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Abstract

This paper develops a novel adaptive optimal control design method with full-state constraints
and input saturation in the presence of external disturbance. First, to consider the full-state con-
straints, a barrier function is developed for system transformation. Moreover, it is shown that,
with the barrier-function-based system transformation, the stabilization of the transformed sys-
tem is equivalent to the original constrained control problem. Second, the disturbance attenuation
problem is formulated within the zero-sum differential games framework. To determine the opti-
mal control and the worst-case disturbance, a novel barrier-actor-critic algorithm is presented for
adaptive optimal learning while guaranteeing the full-state constraints and input saturation. It is
proven that the closed-loop signals remain bounded during the online learning phase. Finally, sim-
ulation studies are conducted to demonstrate the effectiveness of the presented barrier-actor-critic
learning algorithm.
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1 1. Introduction

2 Nonlinear dynamics commonly exists in engineering applications, such as input saturation
s [1, 2, 3] and dead-zone [4, 5], output constraints [6, 7], friction dynamics [8, 9], backlash-like
« Thysteresis [10, 11, 12], unmodeled dynamics [13], etc. Modern control theory, such as the Hy,
s control method [14, 15] and adaptive control method [16, 17], has received considerable attention
s to compensate for the system uncertainty and attenuate the effect of external disturbance for
7 nonlinear systems. In addition to the closed-loop stability, practical constraints captured by user-
s defined performance is desired to be guaranteed. However, classical H,, control and adaptive
o control methods cannot guarantee the user-defined performance. In this paper, a novel adaptive
10 optimal controller design is developed to stabilize the nonlinear systems while considering both
1 the prescribed performance on full-state and input saturation simultaneously.

12 For the nonlinear systems with imperfect dynamical behavior, such as exogenous disturbance
13 and system uncertainties, the adaptive control method is widely used for feedback design to com-
1 pensate the system uncertainty and attenuate exogenous disturbances [16, 17]. However, classical
15 adaptive control design methods only consider the closed-loop stability. In addition to the closed-
16 loop stability, practical constraints are important for controller design. For example, in the control
v of Euler-Lagrange systems, the link and joint velocity cannot be arbitrarily large and has to be
18 remained in the bounded region due to limitation imposed by mechanical characteristics. In many
19 applications, the constraints are usually captured by the user-defined performance. Many efforts
20 have been made to address this issue. Compared to classical quadratic Lyapunov function design,
2 Lyapunov analysis is combined with barrier function design [18] to consider the constraints on
» output, which is essentially partial-state constraints [19, 20]. Since then, the barrier Lyapunov
»  function design is extended to consider full-state constraints for stochastic nonlinear systems [21],
2 pure-feedback systems [22], Euler-Lagrange systems [23], time-delay systems [24], to name a few.
»  Another type of constrained controller design adopts a prescribed transient performance to develop
% a system transformation [25]. In the prescribed performance adaptive control, the prescribed tran-
27 sient performance is captured by a user-defined performance bound, which specifies the safety
s region for the tracking error. Recently, the prescribed performance adaptive control method is
» extended to deal with output feedback control problem [26], consensus problem of multi-agent
s systems [27], nonlinear systems with input dead-zone [28], controller design for flexible joint robots
a1 [29], synchronization problem of teleoperation robotics [30], and so on. To relax the requirement
» that both the reference signal along with its derivatives and every element of the state variable

;3 are available for feedback design, Arabia and Yucelen developed a set-theoretic model reference
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1 adaptive control framework [31]. In the set-theoretic model reference adaptive control framework,
35 the norm of the gap between the system state and the reference signal is guaranteed to be within
3 a user-defined constant bound. However, in the existing adaptive controller design methods, only
s closed-loop stability and the prescribed user-defined performance constraints is considered with-
3 out optimality discussion. In this paper, a novel adaptive constrained controller is presented with
3 optimality discussions.

%0 The centerpiece of optimal control theory is the Hamilton-Jacobi-Bellman/ Hamilton-Jacobi-
o Isaacs (HJB/HJI) equations for nonlinear systems, which is necessary and sufficient for the opti-
» mality condition [32]. However, the HJ equations are difficult to solve due to the inherent non-
«» linearity. Therefore, adaptive dynamic programming (ADP) has been developed to approximate
w the nonlinear HJ equations in an online fashion, where an intelligent agent seeks optimal decisions
s to maximize the lone-term cumulative reward [33]. Variants of ADP has been applied widely in
w6 control applications to solve the optimal control problems, including iterative ADP algorithms in
«  discrete-time [34] and continuous-time [35] for optimal regulation problems, model-free learning
s algorithm for Hy, control problem [36], online actor-critic learning algorithm [37] for optimal track-
» ing control problems [38, 39], robust stabilization problem [40], guaranteed cost control problem
so [41, 42], consensus control problem of multi-agent systems [43, 44], event-triggered control [45], to
s name a few. Besides, ADP has been successfully applied to differential games [46]. In addition,
52 ADP extensions have been made to deal with constraints of input saturation in [47] and constraints
53 on the state in [48]. However; these existing results do not consider the case with external distur-
s bance, input saturation, and full-state constraints. In this paper, all these issues are considered in
s a comprehensive framework.

56 The contributions of this paper are threefold. First, in this paper, both the full-state con-
sz straints and input saturation are considered simultaneously for the controller design problem. This
ss  is achieved by introducing a barrier function based system transformation. It is also discussed the-
s oretically that the transform equivalence can be guaranteed in the sense that the stabilization of
o the transformed system ensures the constraints of the original system. Second, the disturbance
&1 attenuation is achieved within the framework of zero-sum differential games. A novel barrier-actor-
e critic algorithm is developed for adaptive optimal learning with the full-state constraints and input
6 saturation. Finally, to obviate the requirement of persistent excitation condition, the experience
& replay technique is employed to utilize the history and current date concurrently.

65 The remainder of this paper is organized as follows. In Section 2, the problem of constrained

e control design with full-state constraints and input saturation is given. Section 3 presents the
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o7 barrier-function-based system transformation to deal with full-state constraints. In Section 4, a
e novel actor-critic-barrier algorithm is developed for the online learning of the adaptive optimal

e constrained controller.

o 2. Preliminaries

n  2.1. Notations and Definitions

7 The following standard notation will be adopted.

R 2 the set of positive real numbers.
R"™ & j-dimensional vector space.
1 2 Identity matrix with proper dimension.
1 2 vector with all entries being 1.
h [M] 2 \/tr (MM, the matrix Frobenius norm of matrix M.
[v] 2 the euclidean norm of vector v.
Z 2 the set of integers.
Amin (4) 2 the minimum eigenvalue of matrix A.

7# Definition 1. (Zero-State Observality) [15] The system (1) with the measured output y = h(x)
s is zero-state observable if y(t) = 0 for V# = 0 implies that x(¢) = 0 for V¢ > 0.

7 Definition 2. (Persistent Excitation Condition) [16] The vector signal z(-) € R™ is said to be
7 persistently excited (PE) on the interval [Ti,7T5] if there exists positive constants v; > 0 and

1 2 > 0 such that, for all £ € [T, T3],
T
nil< f 2 (1) 2T (1) dr < Yol
t
7 Definition 3. (Uniformly Ultimately Bounded Stability) [16] Consider the nonlinear system
= F(x,t), VteR" z(ty) = (1)

s with z(¢t) € R™ is the system state and ¢ is the initial condition. The equilibrium point z. of
s system (1) is said to be uniformly ultimately bounded (UUB) if there existes a compact set Q < R"
2 so that for all zy < Q, there exists a bound B and a time T'(B, z¢) such that |z (¢) — zo|| < B for

s allt>=tg+T.

« Lemma 1. [{9] For Yw € R, there exists a bounded W satisfying |0| < Ind, such that

—2In (1 + e ") = 2w — 2wsgn (w) + B,
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s Lemma 2. [50] The following inequality holds for any a > 0 and y € R

0 < |y| — ytanh (3) < ka (2)
a
s where kK = 0.2785.
s 2.2. Problem Statement
8 In this paper, we consider the following continuous-time affine nonlinear dynamical systems
ill = X2
.’j?z = I3
3)
Z.'n—l = Tn
Tn = f@)+g@)u+k(z)d
T
s where x = [ T1 o Tn ] € R™ is the system state; u(-) : R™ — R™! is the control policy,

w d(-) : R™ — R™2 is the external disturbance, f(-),g(-),k(-) : R® — R are Lipschitz continuous
o nonlinear functions. The constrained Hy, control problem for system (3) with full-state constraints

oo and input saturation can be formulated as follows.

s Problem 1. Design the proper performance output L (x,u), where L (-,-) is a positive definite
o function of its argument, and the optimal policy u* such that, with the saturation constraints on

os the control input as
[u; | <A Vi=1,...,my (4)
T
6 where u = [ UL v Um ] , and the full-state constraints as

T € (al,Al)

T, € (an, 4y)

o for Vd € Lo, system (3) have Lo-gain less than or equal to 7, i.e.,

S:o L(z(1),u(r))dr 5 6
[l ®)
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continuous inout constraint -
= = discontinuous inout constraint s

Constrained Input
T

Control Input

Figure 1: Evolution of the two-dimensional phase plot of the state trajectories [#1(t) z2(t)]. The black box denotes

the safe region.

Remark 1. To deal with the input constraints (4), the saturation function can be applied, which
is defined as [51, 52, 53, 54]
Uis Zf (773 < )\

I (u) =
sign (ug), if w; > A

Then, the system dynamics can be denoted as

i‘i ) Ii+1,i = 1,2,...,’”— 1

i = (@) +g(@)T () + k(2)d

¢ Note that the saturation function I'(+) is a discontinuous function, which leads to discontinuity in
9 the system dynamics. In this paper, we consider continuous constraints on the input signal, which
wo is shown in Figure 1 and widely used in the literature, such as [33, 47, 55]. As shown later, the
w1 nonquadratic penalty function on the control input signal (17) is presented, which guarantees the
102 boundedness of the optimal control input (23).

103 As shown by (4) — (6), the objective of Problem 1 can be divided into three parts, i.e., distur-

w4 bance attenuation, input saturation and full-state constraints. For the full-state constraints, we

105 introduce the following barrier function.

s Definition 4. (Barrier Function) The function B(-) : R — R defined on (a, A) is referred to as

w7 barrier function if

éa—z
aA—z

B(za,A) = ln( ),vZe (a, A) (7)
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108 where a¢ and A are two constants satisfying a < A. Moreover, the barrier function is invertible on

0o interval (a, 4), i.e.,

B~ (yia,A) = ad— =5 ",y e R (8)
ae2 — Ae” 2
1o with the derivative
dB~ ' (y;a,A) Aa? — aA? )
dy " a2e¥ —2aA + A2

w Remark 2. To guarantee that the full-state constraints is not violated for Problem 1, the barrier

n2  function in Definition 4 has the following desired properties

us 1) The barrier function B (-) takes finite value when the its arguments are within the user-defined
114 region (a, A).

us  2) The barrier function B (-) approach to infinity as the state approach the boundary of the
116 prescribed region (a, A), i.e.,

lirn+ B (z;a,A) = —0

zZ—a

lirgi B (z;a,4) = +0
ur  3) The barrier function B (-) vanishes at the equilibrium of the system (3), i.e.,

B(0;a,A) =0,Ya < A

us 3. Barrier-Function-Based Zero-Sum Game

119 In this section, the system (3) with full-state constraints is transformed into another system
1o without state constraints by using the barrier function in Definition 4. Consider the barrier-

11 function-based state transformation as

s; = B (zi; a4, Ai),

(10)
XTq = B71 (slaazaA’L) ai = la ,n
122 Then, by using the chain rule, one has

dr;  dz; @
dt  ds; dt
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123 From (11), the dynamics of the transformed state s can be written as

Tit1 (8i41)
dB~'(y;ai,Ai)
dy

5 =

Y=si
Sit1 Sit1

air1 izt (6 T —e 2 ) A2e=5 — 24, A; + a2

Sit1 —Sit1 2 12
a;1e72 —Aje7 2 Ala’i a; A;

= Fi(siasi+1)7 i=1,...,n—1
f(z) +g(z)u+ k(z)d

dB~!(ysan,Arn)
dy

Sp =

= [f @) +g(@)u+k(z)d]

AZe=sn —2a, A, + aZe®n
ApaZ —a, A2

= F,(8)+gn(s)u+ky(s)d (12)
12e with
AZe=sn — 2a, A, + aZe®n X
ue) = gt B e B e )
A2e75n —2a, A, + alen .
gnls) = ywp—— (| Br ) B (s.) |)
A2e75n — 2a, A, a2en 3
kn(s) = A2 apA2 k ([ B (s1) B, (sn) ]) (13)
T
125 Note that system (12) with the state s = [ S1 -+ Sp ] can be expressed in a compact form
126 aS
s=F(s)+G(s)u+ K (s)d (14)
0 0
Fy (s1,52) _
7 with F'(s) = : ,G(s) = ' , K (s) =
0 0
F, (s)
128 The following assumptions are imposed on system (14), which is commonly used for nonlinear

e systems controller design [47, 55].

10 Assumption 1. The system dynamics (14) is assumed to have the following properties.

wm 1) F(s) is Lipschitz with F'(0) = 0, and there exists a constant by such that, for s € Q, |F(s)| <
132 by|ls| where Q is a compact set containing the origin.
13 2) G(s) and K(s) are bounded on {2, i.e., there exists a constant by and by such that |G(s)| < b,

134 and |K(s)|| < b, respectively.
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135 3) The system (3) is controllable over the compact set €.

136 In the following, to consider the input saturation and disturbance attenuation in Problem 1,
1 the framework of the zero-sum differential game is introduced. For system (14) with the control
s input u (¢) and the disturbance policy d (t), consider the following cost function
a0
V (so;u,d) = J; U (s,u,d)dt (15)
0

s where U (s,u,d) is the reward function with

U (s,u,d) L (z,u) = 7*[d|*,

L(z,u) = Q(s)+0(u) —*|dI? (16)
1o where Q(s) being a positive definite monotonically increasing function and © (u) being a positive

w1 definite integrand function. To deal with input saturation, the nonquadratic penalty function is

142 used,

© (u)

2Lu [)\tanh_l (%)] Rdv

2 (tanh ™" (u/)\))TRu +MRIn (1 —u?/\?) (17)

us  where A\ > 0 is the saturation limit for the control input, R = diag (1, ...,7,,) and R = [r1,...,7] €

w RY™ with r; > 0 for i = 1,...,m is the weight on control effort for each input.

1us  Problem 2. For system (14) with the control policy w and disturbance policy d, find the Nash

us equilibrium (u*, d*) of the zero-sum game with the constraints of input saturation (4).

147 Define the Hamiltonian for the cost (15) with the control policy u and disturbance policy d as
av\"
H (u,d,V) = A [F(s)+G(s)u+ K (s)d] + U (s,u,d) (18)

s Then, differential equivalent of the cost (15) can be expressed in terms of the Hamiltonian (18) as

ov
H d,— ] =0 19
(st %) (19)
1o which is referred to as the Bellman equation.
150 Based on the game theory [56], the disturbance attenuation problem is equivalent to solving
11 the following two-player zero-sum game,
V*(s) = min mng (s;u,d) (20)
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12 This two-player zero-sum game has a unique solution if the Nash condition holds
V*(s) = min mng (s;u,d) = mc?xminV (s;u,d) (21)
u u

155 According to [32], the stationary condition for optimality is

oH (u,d,V*)  0H (u,d,V*)
Em =0, 2 =0 (22)

15« Then, one can obtain the optimal control input u* and the worst-case disturbance d*, respectively,

u*(s) = —Atanh <21)\RlGT(s) 8Va*s(s)) (23)
() = GKT ) T (24)

156 where (u*,d*) is termed as Nash equilibrium for zero-sum game. Inserting the optimal control

157 policy and disturbance term (23) in (17) results in [55]

* T
O (u*) = A[Was(s)] G (s)tanh (D*)+ A?R1In[1 — tanh* (D*)] (25)

s where D* = (1/2)) R—lG(s)T% . Inserting the Nash equilibrium (u*, d*) into (19) and using

159 (25), the Bellman equation becomes the Hamilton-Jacobi-Isaacs (HJI) equation

(g T B
0 = Q(s)—l—[avas()] F(s)+ A*RIn|[1 — tanh® (D*)]

# [ava*s(S) ] K@K (S)T ava*s(S) (26)

1o The following assumption on the cost function (15), which has been widely used in [14, 15], is

161 employed in this paper.
162 Assumption 2. The performance functional (15) satisfies zero-state observability.
163 The following lemma discusses the equivalence between Problems 1 and 2

e Lemma 3. Suppose that the pair of policy {u*(-),d*(-)} solve Problem 2 for system (14). Then,
165 the optimal control policy {u*(-)} also solves Problem 1 provided that the initial state xo of system
w6 (3) satisfies the constraints in (5).

167 Under Assumptions 1 and 2, suppose that u* = {u*,d*} solves Problem 2 for system (14) with
s performance (15) and reward (16), then the following hold:

169 1) The closed-loop system satisfies the constraints (5) provided that the initial state xo of system

170 (3) is within the region (a;, A;), Yi=1,...,n.

10
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I 2) The disturbance attenuation condition (6) can be guaranteed if the performance output L (z,w)

172 1s designed as
L (z,u) = Q(s) + O(u).

Proof. 1) Based on Assumptions 1 and 2, the existence of a positive definite and continuously
differentiable optimal value function V*(s) can be guaranteed. From (18), one can obtain that
VE(t) <0, ie.,

V*(s(t)) < V*(s(0)),Vt = 0.

Then, V* (s (t)) remains bounded if V* (s(0)) is bounded, which is guaranteed by the condition
that the initial condition x(0) of system (3) satisfies the constraints in (5). Finally, from the

discussions in Remark 2, one can infer that
ZT; (t) € (ai,Ai), i = 1,2,"' ,n.

s Therefore, given p* = {u¥, u3}, the constraints of Problem 1 are satisfied.

i 2) Now consider the barrier-function-based state transformation described by (10). Then, each
15 element of the state s = [ by (z1) - b (xn) ]T is finite given that x satisfies the constraints
s given in (5). Note that the Nash equilibrium (u*, d*) and the optimal value function V* satisfies the
wr Bellman equation (19), i.e., H (s,u*, d*, ‘9:3/—:) = 0. Then, considering (16) and the performance

s output L (z,u), one has,

2
H<s,u*,d*,av*> 0= S le (I dr <2

_ <~
0s §, ld (7)) *dr

w9 provided that L (z,u) = Q(s) + ©(u). This completes the proof. [

w0 Remark 3. As shown in (25), the optimal constrained control and disturbance solution u*(s) and
w1 d*(s) depend on solving the HJI equation (26) for the optimal value function V*(s). However,
12 the HJI equation (26) is a nonlinear partial differential and extremely difficult to solve. In the
113 following, an online algorithm is presented to find an approximate solution to the HJI equation

o (26).

15 4. Online Actor-Critic-Barrier Learning

186 As shown in Lemma 3, with the barrier-function-based system transformation (10), the equiv-
17 alence between Problems 1 and 2 can be guaranteed. In this section, we present a novel barrier-

188 actor-critic online algorithm to learn the optimal control policy and the worst disturbance with

11
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€c (ti' t) History
/‘ Stack

/! 1

#(t) Critic Error

/
./ A A A
W, ,
Y, 7 ,Qritic
/) ) 4 d(t)
7
/! /! o u(®)
/ /
7 d(t) 7 u(t)
Distwrbance [— 7 Actor > s(t)
/' vy I, x d(t) System (14)
’ + >

u ; "

Barrier-function-based
Transformation (10)

) \x(t)t

d(t) : System (3)

'\

Figure 2: The overall barrier-actor-critic algorithm for disturbance attenuation with input saturation and full-state
constraints. 1) Based on the barrier function defined in Definition 4, a novel system transformation is applied to
original system (3) to obtain the transformed system (14). 2) The barrier-function-based system transformation
is then combined with the actor-critic online algorithm to learn the optimal control policy u* and worst-case
disturbance d*. 3) To obviate the requirement of PE condition for online critic learning, the experience replay

technique is employed to concurrently utilize the online and history data.

189 respect to the performance of Problem 2. First, value function approximation for the critic learning
100 is represented by using neural networks. Online critic learning is designed to approximate the HJI
w1 equation (26). In addition, two actor NNs are designed to learn the optimal control policy (23)

12 and the worst-case disturbance (24), respectively.

w3 4.1. Value Function Approzimation

194 Using the NN approximation theorem, there exists a single-layer NN such that the value func-

105 tion V(s) and its gradient VV (s) can be uniformly approximated with a critic NN as the number

12
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106 of basis sets increases, within a compact set {2 € R™ that contains the origin, as

VE(s) = (WH)To(s) +e(s) (27)

VV* (s) [V (s)]"W* + Ve (s) (28)

w7 where W* € RV is an ideal weight vector for the best N-dimensional value function approximation,
ws ¢ () : R® — RY is the NN basis function, V = 0/0s, € (s) and Ve (s) are the NN approximation
1o residual. For the value function approximation (27) and (28), the following standard assumption

20 is adopted in this paper.

21 Assumption 3. The value function approximation as shown in (27) and (28) are assumed to have

22 the following properties.

203 1) The ideal weight W is bounded by a constant, i.e., |[W*|| < by;

20 2) The value function approximation residual € and Ve satisfies | (s)| < b. and |Ve (s)|| < bye;
205 3) The NN basis function ¢ (s) and its gradient V¢ (s) satisfies ¢ (s)| < by and |V (s)| < bag
206 for Vs € Q.

207 For the optimal control policy u*(s) and the optimal disturbance inputs d*(s), the Bellman
208 equation (19) approximation error using the value function approximation (27) can be expressed

200 A8
E=U(s,u*,d*)+ (W o (29)
20 where o is a N-dimensional vector signal defined as
o=Vo(s)[F(s)+G(s)u* + K (s)d¥] (30)

au Considering the value gradient approximation (28), one can obtain that the Bellman residual

a2 results from the value gradient approximation error Ve(s), i.e.,
¢ =—[Ve(®)] [F(s) + G (s)u* + K (s)d*] (31)

23 Similarly, with the value function approximation (27), the HJI equation (26) can be approximated

2. with a residual expressed as

T
Il

Q(s) + (W) "0 + O (—Atanh (Dy)) — #(W*)TDdW*

Q(s)+ (W*)TV¢ (s) F (s) + A*RIn (1 — tanh? (D;)) + #(W*)TDdW*
(32)

13
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25 with
DI = L RTGT(s) [V (s)] W
Dy = Vo(s)K (s)K" (s)[Vo(s)]" (33)

zne  Remark 4. From Assumptions 1 and 3, the policy representations in (23) and (24), the Bellman
a7 equation approximation residual £ is bounded in the sense that there exists a constant bg such
zs  that |[€]| < be. Similarly, the HJI approximation residual ¢ using the ideal N-dimensional value

n9  function approximation (27) and (28) is bounded as ¢ < b¢.

20 4.2. Critic Learning

21 The ideal weight, W in (27), provides the best approximate to the optimal value function V*(s)
22 on the compact set 2 and is unknown. Therefore, the estimation of W is implemented by the critic

23 network with the approximations of the value function and value gradient
Vi(s) = WS duls) (34)
YV (s) = [Voel(s)] We (35)

2¢  Then, for a given policy u (-), the residual of Bellman equation approximation using the identifier

s NN and the critic NN, can be determined as

U(s (), u(t),dt) + WEo(t)
= (Ve) [F(s(t) + G (s () u(t)+ K (s(t)d (t)] (36)

e (t)

26 Define the critic weight approximation error as
W, =W* - W, (37)

27 Then, from (29), the relation between Bellman residual e. and the Bellman equation approximation

2 error ¢ can be written in terms of the critic weight error W, as
ec(t) = &)~ WS ()a(t) (38)
ec(tit) = &(t:) —Wl(Ho(t) (39)

20 Then e, — & as W, — W*. The policy evaluation for an admissible control policy u(-) can be

20 formulated as adapting the critic weight W, to minimize the objective function

2 k 2y 2
Ec=1< fec @) §h_ [0 0] ) w)

2\(1+0"(No(t)* & (L+0T(t)o(t:)

14
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an Using the chain rule yields adaptive critic online learning as

: O,
We = —oeqnr

o Tt Zk: o (t:) ee (ti, 1)
[L+oT@Wo @] S +0T ()0 ()]
] o(t

)
]
Com[e e W]k o) [e) o) We 1)

[1+0T ()0 (1) 2 [+t t)e )

2 where a. > 0 is the critic learning rate.

(41)

z3 Condition 1. The recorded data matrix [ o(ty) - o(ty) ] is full column rank.

2¢ Theorem 1. Let u be any given admissible control policy. Then, under Condition 1, the critic

s weight approzimation error W, in (37) is UUB with the adaptive critic learning (41).

26 Proof. Based on (37) and (41), the dynamics of W, can be expressed as

W.(t) = —NWe(t)+ Ny (42)
237 where
k T
t)o t
N, = o (t) 2+2 o(ti)o(t:) (43)
[1+o" t) )] S+o" (o)
k
o (t; t;
1+0T t) t)] Sl+o"t)o )]
28 Note the fact that H I +ZTy < 'Land H Ty < 1 for arbitrary vector signal y. Then, from Remark

20 4, Ny in (42) satisfies [ Na| < S (k + 1) be. Consider the following Lyapunov function:

V. =

S W@ (1) (15)

20 By differentiating (45) along the critic weight error dynamics (42), one has

. T a(t)o"(t) 7 5T
V, — — W () ({1 P A) W, () + W ()N, (46)
a1 with
k t
A=), ) (47)

izl 1+0T(t) (t:))”
which is guaranteed by Condition 1. Therefore, V. is negative if

Qe (k‘ + 1) bg

. 0] > 2 in (M)

15
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Then, the critic weight error W, converges to the residual set

W ()] > S0

Q. = {Wc

a2 Therefore, the critic weight error W, is UUB. This completes the proof. [

23 Remark 5. In contrast to the stability analysis as in [37, 55] where the PE condition on the signal
2 18 required for the signal o(¢), in this paper, only Condition 1 is required to be satisfied for the
25 signal o(t;) in the history stack. Note that Condition 1 is weaker than the traditional PE condition

xs  and is easier to be checked for online implementation.

w1 4.8. Actor and Disturbance Learning

248 As shown in (23) and (24), the optimal control policy and disturbance depend on the optimal

*
29 value gradient aVT(S). Therefore, consider the value gradient approximation with the critic weight

» W, in (35), the control and disturbance policies can be determined using the critic weight as

U (s) = —MAtanh (DC> (48)
D, = %R‘IGT(V@TWC (49)
1) = 5KT(V0) W, (50)

1 However, this policy improvement does not guarantee the stability of the closed-loop system [36,
22 37, 47, 55]. Therefore, to ensure the closed-loop stability, the policy applied to the system is

3 implemented by alternative approximators using actor and disturbance network as

Ug (8) = —)\tanh(bu) (51)
Dy = %R‘IGT(V@TWU (52)
do (s) = #KT(ng)TWd (53)

x  where W, is the actor network weight and W, is the disturbance network weight. Define the weight

x5 estimation errors for the actor and the disturbance as,
Wy =W*—W,, W;=W*"-W, (54)
6 The actor network is designed to minimize the objective function
1

E, = ieEReu (55)

16
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27 where
€y = Ug — Ue = A[tanh (D.) — tanh (D,)] (56)

s denotes the difference between the actor u, (51) applied to the system and the control input
20 uc (48). Applying the actor (51) and disturbance (53) to the system (14) yields the closed-loop

20 dynamics

$(t)

o4 (t)
F (s) — G (s) A tanh ([7“) 4L

32K ) K (s) [V (s)]" Wa (57)

261 Define

o - [ S

(1 + UTUCL) =1 1 + 0 i0ai

k
2 = [(1-|—UTUQ2 21 1+a am)zl

i=
k TqiT;
53 _ Z ai’li

(1+UT0a) 1+0’ Um)

1

k
Qe T4 Oai
"o l( a ]

1 + O'EUQ) =1 (1 + Ug;aai)

tanh (Dpu> — tanh (ﬁu)]
tanh <Zz):) — tanh (%)] +ey (58)

22 where 04, = 04(t;) and m; = 7(¢;). Then, the stability and convergence of all the signals in

V(t) = VeGA

7 (t) WTVeGA

%3 the closed-loop system with the barrier-actor-disturbance learning algorithm is discussed in the

x4 following theorem.

s  Theorem 2. Consider the dynamical system (14) with the critic (34), the actor (51), the distur-
w6 bance input (53) with the design parameters in (58) and the following adaptive learning rules for
wr the critic weight W,, actor weight W, and disturbance W, respectively,
Ga (8) [U (5 (1) 10, da) + Wiera (1))
(1+0F (1) oa (1))’

b o (8) [U (s (8) s ua (), da (8)) + WE (1) 00 (1)
—a, Z - 5 (59)

= (1+ 04 (ti)oa (i)

Y, W, + VéGe, + VGtanh? (D ) eu] , (60)

W, = —a.

S
I

N
Il

—ayg (Ydlwd — YW, + Ddef}Wc) (61)

17
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%8 where a. € R, o, € R and ag € R are the learning rate for the critic, actor and disturbance

v networks, Y, € RVXN Yy e RV*N and Yyo € RYXN gre the feedback gains for the actor and
~ ~ ~ T

a0 disturbance networks. Then, the augmented state X = [ sT WCT WE W} ] is UUB provided

o that the design parameters are selected such that

q>0
T 1 rd
—G 68 + g T+ P <0

1
— T -V, <0
2r.

Yo + Da€TW* + %YdQYdE + ﬁDdW*(W*)TDE <0 (62)
o where rq, rq1 and rgo are positive constants to be determined.
a3 Proof. Consider the following Lyapunov candidate function:

J(X)=V*(s)+ V. (W) + Vi (Wu) +Vy (Wd> (63)
2 where V* (+) is the optimal value function satisfying the HJI equation and

Ve (s) = %WEaJIVVc, Vi, (s) = éWEaTWu, Vi (s) = %WfaglVVd
o5 The derivative of the Lyapunov function (63) is given by
J=V* 4+ V.4V, +V, (64)

276 For the first term of (64), one has

V*

|56 + (V&) | [F (5) + G (5) wa + K (5) da]

A 1 o
(W5 VoF — (W*)TVHGA tanh (Du> + W(W*)TDde +eo (65)
xr with Dy is defined in (33) and

g = (VE)Taa

LK () K ()" [V (5)] Wi (66)

F(s) — G (s) A tanh (f)u) t o

Oa

s Based on Assumptions 1 and 3 and Remark 4, €5 can be upper bounded as
1

o 2 (Ve K () K Vo ()] e (67)

bacbibapbs — 772

g0 < bdsbf ||SH + bdsbgA +
ze  From (25) and (32), one has
W*'VoF = —Q(s)— O (—Atanh (D*)) + (W*) V4G tanh (D¥)

1
—W(W*)TDdW* +¢

18
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20 with
O (~Atanh (DF)) = (W*)'VéGAtanh (D¥) + A2RIn (1 — tanh? (D)) (68)
21 where D, has been defined as in (33). Inserting (W*)TV4F and (68) into (65) yields

V¥ = —Q(s) = ©(=Atanh (D})) + (W*) VG tanh (D})
1

4y

1

22

. 1
(W DaW* — (W*)TVHGA tanh (Du) + 272(W*)TDdW*
(W*) ' DgWa + ¢ + 0 (69)

22 Since Q(+) and O(-) are positive definite functions, then, there exists a positive constant ¢ > 0 such

263 that
sTgs < Q(s) < Q(s) + © (—Atanh (D¥)) (70)
2« The third term in (69) can be upper bounded by
(W*) 'V () GAtanh (D) < Abgbasbs (71)
»s  Considering W* = W, + W,, then, the forth term in (69) can be rewritten as
—(W*)* V4G A tanh (f)u)
— —WTV¢GAtanh (bu) — WTVGA tanh (Du)
< ~W/V6GAtanh (D, ) (72)

26 where the above inequality results from the fact that WE VG tanh <l§u) = 2X\2R [f)u tanh (f)u)]
s and xT tanh (z) > 0, for arbitrary vector signal z. Considering now the facts (67), (69), (70), (71)
2 and (72), V* further satisfies

V* < —WTIV4GAtanh (bu) — 5Tqs + bacby | 5|
1 1
+)\bgbd¢b* + mbibiﬁbz + b( + )\bdgbg + Wdebibdtbb*

_2%2(%)% () K(s) [V (5)] Wy — #(W*)T DWW,

= —WIV¢GAtanh (ﬁu) —sTgs + M, ||s| + Ny + My Wy (73)
289 where
M, = bg.bs
Ny = Abgbaghs + r;bibfwbi + be + Abacby + T;bdabibwb*
My - _# {(Ve)"K () K ()" [Vo (5)]" + (W*)" Dy} (74)

19
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290 Second, for the critic weight error W, from (41) one has
< g, k O
We(t) =a.————e.(t) + @ — e (t;, 1) (75)
¢ c(l + O'aTO'a)2 ‘ ci; (1+ atfiaai)z o

21 where o, has been defined in (66) and 0,; = 0, (¢;). Differentiating V. along with (75), one has

Ve = WlaslW.
= wr e (t (it 76
(1+cr a)2 )+1Z; 1+0m m)e( ) (76)
22 From (32), one has
—Q(s) — © (—Atanh (D})) — w*) o+ —(W*) DgW* +(=0. (77)

23 Therefore, one can obtain

€c

Q(s)+ 0 (—)\tanh (Du)) + W, — ﬁW}Dde

Q) + 0 (~Atanh (D,)) 4 W, - #Wgydm
~Q () — © (~Atank (DZ))— (W*) o + #(W*)Tpdw* +¢
24 Adding and subtracting (W*)Taa to e, yields
e = O (—)\tanh (ﬁu)) — O (=Atanh (D¥)) — Wro, + (W5 (04 — o)
—T;W} D Wy + #(W*)TD,J,W* +¢ (78)
25 Moreover, note that

0 (—)\ tanh (f)u)) — O (=Atanh (D¥))
— AWSVoGtanh (D) + XRin (1 tanh® (D,) )
~AWTV¢G tanh (D}) — A?R1In (1 — tanh® (D})) (79)

2 Note that the term A2R1In (1 — tanh? (D)) in (79) can be rewritten as
A2R1n (1 — tanh® (D¥)) = A2R [ln4 —2D¥ —2In (1 + e—Qfo)] , (80)
27 where —21n (1 + e~2D3 ) can be approximated using Lemma 1 as

—2In (1 + e—QD?f) — 2D — 2D%sgn (D) + £ i, (81)

20
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25 where || < In4. Then, inserting (81) into (80) yields
A RIn (1 —tanh® (D})) = AR [In4 — 2D}sgn (D) + £ | - (82)
s Similarly,
A RIn (1 — tanh? (Du)) — \’R [1n4 —2D,sen (Du) te bu] , (83)
w where Hs N H < In4. Consider (79), (82) and (83), one has
) (—)\tanh (Du)) — O (—Atanh (D¥))
— AWTV6G tanh (f)u) — AWTV6G tanh (D7)
AR [QD;"sgn (D*) — 2D, sgn (f)u) fep)- st] (84)

sn  The nonsmooth function sgn(:) in (84) can be approximated by the function tanh(-) by using

32 Lemma 2. Then, based on (84), one has

AR (QDngn (D}) —2Dysgn (D "))
*

(W*)'V¢GA tanh <Dp“> — WIV4GAtanh (Dp“> + M Re, (85)

%3 with approximation error satisfying 0 < €, < 2xp where x = 0.2785 is defined in Lemma 2. Based

2 on (84) and (85), adding and substracting (W*)" V¢GA tanh (Du), one has

ee = —WZlo, + WEVHGA ltanh (2“) ~ tanh (Du)l

*
+(WH*) VoG ltanh (Dp“) — tanh (Dp“>] + ¢+ NR (Ebu —epx + 6,,) + €. (86)

35 where €, = —ﬁW}Dde + 2A%Z(W*)TDdVT/d — ﬁ(W*)TDdW*, which can be further rewritten

306 AS
€ — — WD, - L(W*)TD W* + i(W*)TD Wy + i(w*)TD W,
c 4/}/2 d d d 472 d 472 d d 472 d d
1 oop 1 T
- —WID,W,— —wW*™D
1 Wi DaWq e (W?*) DaWq
1 - -
= —@W}ded (87)

w  Denote £; = A?R (sf)u —é&px + Ep) + ¢, one has

ee (t) = =W (t) oa () + W ()0 (1) + 7 (1) — #Wf () DaWa (t) (83)

21



Journal Pre-proof

ss where 1 and 7 is defined in (58). Similarly,

o (tit) = —TWT () o (t2) + W () (£) + 7 (1) — ;Vv}(twdww (89)

ws  where Based on Assumptions 1 and 3, both ¢ and 7 are bounded. Substituting (88) and (89) into
o (75) yields,

3

pad

L 0'(”0' ~
W. = —ae + W.
7(1+0Tc7a2 _21 1+ 0% 0,)°
- . :
Oq T1%
+a, W,
(1 +0l0,)’ ; 140! am)z_
k O aiT; ]
+a ar’tt
‘ (1+UTUa z=21 1+ok crm) |
k
o ~ ~
-—— Wi DgWy (90)
1+ O’TO'a ; 1+o0; aa,) ¢
au  Substituting (90) into (76), one has
VC = WEa;lVLVC
= —WIaWe+ Wrau™W, + W + WreW, Dy
~ ~ .o~ ~ 1 ~ ~ ~ ~ ~ ~
< WEGWe + SWEGGWe + o Wbyt Wy + Wig + WEGW DaWy
c s 1 - = ~ ~ = =
= W6+ S |We + 5 Wy W + Wes + W W] DaWy (o1)
a2 where & for i = 1,2,3,4 has been defined in (58).
313 Next, we give the upper bound of V,.. Based on (60), differentiating V, yields
Vu = WEa;lﬁ/u
- —Wr [V¢Geu + VéGtanh? (f)u) eu + YuW, ]
= WY, W, + WIVGAtan h( u) + WM,
< —WZIY, W, + WIVéGA tanh ( u) + MW, (92)

3

et

4

315

316

where M, =

[ VoG tanh ( ) + VéGtanh? (D ) Cu + YuW*]

Based on Assumption 1 - 3 and the definition of the actor learning error e,, in (56), M, is also

bounded.
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a7 For the derivative of V, according to (61) one has
Vd = —Wnglw* + Wnglwd + W}dew* — W(;I‘ngwc
~Wd DaW*EfW* + W DaWali W* + Wi DaW*EfWe — Wi DaWa&i W
— WIYaWa+ W DaWaeTW* — WY W* — W DgW*ETW* + WY W™
—W}Y@WC + WEDdW*ngVC - Wngde;FWc (93)
as Using Young’s inequality to (93) yields

Vi < Wi (Yo + Dai W*) Wy + W] [YeW* = Yy W* — DaW*E{ W]

~ ~ 1 - 2 1 - 5 5 ~
WYY EWa + 7HWC + ——WIDWH WS DI, + 21T, e T,
2 2le 2Td2 2
~ W DaWaef W,
1o 2 . L TN o
= o W+ ST W = W QuWa + MW = Wi DaWa W (94)
30 where
1
Qi = - [Ydl + Dgf W* + %Y@Y}; + 5 DaW* (W) Df
d2
Map = Y W* = Yo W — DaW* ¢ w™ (95)

320 Finally, collecting the results in (73), (91), (92) and (94), one has

J < —sTQs+ My |s|+ Ny — WIQW, + Wl
—WEQuWu % MEVNVU — WdeWd + (Mdl + M:ig) V~Vd
< —Ain (Qs) H3H2 + [ M lIsll + [ Ns] = Amin (Qc)

~ 12 ~
Wel| -+ lsl |-

-2 . ~ 12 ~
_)\min (Qu) ’Wu + ”MuH ‘Wu - Amin (Qd) HWdH + ”Mdl + Md’g” HWdH (96)
21 where

Qs = qI

_ g Teper 1, e oor
Qe = &= 568 ST I=—&&

1
Qu = - W/JT +Y,
27,

s Based on Assumptions 1 and 3, M, M, Mg, Mg and Ny are bounded. Note that the parameters
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»s  design in (62) guarantees that Qs > 0, Q. > 0, @, > 0 and Q4 > 0. Therefore, J<0if

s |2 A
Isll + +

\

2)\min (Qs) 4>‘3nin (Qs) >‘Hliﬂ (QS)
W, 2
: . ]
‘Wc ~ 2)\min (QC) - 4)‘1211in (QC)
W 2
i g M.
’ Wu ~ 2)\min (Qu) " 4)‘12nin (Q“)

\

3 W, 2
HWdH 2,\r’[‘1in Cé(.‘gd) + \/m (97)

_ _ ~ T
24 Then, the augmented state X = [ sT WCT W;f WdT ] converges to the residual set Qx

s defined as

El \/ IMo® o ]
Qx ={X||s]| < + + ,
X { | H ” 2)\min (Qs) 4)‘r2nin (QS) )\min (Qs)
W) < L I AT (L Y YA
¢ 2)‘min (QC) 4>\1?nin (QC) ' “ 2)‘min (QU) 4)‘?nin (Qu) ’
; Wil 1

Wa| < | + d 98

H ! 2Amin (Qd) 4)‘?nin (Qd) (98)
»s  This completes the proof. [
7 5. Simulation Study
328 To verify the effectiveness of the presented online safe RL algorithm with the actor-critic-barrier
a0 structure, we consider the following nonlinear systems of a single link robot arm

0(t)=———sin(0(t)) — =0(t) + =u(t) + kd(t 99
(t) = —=Zsin (01) = £ 0+ Zult) +kd (0 (99)

a0 where 6 is the angle position, 6 is the angle velocity, M is the mass of the payload, g is the
s acceleration of gravity, [ is the length of the arm, D is the viscous friction and G is the moment of
5 inertia. In this experiment, M = 10kg, g = 9.81m/s%, | = 0.5m, D = 2N and G = 10kgm? . Let
33 11=0, r9 = 0 and z = [ 1 Ty ]T, then the dynamics of z can be written as

1 22 0 0
- + u+ d (100)

o f (@) g(x) k(x)
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34 where

f(x) ]\/égl sin (z1) — 5:1:2

gx) = =.k(z)=Fk

5 For Problem 1, the performance output is selected as L (z,u) = 2" Hz + uT Ru with H = 501,

1 R = 10I. In addition, the following safety constraints are considered
Tr; € (ai,Ai),Vie {1,2} (101)

;7 where a; = —1.6, A; = 3, as = —4 and A; = 3. By using the classical actor-critic reinforcement
18 learning algorithm, the state evolution with respect to time can be shown in Figure 3. The phase
;9 portrait of the state evolution in the state space is shown in Figure 5. As can be seen from Figure 3,
a0 the full-state constraints cannot be guaranteed by the classical actor-critic reinforcement learning
s algorithm. The evolution of the actor-critic-disturbance is shown in Figure 4.

342 To deal with the full-state constraints, the barrier-function-based system transformation (10)
23 is employed. With the barrier function, one can obtain the transformed system as § = F (s) +

w G (S) u—+ K (S) d with

52 _352
azAz(e? —e” 2 ) A2e¢7°1_2a; Ay +aZe’l
=5 55 P 3
F(S) = ase 2 —Age” 2 Ala’l_a’lAl
_ A2e™°2—2a5 Ay +aje’?
(51 (s) Azt
2a5—az A3

0
G (5) B LA36752—2U42A2+‘1§€S2
L é AQ(Z%*H/QA%
0
K(s) = (102)

k Agefs2 —2aAs +a§es2
AzaZ—aqy A2

s with the initial condition

S0

S0 (1)

T
[ 50() s0(2) ]
b(mo (1) 3 al,Al) , S0 (2) = b (270 (2) ;GQ,AQ)

Based on the actor-critic-barrier online learning algorithm, the state evolution of state s(t) in
system (102) is given in Figure 6. One can observe that the state s(t) of system (102) converges
to the origin asymptotically. Based on the state evolution of s(t), by using the barrier function

inverse mapping (10), one can obtain the state z(t) as
T (t) = b_l (Sl (t) sar, Al) , L2 (t) = b_l (82 (t) a9, Ag)
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=== Actor-Critic
=== Barrier-Actor-Critic
= = State-Constraint Boundary

X, ()

Actor-Critic .
===== Barrier-Actor-Critic
= = = State-Constraint Boundary

X,

s L N, L

L, 28 3 32 34 36 _38 |

0 10 20 30 40 50 60 70 80 90 100
Time (s)

Figure 3: Evolution of the state x(¢) by using the presented actor-critic-barrier learning and classical actor-critic

learning. The dashed line represents the boundary of the safe region.
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S V()
—_—W (1)
W,
S

s
W (1)

— W0

0 20 40 60 80 . 100 | W0
Time(s)

—Ww_0

Waz(t)
W0

.8

=1,..

— W0
— W (1)

W_ ().

——W_ (1)

' ' ' ' —W__(1)
0 20 40 60 80 100 ar

Time(s) — WV

—_—, ()

.8

—_—W ()

1,..

I Wd3(t)
—_W,
W0
- - - - _ WdB(t)
0 20 40 60 80 100 |=——W (1)

Time(s) —W (1)

W (0

Figure 4: Evolution of the actor and critic weights using classical actor-critic learning.
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Full-State Constraints @ initial condition
actor-critic learning

barrier-actor-critic learning

1

3

Figure 5: Evolution of the two-dimensional phase plot of the state trajectories [z1(¢) z2(t)]. The black box denotes

the safe region.
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— sl(t)
H s, ()

sl(t)/sz(t)

-4 1 1 1 1 1 1 1 1 1 |
0 10 20 30 40 50 60 70 80 90 100
Time (s)

Figure 6: Evolution of the state s(t) by using the presented actor-critic-barrier learning and classical actor-critic

learning.

Then, the evolution of the state z(¢) is shown in Figure 3. The phase portrait of the state evolution
[1(t) 2(t)] is provided in Figure 5. The black box represents the full-state constraints. One can
observe that with the barrier-actor-critic learning algorithm, the state evolution does not exceed the
boundary of the prescribed region and full-state constraints can be guaranteed. That is, the state
x(t) converges to the origin asymptotically while satisfying the safety constraints (101). Finally,

the learning process of the barrier-actor-critic networks is shown in Figure 7.

6. Conclusions

In this paper; the disturbance attenuation problem with both full-state constraints and input
saturation is considered. An adaptive optimal controller design with the barrier-actor-critic al-
gorithm is developed. First, a novel barrier function is defined to deal with full-state saturation.
Based on this barrier function, a novel system transformation is applied to the original system
to obtain the transformed system. Second, the barrier-function-based system transformation is
then combined with the actor-critic online algorithm to learn the optimal control policy and the
worst-case disturbance. To obviate the requirement of PE condition for online critic learning, the
experience replay technique is employed to utilize the online and history data concurrently. The
stability of the closed-loop system and the convergence of the actor-critic parameters to the op-

timal condition are discussed in the framework of Lyapunov analysis. The input saturation and
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i | | | | —_—W ()
o —— W00
e W (8)

o 0 c3
Iy —_—W,0
S 0! W)
= W0
-20 : : : : —_—W_ (1)

0 20 40 60 80 100

—_—W (1)
—_—W (1)
o —— W00
E 0 Wa3(t)
iy —_—w,,0)
=3 W (1)
= W0
-20 : : : ' —_—W_ (1)
0 20 40 60 80 100 Wa o

Time(s) a8
10 - - - - War®)
0 e W, (1)
Fi. 0 e Wi (0
S —_— W,
t-_’a '10 i st(t)
= ——w ()
-20 : : ' ' —W (T
0 20 40 60 80 100 W‘”()
Time(s) asV)

Figure 7: Evolution of the actor and critic weights using barrier-actor-critic learning.
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w3 full-state constraints are guaranteed to be satisfied during the learning phase. Finally, simulation

s studies are conducted to verify the efficacy of the presented barrier-actor-critic online learning.
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