϕ θ=q . The idea that system responses q approach 

desired values qd if controller gains are properly selected is 

proven. CSMC Eq. (8) is determined to force 0s=ɺ . Condi-

tion Eq. (6) is rewritten as 
 

x xλ αϕ βθ=− − − ɺɺɺ ɺ ɺ . (15) 

 

Inserting Eq. (15) into swing dynamics Eqs. (2) and (3) 

yields 
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By setting state variables 
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the closed-loop system composed of Eqs. (15)-(17) become a 

nonlinear state-space system as follows 
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1
3 5 4

2

sin sin

1
cos

cos

l g
z z z z

l l

z z z z z n
l

l
z z z

l

λ α β

  − −       = − + + =       − −   

zɺ

ɺ

. (23) 

 

By linearizing the previously shown state-space system 

around equilibrium point 
0 =z 0 , a linear system can be ob-

tained:  

 

=z Azɺ  (24) 

 

with A being a Jacobian matrix defined by 
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2 3 4 5 6

1 2 3 4 5 6

0 1 0 0 0 0

0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

m m m m m m

z z z z z z

n n n n n n

z z z z z z

λ α β

=

 
 
 − − − 
 
 
 ∂ ∂ ∂ ∂ ∂ ∂ 

=  
∂ ∂ ∂ ∂ ∂ ∂ 
 
 
 
 ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂   z 0

z z z z z z
A

z z z z z z

  

1 1 1 1

2 2 2 2

0 1 0 0 0 0

0 0 0

0 0 0 1 0 0

0 0 .

0 0 0 0 0 1

0 0

g

l l l l

g

l l l l

λ α β

λ α β

λ α β

 
 
 − − − 
 
 
 
 − − − −=  
 
 
 
 
 
− − − − 

  

 (25) 

 

According to Lyapunov’s linearization theorem [31], if the 

linearized system Eq. (24) is strictly stable, then the nonlinear 

system Eqs. (18)-(23) is asymptotically stable around the equi-

librium point. For this case, A must be a Hurwitz matrix to 

satisfy stability of the system Eq. (24). This phenomenon 

leads to 
 

0, 0λ α> >  and 0β <  (26) 

 

after several calculations based on Routh-Hurwitz criterion. 

Thus, crane systems Eqs. (1)-(3) driven by CSMC input Eq. 

(8) are stable if the conditions Eq. (26) for controller gains are 

held. 

 

4. HSMC design 

To control the crane system based on HSMC technique [25-

28], system dynamics is converted from one form to another. 

Dynamic behaviors of the crane system are characterized by 

highly coupled second-order differential nonlinear Eqs. (1)-(3), 
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in which only actuated Eq. (1) has an explicit relationship 

between state variables and control input u. By substituting Eq. 

(1) into Eq. (2) and (3), and then rearranging, we obtain sys-

tem dynamics in explicit form 

 

( )

( )

( )

1 2

2

1

2

2

cos cos
1

sin

sin

h c c

h c

t h c

c

m m l m l

x bx m m l
m m m

m l u

ϕϕ θθ

ϕϕ

θθ

 + +     = − − +  + +    − + 

ɺɺɺɺ

ɺɺ ɺ ɺ

ɺ

 (27) 

( ) ( )( )

( ) ( )( )
( )

( )

( )

( ) ( )( )
( )

2

1

2

2

1

2 2

1
.

cos

cos sin sin

cos sin

. cos sin

sin sin os

cos

h c t h c

c t h c

h c

t h c

h c

c t h c

h c

l m m m m m

m l m m m

m m

bx m m m g

l m m

m l m m m c

m m

u

ϕ
ϕ

ϕ θ ϕ θ
θ

ϕ ϕ

ϕ ϕϕ

ϕ θ ϕ θ
θ

ϕ

=
+ − + +

 − + +     +   + + + +     − +     − + +   +  +  − 

ɺɺ

ɺɺ

ɺ

ɺ

ɺ



 (28) 

( )( )

( ) ( )( )

( ) ( )( )

( )

2

2

1

2

1

2

2

1
.

cos

cos sin sin

sin os sin
.

cos sin sin

cos cos

c t h c

t h c

h c t

c t h c

l m m m m

l m m m

l m m c m

m l m m m g

bx u

θ
θ

ϕ θ ϕ θ ϕ

θ ϕ ϕ θ ϕ

θ θθ θ

θ θ

=
− + +

 − + +     + + − −     + + + +    + − 

ɺɺ

ɺɺ

ɺ

ɺ

ɺ

. (29) 

 

If this system dynamics is converted into a first-order math-

ematical model, six state variables can be obtained, including 

three components of [ ]
T

x ϕ θ=q  and their first-time 

derivatives. Assuming that all system states are measurable, 

the control problem using multi-level sliding mode technique 

is investigated in the subsections below.      

 

4.1 Control scheme 

Considering the first-level sliding surface composed of 

three components, each component of s corresponds to a 

tracking error of a displacement variable and its derivative 
 

( )1 1

2 2

3 3

ds x x x

s

s

λ

ϕ λ ϕ

θ λ θ

   + −
  
  = = + = +  
   +    

s e λe

ɺ

ɺ ɺ

ɺ

 (30) 

 

where ( )1 2 3diag , ,λ λ λ=λ  is a strictly positive diagonal ma-

trix. To force state trajectories to reach the first-level sliding 

surface, Utkin [32] defined the equivalent control input deter-

mined from equation .=s 0ɺ  By differentiating expression Eq. 

(30) with respect to time and making it equally zero, the fol-

lowing equation can be obtained:  

 

1 1 2 2 3 3
0; 0; 0s x x s sλ ϕ λ ϕ θ λ θ= + = = + = = + =ɺɺ ɺɺ ɺɺ ɺ ɺ ɺɺɺ ɺ . (31) 

By substituting Eqs. (27)-(29) into Eq. (31), we acquire 

equivalent control inputs as follows 
 

( )

( )( )

( )

1 1 2

1

2 2

1 2

cos cos

sin sin

eq h c c

t h c

h c c

u m m l m l

b m m m x

m m l m l

ϕϕ θθ

λ

ϕϕ θθ

=− + −

+ − + +

+ + +

ɺɺɺɺ

ɺ

ɺɺ

   (32a) 

( ) ( )( )
( )

( )

( )

( ) ( )( )
( )

( ) ( )( )

2

2

2

1

2 2

22 1

cos sin sin

cos

sin

tan

sin sin os

cos

cos
cos

c t h c

eq

h c

h c

t h c

c t h c

h c

h c t h c

m l m m m
u

m m

bx l m m

m m m g

m l m m m c

m m

l
m m m m m

ϕ θ ϕ θ
θ

ϕ

ϕϕ

ϕ

ϕ θ ϕ θ
θ

ϕ

λ
ϕ ϕ

ϕ

− + +
=

+

+ − +

+ + +

− + +
+

+

+ + − + +

ɺɺ

ɺ ɺ

ɺ

ɺ

 (32b) 

( ) ( )( )

( )

( ) ( )( )

( )( )

1
3

2

2

21

23 2

cos sin sin
cos

sin tan

sin os sin
cos

cos
cos

eq t h c

c t h c

h c t

c t h c

l
u m m m

m l bx m m m g

l
m m c m

l
m m m m

ϕ θ ϕ θ ϕ
θ

θθ θ

θ ϕ ϕ θ ϕ
θ

λ
θ θ

θ

= − + +

+ + + + +

+ + − −

+ − + +

ɺɺ

ɺ ɺ

ɺ

ɺ

. (32c)   

 

Equivalent control input ueq1 attracts a pair of state vari-

ables( ),x xɺ to component s1. Similarly, the duties of ueq2 and 

ueq3 are to force the pairs of state variables ( ,ϕ ϕɺ ) and ( ,θ θɺ ) to 

approach components s2 and s3, respectively. Therefore, to 

drive all state trajectories to reach first-level sliding manifold s, 

we introduce a total equivalent control input by linearly com-

bining ueq1, ueq2, and ueq3 as follows 
 

1 2 3eq eq eq equ u u u= + +  (33) 

 

which is expanded to 

 

( ) ( ) ( )( )

( )

( )

( ) ( )

( ) ( )( )

( ) ( )

( )( )

( )( )

( ) ( )( )

1

2

22 1

23 2

1

1

cos cos
cos

cos

cos cos

cos
cos

tan tan

cos
cos

3

sin os sin
cos

t h c

tc

h c h c

h c t h c

t h c

eq
c t h c

t h c

h c t

l
m m m

mm l

m m m m

l
m m m m m

m m m g

lu
m m m m

b m m m x

l
m m c m

ɺɺ

ɺɺ

ɺ

ɺ

ɺ

ɺ

ϕ θ ϕ θ ϕ
θ

ϕ θ
θ

ϕ ϕ θ

λ
ϕ ϕ

ϕ

ϕ θ

λ
θ θ

θ

λ

θ ϕ ϕ θ
θ

− − + +

 −     + − + + 

+ − + +

+ + +

=
− + +

− + +

+ − −

( )

( )

( ) ( )

( )

2

22

.

sin

sin
cos

cos sin

t

c
h c

h c

h c

m
m l

m m
m m

m m

ɺ

ϕ

ϕ θ

ϕ θ θ
ϕ

ϕ θ

                                                −         + + +       +     + +    

 (34) 
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However, discontinuous action usw must be introduced into 

Eq. (33) to maintain state motions on the sliding surface, thus 

overall SMC input becomes  

 

1 2 3eq sw eq eq eq swu u u u u u u= + = + + + . (35) 

 

Discontinuous input usw normally causes a switching action 

with sufficiently high frequency to retain all state trajectories 

moving on manifold 0S =  with S, which is referred to as 

second-level sliding surface. Second-level sliding surface is 

defined by linearly combining the three components of first-

level sliding surface as follows: 

 

1 1 2 2 3 3S s s sµ µ µ= + + . (36) 

 

More precisely, S denotes the switching line that all system 

states are attracted to and retained on. The switching action usw 

is determined based on the stability of sliding line S. By deriv-

ing S with respect to time, one obtains 

 

( ) ( ) ( )1 1 2 2 3 3S x xµ λ µ ϕ λ ϕ µ θ λ θ= + + + + +ɺ ɺɺ ɺɺɺ ɺ ɺɺ ɺ . (37) 

 

By substituting Eqs. (27)-(29) and (35) into Eq. (37), and by 

setting ( )sgnS KS Sη=− −ɺ , one obtains the switching com-

ponent 

 

( )
( ) ( )( )

1
, sgnsw equ g KS S u

f
η=− + + −q q

q
ɺ  (38) 

 

where 

 

( )
( ) ( ) ( )( )

( )( )

1 2

2

1

3

2

2

cos

cos

cos

cos

t h c h c t h c

c t h c

m m m l m m m m m
f

l m m m m

µ µ ϕ

ϕ

µ θ

θ

  −   + + + − + +   =    −  − + +  

q  

( )

( )

( )

( )

( ) ( )( )

( )( )

( ) ( )( )

( ) ( )

1 2

1 2 2

1 2

2

2 2

2

2 2

1

cos cos

sin sin

cos sin sin

sin

sin sin os

cos sin cos

,

h c c

h c c

t h c

c t h c

h c t h c

c t h c

h c h c

m m l m l

bx m m l m l

m m m

m l m m m

m m m m m g

m l m m m c

l m m m m b

g

ϕϕ θθ
µ

ϕϕ θθ

ϕ θ ϕ θ θ

ϕ
µ

ϕ θ ϕ θ θ

ϕ ϕϕ ϕ

 + +     − − + − 

+ +

− + +

+ + + +

+ − + +

− + + +
+

=q q

ɺɺɺɺ

ɺɺ ɺ

ɺɺ

ɺ

ɺ

ɺ ( ) ( ) ( )( )

( ) ( )( )

( )

( )

( )

2

1

1

3

2 2

1 2

cos

cos sin sin

cos sin

sin os
cos sin

sin

h c h c t h c

t h c

t h c

h c

c

t

x

l m m m m m m m

l m m m

bx m m m g

m m c
l m l

m

ϕ

ϕ θ ϕ θ ϕ

µ θ θ

θ ϕ
ϕ θ θθ

ϕ θ

               

+ + − + +

     − + + + + + +   +   + +    − −   
+

ɺ

ɺɺ

ɺ

ɺɺ

( )( )2

2

1 1 2 2 3 3

cosc t h cl m m m m

x

θ

µλ µ λ ϕ µ λ θ

                                                                − + +     + + + ɺɺ ɺ

. 

In the next step, we will prove that both first-level and sec-

ond-level sliding surfaces are as stable as the following sub-

section if the system is controlled by HSMC force Eq. (35).  

 

4.2 Stability of sliding surface 

We first prove the stability of second-level sliding surface 

by considering a positive definite Lyapunov function 
20.5 .V S=  The first-order derivative of V is in the form 

 

( )( ) 2sgnV SS S KS S KS Sη η= = − − =− −ɺɺ . (39) 

 

Because 0V ≤ɺ  for every 0K >  and 0,η>  second-

level surface S is bounded. Therefore, Lyapunov function V is 

lower bounded. Second-order derivative of V is 
 

( )( )
22

2 2 2 2 2

2 2 2

sgn

2

2 3

V S SS KS S KSS

K S K S K S K S

K S K S

η

η η η

η η

= + = + −

= + + + +

= + +

ɺ ɺɺ ɺɺɺ

 (40) 

 

which is bounded for every finite positive numbers K and η. 

This step yields function V which is uniformly continuous in 

time. Lyapunov function V satisfies all the conditions of Bar-

balat’s lemma; therefore, if lim 0,
t
V

→∞
=ɺ then ( )2lim

t
KS Sη

→∞
− −  

0= , which means lim 0.
t

S
→∞

= Thus, we can conclude that 

second-level surface S is asymptotically stable. 

The stability of the first-level sliding surface is then investi-

gated. Based on physical insight, the pair of system states (ϕ, 

θ) always reach equilibrium point (0,0) because of gravity. 

This event leads to 

 

( ) ( )2 3 2 3
lim lim lim lim 0
t t t t

s s ϕ λ ϕ θ λ θ
→∞ →∞ →∞ →∞

= = + = + =ɺɺ ɺɺɺ ɺ . (41) 

 

Expressions Eqs. (36) and (41) yields 

 

2 2 3 3

1

1

lim lim
lim 0t t

t

s s
s

µ µ

µ

→∞ →∞

→∞

− −
= = . (42) 

 

Therefore, first-level sliding surface s is asymptotically sta-

ble. Wang completely proved the stability of first-level sliding 

surface of a class of SIMO systems from a mathematical point 

of view in Ref. [25]. 

 

5. Numerical simulation and its results 

System dynamics Eq. (4) driven by either CSMC-based Eq. 

(8) or HSMC-based controller Eq. (35) is numerically simu-

lated. Physical parameters of the system and the parameters of 

the controllers are described in Table 1. 

Simulation results are illustrated in Figs. 2-10. Sliding 

manifolds of system-corresponding CSMC and HSMC tech-

niques are depicted in Figs. 2-3. Reach time of CSMC-based 

sliding manifold is approximately 2 sec (Fig. 2), whereas  
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that of HSMC-based primary manifold is small, at roughly 0.1 

sec (Fig. 3). Theoretically, the shorter the period of reaching 

phase of the sliding manifold is, the more robust the crane 

system becomes [33]. Therefore, as we will see later, robust-

ness of HSMC-based responses are better than those of 

CSMC-based responses.  

Table 1. Design parameters. 
 

System dynamics 
CSMC-based 

controller 

HSMC-based  

controller 

mt = 50 kg; mc = 2 kg; 

mh = 10 kg; l1 = 3 m; 

l2 = 0.3 m;  

b = 90 N.s/m; 

g = 9.81 m/s2; 

( )
( )

0 0 0 0 0 0
, , , , ,

0,0,0,0,0,0

x x ϕ ϕ θ θ

=

ɺɺ ɺ

; 

xd = 4 m; 

K = 70; 

λ = 0.5; α = 17; β 

= −11; 

xd = 4 m; K = 1.5; 

η = 10; 

λ1 = 0.35; λ2 = 22; 

λ3 = 50;  

 µ1 = 1.18; µ2 = 1.2; 

µ3 = −0.35; 

 

0 5 10 15 20
-2

-1.5

-1

-0.5

0

0.5

 Time (s)

 S
li
d
in
g
 s
u
rf
ac

e

 
 

Fig. 2. Sliding surface of CSMC. 
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Fig. 3. (a) Sliding surfaces of HSMC; (b) The enlarged view of Fig. 3(a). 
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Fig. 4. Trolley driving force. 
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Fig. 5. Trolley displacement. 
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Fig. 6. Swing angle of hook. 
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Fig. 7. Swing angle of cargo. 
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It is shown in Fig. 5 that the path of the trolley motion in 

which CSMC response is smoother than that of HSMC re-

sponse. Both responses regularly approach the desired value 

without overshooting. CSMC response reaches a steady-state 

after 9.7 sec, whereas setting time of HSMC response is about 

14.3 sec. Hook and cargo swings are described in Figs. 6 and 

7, respectively, in which qualities of CSMC-based responses 

are better than those of HSMC-based responses. Cargo swing 

vanishes completely after 6.8 sec for CSMC, and 12.2 sec for 

HSMC.  

SMC and its modified versions are known to be robust. 

Their robustness results from their intrinsic capability to deal 

with uncertain components [34]. To investigate robustness of 

a crane system with respect to variations of its inherent physi-

cal parameters, which are viewed as uncertainties, we retain 

all design parameters of both CSMC and HSMC controllers 

but increases values of uncertainties: 
1 2 cl l m∆ =∆ =∆ =  

50 %.tm∆ =  System responses simulated in the presence of 

parameter perturbations are shown in Figs. 11-19. Robustness 

of both CSMC-based and HSMC-based responses is presented 

in Table 2, in which response specifications in cases of pres-

ence and absence of parameter disturbance are described. Both 

CSMC-based and HSMC-based state trajectories are robust. 

However, HSMC-based responses are more robust than 

CSMC-based responses because time to reach second-level 

surface using HSMC technique is shorter than that of CSMC-

based technique. Table 2 shows that CSMC response specifi-

cations vary more than HSMC response specifications when 

values of uncertainties increased. Comparing Figs. 5-7 with Figs. 

14-16, respectively, we easily see that HSMC-based responses 

exhibited less change in shapes than CSMC-based responses. 

Qualities of HSMC-based responses appear to be better than 

those of CSMC-base responses. In summary, both CSMC and 

HSMC controllers guarantee asymptotical stability of all system 

responses even when the physical structure of the system is 
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Fig. 8. Trolley velocity. 
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Fig. 9. Swing velocity of hook. 
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Fig. 10. Swing velocity of cargo. 

Table 2. Comparison of response specifications. 
 

Nominal values of uncer-

tainties 

Increasing 50 % 

values of uncer-

tainties Techniques 

CSMC HSMC 
PBC 

[37] 
CSMC HSMC 

Setting time (sec) 7.03 14.41 33 6.77 12.82 
Hook 

swing 

angle 

Maximum swing 

angle, 

ϕmax (degree) 

6.19 7.18 13 4.42 10.93 

Setting time (sec) 6.81 12.2 34 6.76 13.12 
Cargo 

swing 

angle 

Maximum swing 

angle, 

θmax (degree) 

6.51 9.04 
16 

 
4.68 8.08 

Setting time (sec) 9.705 14.3 31 6.85 14.63 Trolley 

displace

ment Maximum over-

shoot (%) 
0 0 0 0 0 
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Fig. 11. Sliding surface of CSMC with uncertainties. 
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varied; however, HSMC controller is more robust than CSMC 

controller. Comparison among CSMC, HSMC, and passivity-

based control (PBC) [37] is shown in Table 2. All specifications 

of CSMC and HSMC appear to be better than those of PBC. 

Both settling time and maximum swing angles of CSMC and 

HSMC are considerably smaller than those of PBC.  

 

6. Conclusions 

Two robust controllers were designed for both tracking and 

anti-swing control of double-pendulum overhead cranes using 

SMC technique and a modified version. Both controllers 

worked well and stabilized overall crane system. Movement 

of the trolley and its stoppage were controlled precisely at its 

destination. Concurrently, both hook and cargo swings were 

kept small during the transfer process and were completely 

suppressed after a considerably short time. Simulation results 

also demonstrated that responses of the crane system driven 

by the proposed controllers were robust even when several 

physical parameters of the system were changed. In a particu-

lar simulation case, HSMC-based controller was more robust 

than CSMC controller because the reaching period of HSMC-

based controller was shorter than that of CSMC-based control-

ler. To improve robustness of the system, optimum design of 

the sliding manifold will be carried out in our future work to 

minimize or cancel out the reaching period.  
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Fig. 12. (a) Sliding surfaces of HSMC with uncertainties; (b) Zoom out 

of section B of Fig. 12(a). 
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Fig. 13. Trolley driving force with uncertainties. 
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Fig. 14. Trolley displacement with uncertainties. 
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Fig. 15. Swing angle of hook with uncertainties. 
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Fig. 16. Swing angle of cargo with uncertainties. 
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Fig. 18. Swing velocity of hook with uncertainties. 
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Fig. 19. Swing velocity of cargo with uncertainties. 
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