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a b s t r a c t

This paper presents an adaptive control design for nonlinear systems with time-varying full state
constraints. It is the first time to introduce the novel time-varying Integral Barrier Lyapunov functions
(TVIBLFs) into the adaptive control design, which not only overcomes the limitation of conservatism
existing in the traditional BLFs, but also guarantees that the full state time-varying constraint bounds
are not violated. The TVIBLFs are combined with the backstepping design procedure to construct the
controllers and adaptation laws, and the integral mean value theorem is used to differentiate TVIBLFs.
It can be proven that all the states are forced in the time-varying regions and the stability of the
closed-loop system is achieved. The effectiveness of the proposed adaptive control strategy can be
illustrated through a simulation example.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

In recent decades, the adaptive control technology has de-
eloped rapidly, which reflects the general trend that modern
ontrol system is developing towards intelligent and accurate.
any adaptive backstepping control algorithms were developed

or nonlinear systems with uncertain parameters in (Chen, Feng,
Su, 2016; Krstic & Kokotovic, 1996; Krstic & Smyshlyaev, 2008;
myshlyaev & Krstic, 2007; Sui, Chen, & Tong, 2018; Tong, Min, &
i, 2020; Wang & Lin, 2012, 2015; Wang, Wen and Guo, 2016;
ang, Wen, & Lin, 2017; Wu, Xie, & Zhang, 2007; Xie & Tian,
009; Yu, Shi, & Zhao, 2018). Driven by practical requirements,
ome significant backstepping algorithms were proposed and
pplied to real systems (He, Ge, & Zhang, 2011; Li, Zhao, Chen,
ang, & Liu, 2018). However, some system nonlinearities can-
ot be linearly parameterized and normally unknown. With the
evelopment of neural networks (NNs) and fuzzy logic systems,
pproximation-based adaptive control designs in (Chen & Pao,
993; Song, Guo and Huang, 2017; Wang, Liu, Zhang and Chen,
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2016; Zhou, Chen, Chen and Li, 2014) were constructed for the
nonlinear systems with unknown functions. It is noteworthy that
the above results are limited to the unknown nonlinear systems
without constraints.

The actual systems are unavoidable to encounter various con-
straints, and the performance and stability of systems will be
affected. In recent years, the application of BLF to solve the con-
trol problems of nonlinear systems with constraints has become
a hot topic, and it has gradually attracted the attention of more
and more scholars. The problems of constant (Tee, Ge, & Tay,
2009) and time-varying (Tee, Ren, & Ge, 2011) output constraints
were overcome by establishing adaptive tracking control based
on BLF. For nonlinear output constrained systems with unknown
functions, some novel adaptive tracking controllers (Li, Li, Liu,
Tong, & Chen, 2017; Liu, Liu, Chen, Tong, & Chen, 2020; Zhao,
Song and Shen, 2018) were structured based on BLFs and NNs.
Subsequently, BLFs-based adaptive control strategies were pre-
sented for real systems, such as the Euler–Bernoulli beam system
(He & Ge, 2015). Compared with output constraints, full state
constraints are more general in actual systems (Liu, Li, Liu, & Tong,
2021). The BLFs-based adaptive control methods were presented
to achieve full state constraint satisfactions for strict-feedback
systems (Song, Shen, He and Huang, 2017; Zhang, Xia, & Yi, 2017;
Zhao & Song, 2019), pure-feedback systems (Kim & Yoo, 2014),
stochastic systems and Euler–Lagrange systems (Zhao, Song, Ma
and He, 2018). However, the limitation of conservatism in the
above results is that the state constraints must be transformed
into the error constraints.

To cope with conservative limitation in traditional BLFs, IBLFs
were further designed to directly enforce full states within the
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redefined compact sets. With the help of backstepping tech-
ique and IBLFs, some novel adaptive control schemes (Tee & Ge,
012) for nonlinear strict-feedback systems with state constraints
ave been proposed. Based on the IBLFs, an adaptive NN control
pproach (Tang, Ge, Tee, & He, 2016) was established for SISO
onlinear state constrained pure-feedback systems with time-
arying disturbances to ensure the state constraints were never
iolated, in which NNs are employed to estimate the uncertain
onlinearities. To solve the explosion of complexity and state
onstraints, the dynamic surface design based on IBLFs (Kim &
oo, 2015) was proposed for pure-feedback constrained systems.
he authors (Liu, Tong, Chen, & Li, 2017) have further extended
hese adaptive constraint control strategies to MIMO nonlinear
ystems with full state constraints. It is worth mentioning that
he above results of IBLFs have solved the problem of conservative
imitation existing in the traditional approaches. However, these
esults can only deal with the nonlinear systems with the full
tate constant constraint problems and it is an urgent problem to
ontrol nonlinear systems with full state time-varying constraints
ased on IBLFs.
Inspired by the above observations, this paper investigates

he adaptive tracking control problem for a class of nonlinear
ystems with uncertain nonlinear functions and time-varying
ull state constraints. In the framework of backstepping design
echnique, TVIBLFs and NNs are employed to design adaption
aws and controller. Compared with the existing literatures, the
ain contributions of this paper are as follows: although some
daptive controllers based on BLFs were proposed for nonlin-
ar state constraint systems, they are required to transform the
tate constraints into error constraints and thus, this results in
onservatism for known error bounds. To prevent state con-
traint violation and overcome the conservatism, the novel TVI-
LFs are introduced in this paper; the previous results on IBLFs
Kim & Yoo, 2015; Liu et al., 2017; Tang et al., 2016; Tee & Ge,
012) only solve constant state constraints and the time-varying
BLFs are first proposed in this paper, which can achieve the
ull state time-varying constraint satisfactions. Furthermore, the
stablished TVIBLFs-based adaptive neural tracking controller can
nsure that all the closed-loop system signals are bounded, the
ull state constraint satisfactions are achieved. Meanwhile, the
racking error can remain in a small neighborhood of the origin.

. System descriptions

Consider the nonlinear system in the strict-feedback form

ẋi = fi (xi) + gi (xi) xi+1, i = 1, . . . , n − 1
ẋn = fn (xn) + gn (xn) u
y = x1

(1)

where xi = [x1, . . . , xi]T , i = 1, . . . , n, u and y are states, input
nd output of systems, respectively; fi (xi) and gi (xi) , i = 1, . . . , n
re smooth functions. In this paper, the time-varying full state
onstraints are considered, i.e. |xi| < kci (t) where kci (t) : R+ → R,
i = 1, . . . , n, ∀t ≥ 0. For this class of nonlinear system, we
assume that the existence and uniqueness of solution are satisfied
(Zhou, Wen and Yang, 2014).

The control objective is to design an adaptive feedback con-
troller u such that y tracks the desired trajectory yd while en-
suring that all the closed-loop signals are bounded and the time-
varying full state constraints are not violated.

Assumption 1 (Tee & Ge, 2012). For kc1 (t) : R+ → R, there exist a
function Y0 (t) : R+ → R+ and the constants Yi > 0, i = 1, . . . , n
so that the desired trajectory yd and its time derivatives satisfy
|yd (t)| ≤ Y0 (t) < kc1 (t),

⏐⏐⏐y(i)
d (t)

⏐⏐⏐ < Yi, ∀t ≥ 0.
2

Assumption 2 (Tee & Ge, 2012). The smooth functions gi (xi) i =

1, . . . , n are known, and there exists a positive constant G such
that 0 < G ≤ |gi (xi)|. For generality, it is assumed that gi (xi) > 0.

ssumption 3 (Tee et al., 2011). There exist the constants K 0
ci ,

i = 1, . . . , n, and K j
ci , j = 1, . . . , n such that kci (t) ≤ K 0

ci and
k(j)
ci (t) ≤ K j

ci , ∀t ≥ 0.

3. The controller design and stability analysis

In this section, an adaptive controller u will be developed for
(1) based on the backstepping design with the IBLF.

Step 1: The time derivative of tracking error z1 = x1 − yd is
defined as follows

ż1 = f1 (x1) + g1 (x1) x2 − ẏd. (2)

Choose the Integral-type Lyapunov function candidate

V z
1 =

∫ z1

0

δk2c1 (t)

k2c1 (t) − (δ + yd)2
dδ. (3)

Remark 1. IBLF is a kind of BLF selected in this paper to deal
with the full state constraints problem. At the same time, there
are two types of typical traditional BLFs, log-BLF and tan-BLF. The
log-BLF is a common BLF, and the tan-BLF is a kind of BLF that
can integrate constraint analysis into a general method to deal
with both constrained and unconstrained systems. The above two
kinds of traditional BLFs have a common disadvantage compared
with the IBLF. That is, they need to convert the state constraints
into error constraints in the process of dealing with the constraint
problems for further derivation, while the IBLF does not need
such operation. In addition, this paper studies a kind of TVIBLF
that reduces the conservative limitation of constant IBLF and is
more general.

Because |yd (t)| ≤ Y0 (t) < kc1 (t), it can be seen that V z
1 is

positive definite, continuously differentiable in set |x1| < kc1 (t),
while satisfying the decreasing condition. Then, the following
inequality holds

1
2
z21 ≤ V z

1 ≤ z21

∫ 1

0

υk2c1 (t)

k2c1 (t) − (υz1 + sgn (z1) Y0 (t))2
dυ (4)

where the substitution δ = υz1 will be used later.
Define

χ1 (t) =
δk2c1 (t)

k2c1 (t) − (δ + yd)2
(5)

and χ1 (t) is obviously continuously differentiable in |x1| <

c1 (t).
The time derivative of V z

1 is described as

V̇ z
1 = lim

∆t→0

V z
1 (t + ∆t) − V z

1 (t)
∆t

= lim
∆t→0

1
∆t

∫ z1(t+∆t)

z1(t)
χ1 (t + ∆t) dδ

+ lim
∆t→0

1
∆t

∫ z1(t)

0
(χ1 (t + ∆t) − χ1 (t)) dδ. (6)

Then, according to the integral mean value theorem and uni-
formly continuous function χ t , we have
1 ( )
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˙ z
1 = lim

∆t→0
χ1 (ς1)

z1 (t + ∆t) − z1 (t)
∆t

+

∫ z1(t)

0
lim

∆t→0

χ1 (t + ∆t) − χ1 (t)
∆t

dδ

= ż1 (t) χ1 (z1 (t)) +

∫ z1(t)

0

dχ1 (t)
dt

dδ (7)

where ς1 ∈ (z1 (t) , z1 (t + ∆t)) and χ1 (t) is a function of yd (t)
and kc1 (t).

Further, the time derivative of V z
1 satisfies

V̇ z
1 =

z1k2c1 (t)

k2c1 (t) − x21
ż1 + ẏd

∫ z1

0

∂

∂yd

δk2c1 (t)

k2c1 (t) − (δ + yd)2
dδ

+ k̇c1 (t)
∫ z1

0

∂

∂kc1 (t)

δk2c1 (t)

k2c1 (t) − (δ + yd)2
dδ (8)

here∫ z1

0

∂

∂yd

δk2c1 (t)

k2c1 (t) − (δ + yd)2
dδ

= z1

(
k2c1 (t)

k2c1 (t) − x21
− Ψ1

(
z1, yd, kc1

))
(9)

with

Ψ1
(
z1, yd, kc1

)
=

∫ 1

0

k2c1 (t)

k2c1 (t) − (υz1 + yd)2
dυ

=
kc1 (t)
z1

(
tanh−1

(
z1 + yd
kc1 (t)

)
− tanh−1

(
yd

kc1 (t)

))
=

kc1 (t)
2z1

ln

(
kc1 (t) + x1

) (
kc1 (t) − yd

)(
kc1 (t) − x1

) (
kc1 (t) + yd

) .
The third term in (8) satisfies∫ z1

0

∂

∂kc1 (t)

δk2c1 (t)

k2c1 (t) − (δ + yd)2
dδ

=

∫ z1

0
−δ (δ + yd) d

kc1 (t)
k2c1 (t) − (δ + yd)2

=
−z1 (z1 + yd) kc1 (t)
k2c1 (t) − (z1 + yd)2

+

∫ z1

0

(2δ + yd) kc1 (t)
k2c1 (t) − (δ + yd)2

dδ

= z1

(
− (z1 + yd) kc1 (t)
k2c1 (t) − (z1 + yd)2

+

∫ 1

0

(2υz1 + yd) kc1 (t)
k2c1 (t) − (υz1 + yd)2

dυ

)

= z1

(
−z1kc1 (t)

k2c1 (t) − (z1 + yd)2
+ I1

(
z1, yd, kc1

))
(10)

here

1
(
z1, yd, kc1

)
=

−ydkc1 (t)
k2c1 (t) − (z1 + yd)2

+

∫ 1

0

(2υz1 + yd) kc1 (t) dυ
k2c1 (t) − (υz1 + yd)2

=
−ydkc1 (t)
k2c1 (t) − x21

+
kc1 (t)
z1

ln

(
k2c1 (t) − x21
k2c1 (t) − yd2

)

+
yd
2z1

ln

(
k2c1 (t) − y2d
k2c1 (t) − x21

)
.

3

Remark 2. Using L’Hôpital’s rule, that

lim
z1→0

Ψ1
(
z1, yd, kc1

)
=

k2c1 (t)

k2c1 (t) − yd2

lim
z1→0

I1
(
z1, yd, kc1

)
=

yd2 − 3ydkc1
k2c1 (t) − yd2

.

From Assumption 1, it can be known that |yd (t)| ≤ Y0 <

c1 (t). Thus, Ψ1
(
z1, yd, kc1

)
and I1

(
z1, yd, kc1

)
are well defined to

be bounded in a neighborhood of z1 = 0.
Introducing z2 = x2−α1, and substituting (2), (9) and (10) into

(8) results in

V̇ z
1 =

z1k2c1 (t)

k2c1 (t) − x21
[f1 (x1) + g1 (x1) z2

+g1 (x1) α1] − z1Ψ1
(
z1, yd, kc1

)
ẏd

+ z1I1
(
z1, yd, kc1

)
k̇c1 (t) −

z21kc1 (t) k̇c1 (t)
k2c1 (t) − x21

. (11)

Define the unknown nonlinear function as

P1 (Z1) = f1 (x1) −
k2c1 (t) − x21

k2c1 (t)
Ψ1
(
z1, yd, kc1

)
ẏd

+
k2c1 (t) − x21

k2c1 (t)
I1
(
z1, yd, kc1

)
k̇c1 (t) (12)

here Z1 =
[
x1, yd, ẏd, kc1 , k̇c1

]T
.

Based on the neural approximation, P1 (Z1) can be described
by

P1 (Z1) = ξ ∗T
1 S1 (Z1) + ε1 (Z1) (13)

where ξ ∗

1 denotes the ideal weight vector, S1 (Z1) = [s1 (Z1) , . . . ,

sp (Z1)
]T is the radial basis vector with Gaussian function sj

(
Zj
)
,

j = 1, . . . , p and the node number p > 1, ε1 is the approximation
error satisfying |ε1| ≤ ε1 with the constant ε1 > 0, ξ̂1 is the
estimation of ξ ∗

1 and ξ̃1 = ξ̂1 − ξ ∗

1 .
Based on (12) and (13), (11) can be further rewritten as

V̇ z
1 =

z1k2c1 (t)

k2c1 (t) − x21

(
ξ ∗T
1 S1 (Z1) + ε1 (Z1)

)
−

z21kc1 (t) k̇c1 (t)
k2c1 (t) − x21

+
z1k2c1 (t)

k2c1 (t) − x21
(g1 (x1) z2 + g1 (x1) α1) . (14)

Design the virtual controller α1 as

α1 =
1

g1 (x1)

(
− (κ1 + κ1 (t)) z1

−ξ̂ T
1 S1 (Z1) −

1
2

z1k2c1 (t)

k2c1 (t) − x21

)
(15)

where κ1 stands for a positive design parameter, κ1 (t) =√(
k̇c1 (t) /kc1 (t)

)2
+ β1 and β1 > 0 is the design parameter.

According to the Young’s inequality, we have

z1k2c1 (t)

k2c1 (t) − x21
ε1 (Z1) ≤

1
2

(
z1k2c1 (t)

k2c1 (t) − x21

)2

+
1
2
ε2
1.

It is worth noting that κ1 (t) + k̇c1 (t) /kc1 (t) ≥ 0 and it has

V̇ z
1 ≤ −

z1k2c1 (t)

k2c1 (t) − x21
ξ̃ T
1 S1 (Z1) −

κ1z21k
2
c1 (t)

k2c1 (t) − x21

+
1
ε2
1 +

z1k2c1 (t)
2 2 g1 (x1) z2. (16)
2 kc1 (t) − x1
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Design the following Lyapunov function

V1 = V z
1 + V ξ

1 . (17)

where V ξ

1 =
1
2 ξ̃

T
1 Γ −1

1 ξ̃1 and Γ T
1 = Γ1 > 0 is the design parameter.

Then, the time derivative of V1 yields

V̇1 ≤ ξ̃ T
1

(
−

z1k2c1 (t)

k2c1 (t) − x21
S1 (Z1) + Γ −1

1
˙̂
ξ1

)
+

1
2
ε2
1

−
κ1z21k

2
c1 (t)

k2c1 (t) − x21
+

z1k2c1 (t)

k2c1 (t) − x21
g1 (x1) z2. (18)

Step i, 2 ≤ i ≤ n − 1: Define the error variable zi = xi − αi−1,
nd its time derivative is given as

˙i = fi (xi) + gi (xi) xi+1 − α̇i−1 (19)

here αi−1 can be seen as a function of xi−1, yd, . . . , y
(i−1)
d ,

ˆ1, . . . , ξ̂i−1, kc1 , . . . , k
(i−1)
c1 , kc2 , . . . , k

(i−2)
c2 , . . . , kci−1 , k̇ci−1 , and it

has

α̇i−1 =

i−1∑
m=1

∂αi−1

∂xm
ẋm +

i−1∑
m=1

∂αi−1

∂ξ̂m

˙̂
ξm

+

i−1∑
m=0

∂αi−1

∂y(m)

d

y(m+1)
d +

i−1∑
m=1

i−m∑
l=0

∂αi−1

∂k(l)
cm (t)

k(l+1)
cm (t) . (20)

It needs to note that α1 is a function of x1, yd, ẏd ξ̂1, kc1 and
˙c1 .

Choose the Integral-type Lyapunov function candidate

z
i =

∫ zi

0

δk2ci (t)

k2ci (t) − (δ + αi−1)
2 dδ (21)

ith δ = υzi and the following inequality holds

1
2
z2i ≤ V z

i ≤ z2i

∫ 1

0

υk2ci (t)

k2ci (t) − (υzi + sgn (zi) Ai−1)
2 dυ. (22)

The virtual controllers α1, . . . , αn−1 are continuously differ-
entiable functions and satisfy |αi−1| ≤ Ai−1 < kci (t) where
i−1, i = 2, . . . , n are positive constants (Tee & Ge, 2012).
Similar to (6) and (7) in Step 1, the time derivative of V z

i can
e given as

˙ z
i =

zik2ci (t)

k2ci (t) − x2i
żi + α̇i−1

∫ zi

0

∂

∂αi−1

δk2ci (t)

k2ci (t) − (δ + αi−1)
2 dδ

+ k̇ci (t)
∫ zi

0

∂

∂kci (t)

δk2ci (t)

k2ci (t) − (δ + αi−1)
2 dδ

where∫ zi

0

∂

∂αi−1

δk2ci (t)

k2ci (t) − (δ + αi−1)
2 dδ

= zi

(
k2ci (t)

k2ci (t) − x2i
− Ψi

(
zi, αi−1, kci

))
(23)

ith

i
(
zi, αi−1, kci

)
=

∫ 1

0

k2ci (t)

k2ci (t) − (υzi + αi−1)
2 dυ

=
kci (t)
zi

(
tanh−1

(
zi + αi−1

kci (t)

)
− tanh−1

(
αi−1

kci (t)

))
=

kci (t)
2zi

ln

(
kci (t) + xi

) (
kci (t) − αi−1

)(
kci (t) − xi

) (
kci (t) + αi−1

)

4

nd∫ zi

0

∂

∂kci (t)

δk2ci (t)

k2ci (t) − (δ + αi−1)
2 dδ

=

∫ zi

0
−δ (δ + αi−1) d

kci (t)
k2ci (t) − (δ + αi−1)

2

= zi

(
− (zi + αi−1) kci (t)
k2ci (t) − (zi + αi−1)

2 +

∫ 1

0

(2υzi + αi−1) kci (t)
k2ci (t) − (υzi + αi−1)

2 dυ

)

= zi

(
−zikci (t)

k2ci (t) − (zi + αi−1)
2 + Ii

(
zi, αi−1, kci

))
(24)

where

Ii
(
zi, αi−1, kci

)
=

−αi−1kci (t)
k2ci (t) − (zi + αi−1)

2

+

∫ 1

0

(2υzi + αi−1) kci (t)
k2ci (t) − (υzi + αi−1)

2 dυ

=
−αi−1kci (t)
k2ci (t) − x2i

+
kci (t)
zi

ln

(
k2ci (t) − x2i
k2ci (t) − α2

i−1

)

+
αi−1

2zi
ln

(
k2ci (t) − α2

i−1

k2ci (t) − x2i

)
.

Similar to Remark 2, Ψi
(
zi, αi−1, kci

)
and Ii

(
zi, αi−1, kci

)
are

ell defined to be bounded in a neighborhood of zi = 0.
From (23) and (24), the following equation can be obtained

˙ z
i =

zik2ci (t)

k2ci (t) − x2i
[fi (xi) + gi (xi) zi

+gi (xi) αi−1] − ziΨi
(
zi, αi−1, kci

)
α̇i−1

+ ziIi
(
zi, αi−1, kci

)
k̇ci (t) −

z2i kci (t) k̇ci (t)
k2ci (t) − x2i

. (25)

Define the unknown nonlinear function as

Pi (Zi) = fi (xi) −
k2ci (t) − x2i

k2ci (t)
Ψi
(
zi, αi−1, kci

)
α̇i−1

+
k2ci (t) − x2i

k2ci (t)
Ii
(
zi, αi−1, kci

)
k̇ci (t) (26)

here Zi =

[
xi, yd, . . . , y

(i)
d , kc1 , . . . , k

(i)
c1 , kc2 , . . . , k

(i−1)
c2 , . . . ,

kci , k̇ci , ξ̂1, . . . , ξ̂i−1

]T
. Based on the neural approximation, Pi (Zi)

an be described by

i (Zi) = ξ ∗T
i Si (Zi) + εi (Zi) (27)

here |εi| ≤ εi with the constant εi > 0. (25) becomes

V̇ z
i =

zik2ci (t)

k2ci (t) − x2i

(
ξ ∗T
i Si (Zi) + εi (Zi)

)
−

z2i kci (t) k̇ci (t)
k2ci (t) − x2i

+
zik2ci (t)

k2ci (t) − x2i
(gi (xi) zi+1 + gi (xi) αi) . (28)

The virtual controller αi is designed as follows

i =
1

gi (xi)

[
− (κi + κ i (t)) zi −

1
2

zik2ci (t)

k2ci (t) − x2i

−ξ̂ T
i Si (Zi) −

k2ci−1
(t)
(
k2ci (t) − x2i

)
k2ci (t)

(
k2ci−1

(t) − x2i−1

)gi−1 (xi−1) zi−1

⎤⎦ (29)
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here κi represents a positive design parameter, κ i (t) =(
k̇ci (t) /kci (t)

)2
+ βi with βi > 0, ξ̂i is the estimation of ξ ∗

i and
efine ξ̃i = ξ̂i −ξ ∗

i .
Using the Young’s inequality, it is easy to get

zik2ci (t)

k2ci (t) − x2i
εi (Zi) ≤

1
2

(
zik2ci (t)

k2ci (t) − x2i

)2

+
1
2
ε2
i . (30)

Based on (29), (30) and the fact κ i (t)+ k̇ci (t) /kci (t) ≥ 0, (28)
can be rewritten as

V̇ z
i ≤ −

zik2ci (t)

k2ci (t) − x2i
ξ̃ T
i Si (Zi) +

1
2
ε2
i +

zik2ci (t)

k2ci (t) − x2i
gi (xi) zi+1

−
κiz2i k

2
ci (t)

k2ci (t) − x2i
−

zik2ci−1
(t)

k2ci−1
(t) − x2i−1

gi−1 (xi−1) zi−1. (31)

Define the following function as

i = Vi−1 + V z
i + V ξ

i . (32)

here V ξ

i =
1
2 ξ̃

T
i Γ −1

i ξ̃i and Γ T
i = Γi > 0 is the design parameter.

From the step i − 1, it can be obtained that

V̇i−1 ≤

i−1∑
m=1

ξ̃ T
m

(
−

zmk2cm (t)
k2cm (t) − x2m

Sm (Zm) + Γ −1
m

˙̂
ξm

)
+

1
2

i−1∑
m=1

ε2
m

−

i−1∑
m=1

κmz2mk
2
cm (t)

k2cm (t) − x2m
+

zi−1k2ci−1
(t)

k2ci−1
(t) − x2i−1

gi−1 (xi−1) zi. (33)

Therefore, the time derivative of Vi can be expressed as

V̇i ≤

i∑
m=1

ξ̃ T
m

(
−

zmk2cm (t)
k2cm (t) − x2m

Sm (Zm) + Γ −1
m

˙̂
ξm

)
+

1
2

i∑
m=1

ε2
m

−

i∑
m=1

κmz2mk
2
cm (t)

k2cm (t) − x2m
+

zik2ci (t)

k2ci (t) − x2i
gi (xi) zi+1. (34)

Step n: The time derivative of error zn = xn − αn−1 is

żn = fn (xn) + gn (xn) u − α̇n−1. (35)

Based on Step i with i = n − 1, α̇n−1 is given by

α̇n−1 =

n−1∑
m=1

∂αn−1

∂xm
ẋm +

n−1∑
m=1

∂αn−1

∂ξ̂m

˙̂
ξm

+

n−1∑
m=0

∂αn−1

∂y(m)

d

y(m+1)
d +

n−1∑
m=1

n−m∑
l=0

∂αn−1

∂k(l)
cm (t)

k(l+1)
cm (t) . (36)

Consider the Integral-type Lyapunov function candidate

V z
n =

∫ zn

0

δk2cn (t)

k2cn (t) − (δ + αn−1)
2 dδ (37)

here δ = υzn and the following inequality holds

1
2
z2n ≤ V z

n ≤ z2n

∫ 1

0

υk2cn (t)

k2cn (t) − (υzn + sgn (zn) An−1)
2 dυ. (38)

Similar to Step 1, the time derivative of V z
n is

˙ z
n =

znk2cn (t)
k2cn (t) − x2n

żn + α̇n−1

∫ zn

0

∂

∂αn−1

δk2cn (t)

k2cn (t) − (δ + αn−1)
2 dδ

+ k̇cn (t)
∫ zn

0

∂

∂kcn (t)
δk2cn (t)

k2cn (t) − (δ + αn−1)
2 dδ (39)
5

where
∫ zn

0

∂

∂αn−1

δk2cn (t)

k2cn (t) − (δ + αn−1)
2 dδ

= zn

(
k2cn (t)

k2cn (t) − x2n
− Ψn

(
zn, αn−1, kcn

))
(40)

with Ψn
(
zn, αn−1, kcn

)
=

∫ 1

0

k2cn (t)

k2cn (t) − (υzn + αn−1)
2 dυ

=
kcn (t)
zn

(
tanh−1

(
zn + αn−1

kcn (t)

)
− tanh−1

(
αn−1

kcn (t)

))
=

kcn (t)
2zn

ln

(
kcn (t) + xn

) (
kcn (t) − αn−1

)(
kcn (t) − xn

) (
kcn (t) + αn−1

)
while

∫ zn

0

∂

∂kcn (t)
δk2cn (t)

k2cn (t) − (δ + αn−1)
2 dδ

=

∫ zn

0
−δ (δ + αn−1) d

kcn (t)
k2cn (t) − (δ + αn−1)

2

= zn

(
− (zn + αn−1) kcn (t)
k2cn (t) − (zn + αn−1)

2 +

∫ 1

0

(2υzn + αn−1) kcn (t)
k2cn (t) − (υzn + αn−1)

2 dυ

)

= zn

(
−znkcn (t)

k2cn (t) − (zn + αn−1)
2 + In

(
zn, αn−1, kcn

))
(41)

with

In
(
zn, αn−1, kcn

)
=

−αn−1kcn (t)
k2cn (t) − (zn + αn−1)

2

+

∫ 1

0

(2υzn + αn−1) kcn (t)
k2cn (t) − (υzn + αn−1)

2 dυ

=
−αn−1kcn (t)
k2cn (t) − x2n

+
kcn (t)
zn

ln

(
k2cn (t) − x2n

k2cn (t) − α2
n−1

)

+
αn−1

2zn
ln

(
k2cn (t) − α2

n−1

k2cn (t) − x2n

)
.

Same as Remark 2, Ψn
(
zn, αn−1, kcn

)
and In

(
zn, αn−1, kcn

)
are

ell defined to be bounded in a neighborhood of zn = 0.
Substituting (40) and (41) into (39) leads to

˙ z
n =

znk2cn (t)
k2cn (t) − x2n

(fn (xn) + gn (xn) u) −
z2nkcn (t) k̇cn (t)
k2cn (t) − x2n

− znΨn
(
zn, αn−1, kcn

)
α̇n−1 + znIn

(
zn, αn−1, kcn

)
k̇cn (t) (42)

Define the unknown nonlinear function as

n (Zn) = fn (xn) −
k2cn (t) − x2n

k2cn (t)
Ψn
(
zn, αn−1, kcn

)
α̇n−1

+
k2cn (t) − x2n

k2cn (t)
In
(
zn, αn−1, kcn

)
k̇cn (t) (43)

here Zn =

[
xn, yd, . . . , y

(n)
d , kc1 , . . . , k

(n)
c1 , kc2 , . . . , k

(n−1)
c2 , . . . ,

kcn , k̇cn , ξ̂1, . . . , ξ̂n
]T

. Based on the neural approximation, Pn (Zn)

can be described by

Pn (Zn) = ξ ∗T
n Sn (Zn) + εn (Zn) (44)

where |ε | ≤ ε with the constant ε > 0.
n n n
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Further, (42) becomes

V̇ z
n =

znk2cn (t)
k2cn (t) − x2n

(
ξ ∗T
n Sn (Zn) + εn (Zn)

)
−

z2nkcn (t) k̇cn (t)
k2cn (t) − x2n

+
znk2cn (t)

k2cn (t) − x2n
gn (xn) u. (45)

The controller u as following

u =
1

gn (xn)

[
− (κn + κn (t)) zn −

1
2

znk2cn (t)
k2cn (t) − x2n

−ξ̂ T
n Sn (Zn) −

k2cn−1
(t)
(
k2cn (t) − x2n

)
k2cn (t)

(
k2cn−1

(t) − x2n−1

)gn−1 (xn−1) zn−1

⎤⎦
(46)

where κn represents a positive design parameter, κn (t) =(
k̇cn (t) /kcn (t)

)2
+ βn with βn > 0 and ξ̃n = ξ̂n − ξ ∗

n .
According to the Young’s inequality, we have

znk2cn (t)
k2cn (t) − x2n

εn (Zn) ≤
1
2

(
znk2cn (t)

k2cn (t) − x2n

)2

+
1
2
ε2
n. (47)

Noting that κn (t) + k̇cn (t) /kcn (t) ≥ 0, (45) becomes

V̇ z
n ≤ −

znk2cn (t)
k2cn (t) − x2n

ξ̃ T
n Sn (Zn) −

κnz2nk
2
cn (t)

k2cn (t) − x2n

+
1
2
ε2
n −

znk2cn−1
(t)

k2cn−1
(t) − x2n−1

gn−1 (xn−1) zn−1. (48)

Construct the following function

V ξ
n =

1
2
ξ̃ T
n Γ −1

n ξ̃n (49)

here Γ T
n = Γn > 0 is the design parameter.

Based on (17) and (32), it has

n = Vn−1 + V z
n + V ξ

n . (50)

The time derivative of Vn−1 along with step n − 1 is

˙n−1 ≤

n−1∑
m=1

ξ̃ T
m

(
−

zmk2cm (t)
k2cm (t) − x2m

Sm (Zm) + Γ −1
m

˙̂
ξm

)
+

1
2

n−1∑
m=1

ε2
m

−

n−1∑
m=1

κmz2mk
2
cm (t)

k2cm (t) − x2m
+

zn−1k2cn−1
(t)

k2cn−1
(t) − x2n−1

gn−1 (xn−1) zn. (51)

Then, the time derivative of Vn becomes

V̇n ≤

n∑
m=1

ξ̃ T
m

(
−

zmk2cm (t)
k2cm (t) − x2m

Sm (Zm) + Γ −1
m

˙̂
ξm

)

−

n∑
m=1

κmz2mk
2
cm (t)

k2cm (t) − x2m
+

1
2

n∑
m=1

ε2
m. (52)

Adaptive laws are established as

˙̂
m = Γm

(
zmk2cm (t)

k2cm (t) − x2m
Sm (Zm) − τmξ̂m

)
,m = 1, . . . , n (53)

here τ is a positive constant.
m

6

By applying the Young’s inequality, it has

T
m

(
−zmk2cm (t)
k2cm (t) − x2m

Sm (Zm) + Γ −1
m

˙̂
ξm

)
= −τmξ̃ T

mξ̂m

≤
−τm

̃ξm2
2

+
τm
ξ ∗

m

2
2

. (54)

Based on the above steps, it has the following inequality

˙ z
n ≤ −

1
2

n∑
m=1

τm
̃ξm2 +

1
2

n∑
m=1

τm
ξ ∗

m

2
−

n∑
m=1

κmz2mk
2
cm (t)

k2cm (t) − x2m
+

1
2

n∑
m=1

ε2
m. (55)

emma 1 (Tee & Ge, 2012). For |xi| < kci (t) , i = 1, . . . , n, ∀t ≥ 0,
z
i satisfies the inequality V z

i ≤
z2i k

2
ci

(t)

k2ci (t)−x2i
.

Theorem 1. Consider the nonlinear system (1) under Assump-
tions 1–3, with the actual controller (46) and the adaptive law
(53), and if the initial conditions satisfy |xi (0)| < kci (0), then the
following properties can be guaranteed that

(1) The error signals zi (t) , i = 1, . . . , n remain in the compact
sets;

(2) The states are never violated their constraint bounds, i.e., |xi|
< kci (t), ∀t > 0;

(3) All the closed-loop signals are bounded.

Proof. According to Vi = Vi−1 + V z
i + V ξ

i , i = 1, . . . , n, one has

Vn =

n∑
m=1

∫ zm

0

δk2cm (t)

k2cm (t) − (δ + αm−1)
2 dδ +

1
2

n∑
m=1

ξ̃ T
mΓ −1

m ξ̃m

where V0 = 0 and α0 = yd. With Lemma 1, we have

Vn ≤

n∑
m=1

k2cm (t) z2m
k2cm (t) − x2m

+
1
2

n∑
m=1

ξ̃ T
mΓ −1

m ξ̃m.

Define An = min{κm, τmλmin (Γm) ,m = 1, . . . , n} and Bn =
1
2

∑n
m=1 τm

ξ ∗
m

2 +
1
2

∑n
m=1 ε2

m. Therefore, the following inequal-
ity holds

V̇n ≤ −AnVn + Bn. (56)

Multiplying both sides of (56) by eAnt , one has d
(
eAntVn

)
/dt ≤

eAntBn. Then, integrating it over [0, t], one gets

eAntVn

⏐⏐⏐⏐t0 ≤
Bn

An
eAnt

⏐⏐⏐⏐t0
Further, it yields

Vn (t) ≤ e−Ant (Vn (0) − Bn/An) + Bn/An

≤ Vn (0) e−Ant + Bn/An. (57)

Then, according to (4), (22) and (38), we can obtain z2m ≤

2Vn (t) ≤ 2e−Ant (Vn (0) − Bn/An) + 2Bn/An ≤2Bn/An+2Vn (0)
e−Ant and

̃ξm2 ≤ 2λmax (Γm) (Bn/An +Vn (0) e−Ant
)
. Further, it

has̃ξm ≤

√
2λmax (Γm)

(
Vn (0) e−Ant + Bn/An

)
|zm| ≤

√
2Vn (0) e−Ant + 2Bn/An

Therefore, zm and ξ̃m are bounded, and ξ̂m is also bounded. At
he same time, we have |z1| ≤ Θ1 where Θ1 =√
2e−Ant V 0 − B /A + 2B /A .
( n ( ) n n) n n
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If Vn (0) = Bn/An, it has |z1| ≤ Θ1 =
√
2Bn/An. If Vn (0) ̸=

n/An, it can follow that given any Θ1 >
√
2Bn/An, there exists T

uch that for any t > T , it has |z1| ≤ Θ1. Thus, z1 can be arbitrarily
mall by choosing the appropriate design parameters.
Using the contradiction to prove that the full state constraints

re not violated. First, assume that there exist some t = T and
∈ {1, . . . , n} such that |xm (T )| = kcm (T ). Then, according

o (57), we know that Vn|t=T is bounded, which implies that∑n
m=1

∫ zm(T )

0
δk2cm (T )

k2cm (T )−(δ+αm−1)
2 dδ and are

∫ zm(T )

0
δk2cm (T )

k2cm (T )−(δ+αm−1)
2 dδ,

m = 1, . . . , n also bounded.
In addition, integrating

∫ zm(T )

0
δk2cm (T )

k2cm (T )−(δ+αm−1)
2 dδ by parts, we

obtain∫ zm(T )

0

δk2cm (T )

k2cm (T ) − (δ + αm−1)
2 dδ

= kcm (T )

(
δ tanh−1 δ + αm−1

kcm (T )

)⏐⏐⏐⏐zm
0

− kcm (T )

∫ zm

0
tanh−1 δ + αm−1

kcm (T )
dδ

= kcm (T ) αm−1 (T ) ln
(1 + αm−1 (T )) (1 − xm (T ))

(1 − αm−1 (T )) (1 + xm (T ))

+
k2cm (T )

2
ln

(
k2cm (T ) − α2

m−1 (T )
)(

k2cm (T ) − x2m (T )
)

hen |xm (T )| = kcm (T ),
∫ zm(T )

0
δk2cm (T )

k2cm (T )−(δ+αm−1)
2 dδ, m = 1, . . . , n

become unbounded and contradict with their boundedness. So
|xm (T )| ̸= kcm (T ) and for the given initial state xm (0) ∈{
xm ∈ R| |xm| < kcm (T )

}
, it is clear that |xm (T )| < kcm (T ).

By Assumptions 1 and 3, |yd (t)| ≤ Y0 (t) ≤ K 0
c1 , |ẏd (t)| <

Y1 and k̇c1 (t) ≤ K 1
c1 , ∀t ≥ 0 can be obtained, so the virtual

controller α1

(
x1, yd, ẏd, kc1 , k̇c1 , ξ̂1

)
must be bounded. Similarly,

the boundedness of the virtual controllers αm−1,m = 3, . . . , n
and actual controller u can be proved. In summary, all the closed-
loop signals zm, ξ̂m, xm and u are bounded. This completes the
proof of Theorem 1.

4. Simulation example

In order to verify the effectiveness of the proposed scheme,
the nonlinear systems are considered as follows⎧⎨⎩ẋ1 = 0.5 sin x21 + x2
ẋ2 = 0.1 (x1 + x2)2 + (0.2 + cos(2.4x1x2)) u
y = x1

where z1 = x1 − yd and z2 = x2 − α1.
The actual controller is given as follows

u =
1

g2 (x2)

(
− (κ2 + κ2 (t)) z2 − ξ̂ T

2 S2 (Z2)

−
1
2

z2k2c2 (t)

k2c2 (t) − x22
−

k2c1 (t)
(
k2c2 (t) − x22

)
k2c2 (t)

(
k2c1 (t) − x21

)g1 (x1) z1

)

where Z2 =

[
x1, x2, yd, ẏd, ÿd, kc1 , k̇c1 , k̈c1 , kc2 , k̇c2 , ξ̂1

]T
.

The desired trajectory is described by yd (t) = 0.5 sin (2t) and
the time-varying state constraints are defined as |x1| ≤ kc1 (t) =

0.63+0.1 sin (0.9t) and |x2| ≤ kc2 (t) = 0.1 sin (1.5t)+1.2. Since
y = x1, for a tracking control, it always expect that x1 tracks
the desired trajectory as soon as possible. This will be verified
7

Fig. 1. The trajectories of x1 = y and yd .

Fig. 2. The trajectory of x2 .

y Fig. 1, which shows that |x1| ≤ 0.5. Thus, one gets |2.4x1x2|
2.4 × 0.5 × 1.3 = 1.56 < π/2. It deduces that cos 2.4x1x2

> 0. This means that the control gain 0.2+cos 2.4x1x2 is positive,
satisfying Assumption 2.

The virtual controller is given as follows

α1 =
1

g1 (x1)

(
− (κ1 + κ1 (t)) z1 − ξ̂ T

1 S1 (Z1) −
1
2

z1k2c1 (t)

k2c1 (t) − x21

)
here Z1 =

[
x1, yd, ẏd, kc1 , k̇c1

]T
. The adaptive laws are designed

s

˙̂
m = Γm

(
zmk2cm (t)

k2cm (t) − x2m
Sm (Zm) − τmξ̂m

)
,m = 1, 2.

In this paper, the design parameters are chosen as κ1 = 25,
κ2 = 20, β1 = 0.1, β2 = 0.2, Γ1 = diag ([0.4, . . . , 0.4])20×20,
Γ2 = diag ([0.5, . . . , 0.5])20×20, τ1 = 0.8 and τ2 = 0.3.

The simulation results are shown in Figs. 1–4. Fig. 1 shows the
trajectories of the output and tracking signal. It can be seen from
Fig. 1 that the proposed scheme has a good tracking performance
under the time-varying state constraints. Figs. 1 and 2 illustrate
that the time-varying constraint bounds of the state variables are
not violated. Fig. 3 illustrates the error trajectory. The adaptation
laws and the actual controller are diagrammed in Fig. 4. At the
same time, the boundedness of all the closed-loop signals can be
shown in Figs. 1–4.
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Fig. 3. The phase portrait of z1 and z2 .

Fig. 4. The trajectories of
ξ̂1, ξ̂2 and u.

5. Conclusion

In this paper, an adaptive NN control scheme for a class of
strict feedback systems with time-varying full state constraints
has been proposed based on IBLFs. By utilizing the advantages
of the IBLFs solving the constraints problems, the controller has
been designed with the help of the backstepping design algo-
rithm. Then the stability of the closed-loop system can be ver-
ified by using the Lyapunov theorem. Finally, the simulation
results have showed that the time-varying full state constraints
are not violated, all the closed-loop signals are bounded, and a
good tracking performance is achieved. In addition, IBLFs can be
applied to deal with uncertain stochastic systems or switched
systems with time-varying constraints as a further research di-
rection.
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