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Abstract

This paper develops a novel adaptive optimal control design method with full-state constraints

and input saturation in the presence of external disturbance. First, to consider the full-state con-

straints, a barrier function is developed for system transformation. Moreover, it is shown that,

with the barrier-function-based system transformation, the stabilization of the transformed sys-

tem is equivalent to the original constrained control problem. Second, the disturbance attenuation

problem is formulated within the zero-sum differential games framework. To determine the opti-

mal control and the worst-case disturbance, a novel barrier-actor-critic algorithm is presented for

adaptive optimal learning while guaranteeing the full-state constraints and input saturation. It is

proven that the closed-loop signals remain bounded during the online learning phase. Finally, sim-

ulation studies are conducted to demonstrate the effectiveness of the presented barrier-actor-critic

learning algorithm.
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1. Introduction1

Nonlinear dynamics commonly exists in engineering applications, such as input saturation2

[1, 2, 3] and dead-zone [4, 5], output constraints [6, 7], friction dynamics [8, 9], backlash-like3

hysteresis [10, 11, 12], unmodeled dynamics [13], etc. Modern control theory, such as the H84

control method [14, 15] and adaptive control method [16, 17], has received considerable attention5

to compensate for the system uncertainty and attenuate the effect of external disturbance for6

nonlinear systems. In addition to the closed-loop stability, practical constraints captured by user-7

defined performance is desired to be guaranteed. However, classical H8 control and adaptive8

control methods cannot guarantee the user-defined performance. In this paper, a novel adaptive9

optimal controller design is developed to stabilize the nonlinear systems while considering both10

the prescribed performance on full-state and input saturation simultaneously.11

For the nonlinear systems with imperfect dynamical behavior, such as exogenous disturbance12

and system uncertainties, the adaptive control method is widely used for feedback design to com-13

pensate the system uncertainty and attenuate exogenous disturbances [16, 17]. However, classical14

adaptive control design methods only consider the closed-loop stability. In addition to the closed-15

loop stability, practical constraints are important for controller design. For example, in the control16

of Euler-Lagrange systems, the link and joint velocity cannot be arbitrarily large and has to be17

remained in the bounded region due to limitation imposed by mechanical characteristics. In many18

applications, the constraints are usually captured by the user-defined performance. Many efforts19

have been made to address this issue. Compared to classical quadratic Lyapunov function design,20

Lyapunov analysis is combined with barrier function design [18] to consider the constraints on21

output, which is essentially partial-state constraints [19, 20]. Since then, the barrier Lyapunov22

function design is extended to consider full-state constraints for stochastic nonlinear systems [21],23

pure-feedback systems [22], Euler-Lagrange systems [23], time-delay systems [24], to name a few.24

Another type of constrained controller design adopts a prescribed transient performance to develop25

a system transformation [25]. In the prescribed performance adaptive control, the prescribed tran-26

sient performance is captured by a user-defined performance bound, which specifies the safety27

region for the tracking error. Recently, the prescribed performance adaptive control method is28

extended to deal with output feedback control problem [26], consensus problem of multi-agent29

systems [27], nonlinear systems with input dead-zone [28], controller design for flexible joint robots30

[29], synchronization problem of teleoperation robotics [30], and so on. To relax the requirement31

that both the reference signal along with its derivatives and every element of the state variable32

are available for feedback design, Arabia and Yucelen developed a set-theoretic model reference33
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adaptive control framework [31]. In the set-theoretic model reference adaptive control framework,34

the norm of the gap between the system state and the reference signal is guaranteed to be within35

a user-defined constant bound. However, in the existing adaptive controller design methods, only36

closed-loop stability and the prescribed user-defined performance constraints is considered with-37

out optimality discussion. In this paper, a novel adaptive constrained controller is presented with38

optimality discussions.39

The centerpiece of optimal control theory is the Hamilton-Jacobi-Bellman/ Hamilton-Jacobi-40

Isaacs (HJB/HJI) equations for nonlinear systems, which is necessary and sufficient for the opti-41

mality condition [32]. However, the HJ equations are difficult to solve due to the inherent non-42

linearity. Therefore, adaptive dynamic programming (ADP) has been developed to approximate43

the nonlinear HJ equations in an online fashion, where an intelligent agent seeks optimal decisions44

to maximize the lone-term cumulative reward [33]. Variants of ADP has been applied widely in45

control applications to solve the optimal control problems, including iterative ADP algorithms in46

discrete-time [34] and continuous-time [35] for optimal regulation problems, model-free learning47

algorithm for H8 control problem [36], online actor-critic learning algorithm [37] for optimal track-48

ing control problems [38, 39], robust stabilization problem [40], guaranteed cost control problem49

[41, 42], consensus control problem of multi-agent systems [43, 44], event-triggered control [45], to50

name a few. Besides, ADP has been successfully applied to differential games [46]. In addition,51

ADP extensions have been made to deal with constraints of input saturation in [47] and constraints52

on the state in [48]. However, these existing results do not consider the case with external distur-53

bance, input saturation, and full-state constraints. In this paper, all these issues are considered in54

a comprehensive framework.55

The contributions of this paper are threefold. First, in this paper, both the full-state con-56

straints and input saturation are considered simultaneously for the controller design problem. This57

is achieved by introducing a barrier function based system transformation. It is also discussed the-58

oretically that the transform equivalence can be guaranteed in the sense that the stabilization of59

the transformed system ensures the constraints of the original system. Second, the disturbance60

attenuation is achieved within the framework of zero-sum differential games. A novel barrier-actor-61

critic algorithm is developed for adaptive optimal learning with the full-state constraints and input62

saturation. Finally, to obviate the requirement of persistent excitation condition, the experience63

replay technique is employed to utilize the history and current date concurrently.64

The remainder of this paper is organized as follows. In Section 2, the problem of constrained65

control design with full-state constraints and input saturation is given. Section 3 presents the66
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barrier-function-based system transformation to deal with full-state constraints. In Section 4, a67

novel actor-critic-barrier algorithm is developed for the online learning of the adaptive optimal68

constrained controller.69

2. Preliminaries70

2.1. Notations and Definitions71

The following standard notation will be adopted.72

R` ∆“ the set of positive real numbers.

Rn ∆“ n-dimensional vector space.

I
∆“ Identity matrix with proper dimension.

1
∆“ vector with all entries being 1.

}M} ∆“ a
tr pMMHq, the matrix Frobenius norm of matrix M.

}v} ∆“ the euclidean norm of vector v.

Z ∆“ the set of integers.

λmin pAq ∆“ the minimum eigenvalue of matrix A.

73

Definition 1. (Zero-State Observality) [15] The system (1) with the measured output y “ hpxq74

is zero-state observable if yptq ” 0 for @t ě 0 implies that xptq ” 0 for @t ě 0.75

Definition 2. (Persistent Excitation Condition) [16] The vector signal zp¨q P Rn is said to be76

persistently excited (PE) on the interval rT1, T2s if there exists positive constants γ1 ą 0 and77

γ2 ą 0 such that, for all t P rT1, T2s,78

γ1I ď
ż t`T1

t

z pτq zT pτq dτ ď γ2I

Definition 3. (Uniformly Ultimately Bounded Stability) [16] Consider the nonlinear system79

9x “ F px, tq, @t P R`, x pt0q “ x0 (1)

with xptq P Rn is the system state and x0 is the initial condition. The equilibrium point xe of80

system (1) is said to be uniformly ultimately bounded (UUB) if there existes a compact set Ω Ă Rn81

so that for all x0 Ă Ω, there exists a bound B and a time T pB, x0q such that }x ptq ´ x0} ď B for82

all t ě t0 ` T .83

Lemma 1. [49] For @w P R, there exists a bounded w̃ satisfying }w̃} ď ln 4, such that84

´2 ln
`
1` e´2w

˘ “ 2w ´ 2wsgn pwq ` w̃,
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Lemma 2. [50] The following inequality holds for any a ą 0 and y P R85

0 ď |y| ´ y tanh
´y
a

¯
ď κa (2)

where κ “ 0.2785.86

2.2. Problem Statement87

In this paper, we consider the following continuous-time affine nonlinear dynamical systems88

9x1 “ x2

9x2 “ x3

... (3)

9xn´1 “ xn

9xn “ f pxq ` g pxqu` k pxq d

where x “
”
x1 ¨ ¨ ¨ xn

ıT P Rn is the system state, up¨q : Rn Ñ Rm1 is the control policy,89

dp¨q : Rn Ñ Rm2 is the external disturbance, fp¨q, gp¨q, kp¨q : Rn Ñ R are Lipschitz continuous90

nonlinear functions. The constrained H8 control problem for system (3) with full-state constraints91

and input saturation can be formulated as follows.92

Problem 1. Design the proper performance output L px, uq, where L p¨, ¨q is a positive definite93

function of its argument, and the optimal policy u˚ such that, with the saturation constraints on94

the control input as95

}ui} ď λ,@i “ 1, ...,m1 (4)

where u “
”
u1 ¨ ¨ ¨ um

ıT

, and the full-state constraints as96

x1 P pa1, A1q
... (5)

xn P pan, Anq

for @d P L2, system (3) have L2-gain less than or equal to γ, i.e.,97

ş8
t
L px pτq , u pτqqdτ
ş8
t
}d pτq}2dτ ď γ2, (6)
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Figure 1: Evolution of the two-dimensional phase plot of the state trajectories rx1ptq x2ptqs. The black box denotes

the safe region.

Remark 1. To deal with the input constraints (4), the saturation function can be applied, which

is defined as [51, 52, 53, 54]

Γ puiq “
$
&
%

ui, if ui ď λ

sign puiq , if ui ą λ

Then, the system dynamics can be denoted as

9xi “ xi`1, i “ 1, 2, ..., n´ 1

9xn “ f pxq ` g pxqΓ puq ` k pxq d

Note that the saturation function Γp¨q is a discontinuous function, which leads to discontinuity in98

the system dynamics. In this paper, we consider continuous constraints on the input signal, which99

is shown in Figure 1 and widely used in the literature, such as [33, 47, 55]. As shown later, the100

nonquadratic penalty function on the control input signal (17) is presented, which guarantees the101

boundedness of the optimal control input (23).102

As shown by (4) – (6), the objective of Problem 1 can be divided into three parts, i.e., distur-103

bance attenuation, input saturation and full-state constraints. For the full-state constraints, we104

introduce the following barrier function.105

Definition 4. (Barrier Function) The function Bp¨q : R Ñ R defined on pa,Aq is referred to as106

barrier function if107

B pz; a,Aq “ ln

ˆ
A

a

a´ z
A´ z

˙
,@z P pa,Aq (7)
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where a and A are two constants satisfying a ă A. Moreover, the barrier function is invertible on108

interval pa,Aq, i.e.,109

B´1 py; a,Aq “ aA
e

y
2 ´ e´ y

2

ae
y
2 ´Ae´ y

2

,@y P R (8)

with the derivative110

dB´1 py; a,Aq
dy

“ Aa2 ´ aA2

a2ey ´ 2aA`A2e´y
(9)

Remark 2. To guarantee that the full-state constraints is not violated for Problem 1, the barrier111

function in Definition 4 has the following desired properties112

1) The barrier function B p¨q takes finite value when the its arguments are within the user-defined113

region pa,Aq.114

2) The barrier function B p¨q approach to infinity as the state approach the boundary of the115

prescribed region pa,Aq, i.e.,116

lim
zÑa`

B pz; a,Aq “ ´8
lim
zÑA´

B pz; a,Aq “ `8

3) The barrier function B p¨q vanishes at the equilibrium of the system (3), i.e.,117

B p0; a,Aq “ 0,@a ă A

3. Barrier-Function-Based Zero-Sum Game118

In this section, the system (3) with full-state constraints is transformed into another system119

without state constraints by using the barrier function in Definition 4. Consider the barrier-120

function-based state transformation as121

si “ B pxi; ai, Aiq ,
xi “ B´1 psi; ai, Aiq , i “ 1, ¨ ¨ ¨ , n

(10)

Then, by using the chain rule, one has122

dxi
dt
“ dxi
dsi

dsi
dt

(11)
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From (11), the dynamics of the transformed state s can be written as123

9si “ xi`1 psi`1q
dB´1py;ai,Aiq

dy

ˇ̌
ˇ
y“si

“
ai`1Ai`1

´
e

si`1
2 ´ e´ si`1

2

¯

ai`1e
si`1

2 ´Ai`1e´
si`1

2

A2
i e
´si ´ 2aiAi ` a2

i e
si

Aia2
i ´ aiA2

i

“ Fi psi, si`1q , i “ 1, . . . , n´ 1

9sn “ f pxq ` g pxqu` kpxqd
dB´1py;an,Anq

dy

ˇ̌
ˇ
y“sn

“ rf pxq ` g pxqu` kpxqds A
2
ne
´sn ´ 2anAn ` a2

ne
sn

Ana2
n ´ anA2

n

“ Fn psq ` gn psqu` knpsqd (12)

with124

Fn psq “ A2
ne
´sn ´ 2anAn ` a2

ne
sn

Ana2
n ´ anA2

n

f
´”

B´1
1 ps1q . . . B´1

n psnq
ı¯

gn psq “ A2
ne
´sn ´ 2anAn ` a2

ne
sn

Ana2
n ´ anA2

n

g
´”

B´1
1 ps1q . . . B´1

n psnq
ı¯

kn psq “ A2
ne
´sn ´ 2anAn ` a2

ne
sn

Ana2
n ´ anA2

n

k
´”

B´1
1 ps1q . . . B´1

n psnq
ı¯

(13)

Note that system (12) with the state s “
”
s1 ¨ ¨ ¨ sn

ıT

can be expressed in a compact form125

as126

9s “ F psq `G psqu`K psq d (14)

with F psq “

»
———–

F1 ps1, s2q
...

Fn psq

fi
ffiffiffifl, G psq “

»
——————–

0
...

0

gn psq

fi
ffiffiffiffiffiffifl

, K psq “

»
——————–

0
...

0

kn psq

fi
ffiffiffiffiffiffifl

.127

The following assumptions are imposed on system (14), which is commonly used for nonlinear128

systems controller design [47, 55].129

Assumption 1. The system dynamics (14) is assumed to have the following properties.130

1) F psq is Lipschitz with F p0q “ 0, and there exists a constant bf such that, for s P Ω, }F psq} ď131

bf }s} where Ω is a compact set containing the origin.132

2) Gpsq and Kpsq are bounded on Ω, i.e., there exists a constant bg and bk such that }Gpsq} ď bg133

and }Kpsq} ď bk, respectively.134
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3) The system (3) is controllable over the compact set Ω.135

In the following, to consider the input saturation and disturbance attenuation in Problem 1,136

the framework of the zero-sum differential game is introduced. For system (14) with the control137

input u ptq and the disturbance policy d ptq, consider the following cost function138

V ps0;u, dq “
ż 8

t0

U ps, u, dqdt (15)

where U ps, u, dq is the reward function with139

U ps, u, dq “ L px, uq ´ γ2}d}2,
L px, uq “ Q psq `Θ puq ´ γ2}d}2 (16)

where Qpsq being a positive definite monotonically increasing function and Θ puq being a positive140

definite integrand function. To deal with input saturation, the nonquadratic penalty function is141

used,142

Θ puq “ 2

ż u

0

”
λtanh´1

´ v
λ

¯ı
Rdv

“ 2λ
`
tanh´1 pu{λq˘T

Ru` λ2R̄ ln
`
1´ u2

L
λ2
˘

(17)

where λ ą 0 is the saturation limit for the control input, R “ diag pr1, ..., rmq and R̄ “ rr1, ..., rms P143

R1ˆm with ri ą 0 for i “ 1, ...,m is the weight on control effort for each input.144

Problem 2. For system (14) with the control policy u and disturbance policy d, find the Nash145

equilibrium pu˚, d˚q of the zero-sum game with the constraints of input saturation (4).146

Define the Hamiltonian for the cost (15) with the control policy u and disturbance policy d as147

H pu, d, V q “
ˆBV
Bs

˙T

rF psq `G psqu`K psq ds ` U ps, u, dq (18)

Then, differential equivalent of the cost (15) can be expressed in terms of the Hamiltonian (18) as148

H

ˆ
s, u, d,

BV
Bs

˙
“ 0 (19)

which is referred to as the Bellman equation.149

Based on the game theory [56], the disturbance attenuation problem is equivalent to solving150

the following two-player zero-sum game,151

V ˚ psq “ min
u

max
d

V ps;u, dq (20)
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This two-player zero-sum game has a unique solution if the Nash condition holds152

V ˚ psq “ min
u

max
d

V ps;u, dq “ max
d

min
u
V ps;u, dq (21)

According to [32], the stationary condition for optimality is153

BH pu, d, V ˚q
Bu “ 0,

BH pu, d, V ˚q
Bd “ 0 (22)

Then, one can obtain the optimal control input u˚ and the worst-case disturbance d˚, respectively,154

as155

u˚ psq “ ´λ tanh

ˆ
1

2λ
R´1GT psq BV

˚ psq
Bs

˙
(23)

d˚ psq “ 1

2γ2
KT psq BV

˚ psq
Bs (24)

where pu˚, d˚q is termed as Nash equilibrium for zero-sum game. Inserting the optimal control156

policy and disturbance term (23) in (17) results in [55]157

Θ pu˚q “ λ

„BV ˚ psq
Bs

T

G psq tanh pD˚q ` λ2R̄ ln
“
1´ tanh2 pD˚q‰ (25)

where D˚ “ p1{2λqR´1GpsqT BV ˚psq
Bs . Inserting the Nash equilibrium pu˚, d˚q into (19) and using158

(25), the Bellman equation becomes the Hamilton-Jacobi-Isaacs (HJI) equation159

0 “ Q psq `
„BV ˚ psq

Bs
T

F psq ` λ2R̄ ln
“
1´ tanh2 pD˚q‰

` 1

4γ2

„BV ˚psq
Bs

T

K psqK psqT BV
˚psq
Bs (26)

The following assumption on the cost function (15), which has been widely used in [14, 15], is160

employed in this paper.161

Assumption 2. The performance functional (15) satisfies zero-state observability.162

The following lemma discusses the equivalence between Problems 1 and 2163

Lemma 3. Suppose that the pair of policy tu˚p¨q, d˚p¨qu solve Problem 2 for system (14). Then,164

the optimal control policy tu˚p¨qu also solves Problem 1 provided that the initial state x0 of system165

(3) satisfies the constraints in (5).166

Under Assumptions 1 and 2, suppose that µ˚ “ tu˚, d˚u solves Problem 2 for system (14) with167

performance (15) and reward (16), then the following hold:168

1) The closed-loop system satisfies the constraints (5) provided that the initial state x0 of system169

(3) is within the region pai, Aiq, @i “ 1, ..., n.170
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2) The disturbance attenuation condition (6) can be guaranteed if the performance output L px, uq171

is designed as172

L px, uq “ Qpsq `Θpuq.

Proof. 1) Based on Assumptions 1 and 2, the existence of a positive definite and continuously

differentiable optimal value function V ˚psq can be guaranteed. From (18), one can obtain that

9V ˚ptq ď 0, i.e.,

V ˚ ps ptqq ď V ˚ ps p0qq ,@t ě 0.

Then, V ˚ ps ptqq remains bounded if V ˚ psp0qq is bounded, which is guaranteed by the condition

that the initial condition xp0q of system (3) satisfies the constraints in (5). Finally, from the

discussions in Remark 2, one can infer that

xi ptq P pai, Aiq , i “ 1, 2, ¨ ¨ ¨ , n.

Therefore, given µ˚ “ tu1̊ , u2̊ u, the constraints of Problem 1 are satisfied.173

2) Now consider the barrier-function-based state transformation described by (10). Then, each174

element of the state s “
”
b1 px1q ¨ ¨ ¨ bn pxnq

ıT

is finite given that x satisfies the constraints175

given in (5). Note that the Nash equilibrium pu˚, d˚q and the optimal value function V ˚ satisfies the176

Bellman equation (19), i.e., H
´
s, u˚, d˚, BV

˚
Bs

¯
“ 0. Then, considering (16) and the performance177

output L px, uq, one has,178

H

ˆ
s, u˚, d˚,

BV ˚
Bs

˙
“ 0 ñ

ş8
t
}z pτq}2dτ

ş8
t
}d pτq}2dτ ď γ2

provided that L px, uq “ Qpsq `Θpuq. This completes the proof.179

Remark 3. As shown in (25), the optimal constrained control and disturbance solution u˚psq and180

d˚psq depend on solving the HJI equation (26) for the optimal value function V ˚psq. However,181

the HJI equation (26) is a nonlinear partial differential and extremely difficult to solve. In the182

following, an online algorithm is presented to find an approximate solution to the HJI equation183

(26).184

4. Online Actor-Critic-Barrier Learning185

As shown in Lemma 3, with the barrier-function-based system transformation (10), the equiv-186

alence between Problems 1 and 2 can be guaranteed. In this section, we present a novel barrier-187

actor-critic online algorithm to learn the optimal control policy and the worst disturbance with188

11

                  



System (3)

System (14)
Actor

Critic

Barrier-function-based 
Transformation (10)

Disturbance

Critic Error

History 
Stack

𝑥𝑥 𝑡𝑡

𝑠𝑠 𝑡𝑡
𝑢𝑢 𝑡𝑡𝑑𝑑 𝑡𝑡

𝑑𝑑 𝑡𝑡
𝑢𝑢 𝑡𝑡

�𝑊𝑊𝑐𝑐

𝑒𝑒𝑐𝑐 𝑡𝑡𝑖𝑖 , 𝑡𝑡

𝑒𝑒𝑐𝑐 𝑡𝑡

𝑑𝑑 𝑡𝑡

𝑑𝑑 𝑡𝑡
𝑢𝑢 𝑡𝑡

Figure 2: The overall barrier-actor-critic algorithm for disturbance attenuation with input saturation and full-state

constraints. 1) Based on the barrier function defined in Definition 4, a novel system transformation is applied to

original system (3) to obtain the transformed system (14). 2) The barrier-function-based system transformation

is then combined with the actor-critic online algorithm to learn the optimal control policy u˚ and worst-case

disturbance d˚. 3) To obviate the requirement of PE condition for online critic learning, the experience replay

technique is employed to concurrently utilize the online and history data.

respect to the performance of Problem 2. First, value function approximation for the critic learning189

is represented by using neural networks. Online critic learning is designed to approximate the HJI190

equation (26). In addition, two actor NNs are designed to learn the optimal control policy (23)191

and the worst-case disturbance (24), respectively.192

4.1. Value Function Approximation193

Using the NN approximation theorem, there exists a single-layer NN such that the value func-194

tion V psq and its gradient ∇V psq can be uniformly approximated with a critic NN as the number195
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of basis sets increases, within a compact set Ω Ď Rn that contains the origin, as196

V ˚ psq “ pW˚qTφ psq ` ε psq (27)

∇V ˚ psq “ r∇φ psqsTW˚ `∇ε psq (28)

where W˚ P RN is an ideal weight vector for the best N -dimensional value function approximation,197

φ p¨q : Rn Ñ RN is the NN basis function, ∇ “ B{Bs, ε psq and ∇ε psq are the NN approximation198

residual. For the value function approximation (27) and (28), the following standard assumption199

is adopted in this paper.200

Assumption 3. The value function approximation as shown in (27) and (28) are assumed to have201

the following properties.202

1) The ideal weight W is bounded by a constant, i.e., }W˚} ď b˚;203

2) The value function approximation residual ε and ∇ε satisfies }ε psq} ď bε and }∇ε psq} ď bdε;204

3) The NN basis function φ psq and its gradient ∇φ psq satisfies }φ psq} ď bφ and }∇φ psq} ď bdφ205

for @s P Ω.206

For the optimal control policy u˚psq and the optimal disturbance inputs d˚psq, the Bellman207

equation (19) approximation error using the value function approximation (27) can be expressed208

as209

ξ “ U ps, u˚, d˚q ` pW˚qTσ (29)

where σ is a N -dimensional vector signal defined as210

σ “ ∇φ psq rF psq `G psqu˚ `K psq d˚s (30)

Considering the value gradient approximation (28), one can obtain that the Bellman residual211

results from the value gradient approximation error ∇εpsq, i.e.,212

ξ “ ´r∇ε psqsT rF psq `G psqu˚ `K psq d˚s (31)

Similarly, with the value function approximation (27), the HJI equation (26) can be approximated213

with a residual expressed as214

ζ “ Qpsq ` pW˚qTσ `Θ p´λ tanh pDuqq ´ 1

4γ2
pW˚qTDdW

˚

“ Q psq ` pW˚qT∇φ psqF psq ` λ2R̄ ln
`
1´ tanh2 pDůq

˘` 1

4γ2
pW˚qTDdW

˚

(32)
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with215

Dů “ 1

2λ
R´1GT psq r∇φ psqsTW˚

Dd “ ∇φ psqK psqKT psqr∇φ psqsT (33)

Remark 4. From Assumptions 1 and 3, the policy representations in (23) and (24), the Bellman216

equation approximation residual ξ is bounded in the sense that there exists a constant bξ such217

that }ξ} ď bξ. Similarly, the HJI approximation residual ζ using the ideal N -dimensional value218

function approximation (27) and (28) is bounded as ζ ď bζ .219

4.2. Critic Learning220

The ideal weight, W in (27), provides the best approximate to the optimal value function V ˚psq221

on the compact set Ω and is unknown. Therefore, the estimation of W is implemented by the critic222

network with the approximations of the value function and value gradient223

V̂ psq “ ŴT
c φc psq (34)

∇V̂ psq “ r∇φc psqsTŴc (35)

Then, for a given policy u p¨q, the residual of Bellman equation approximation using the identifier224

NN and the critic NN, can be determined as225

ec ptq “ U ps ptq , u ptq , d ptqq ` ŴT
c σ ptq

“ ´p∇εqT rF ps ptqq `G ps ptqqu ptq `K ps ptqq d ptqs (36)

Define the critic weight approximation error as226

W̃c “W˚ ´ Ŵc (37)

Then, from (29), the relation between Bellman residual ec and the Bellman equation approximation227

error ζ can be written in terms of the critic weight error W̃c as228

ecptq “ ξptq ´ W̃T
c ptqσptq (38)

ec pti, tq “ ξptiq ´ W̃T
c ptqσptiq (39)

Then ec Ñ ξ as Ŵc Ñ W˚. The policy evaluation for an admissible control policy up¨q can be229

formulated as adapting the critic weight Ŵc to minimize the objective function230

Ec “ 1

2

˜
rec ptqs2

p1` σTptqσptqq2 `
kÿ

i“1

“
e2
c pti, tq

‰2

p1` σTptiqσptiqq2
¸

(40)
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Using the chain rule yields adaptive critic online learning as231

9̂
W c “ ´αc BEcBŴc

“ ´αc σ ptq ec ptq
r1` σT ptqσ ptqs2 ´ αc

kÿ

i“1

σ ptiq ec pti, tq
r1` σT ptiqσ ptiqs2

“ ´αc
σ ptq

”
ξptq ´ σptqTW̃c ptq

ı

r1` σT ptqσ ptqs2 ´ αc
kÿ

i“1

σ ptiq
”
ξptiq ´ σptiqTW̃c ptq

ı

r1` σT ptiqσ ptiqs2
(41)

where αc ą 0 is the critic learning rate.232

Condition 1. The recorded data matrix
”
σ pt1q ¨ ¨ ¨ σ ptkq

ı
is full column rank.233

Theorem 1. Let u be any given admissible control policy. Then, under Condition 1, the critic234

weight approximation error W̃c in (37) is UUB with the adaptive critic learning (41).235

Proof. Based on (37) and (41), the dynamics of W̃c can be expressed as236

9̃W c ptq “ ´N1W̃c ptq `N2 (42)

where237

N1 “ αc

˜
σ ptqσptqT

r1` σT ptqσ ptqs2 `
kÿ

i“1

σ ptiqσptiqT
r1` σT ptiqσ ptiqs2

¸
(43)

N2 “ αc

˜
σ ptq ξ ptq

r1` σT ptqσ ptqs2 `
kÿ

i“1

σ ptiq ξ ptiq
r1` σT ptiqσ ptiqs2

¸
(44)

Note the fact that
››› y

1`yTy
››› ď 1

2 and
››› 1

1`yTy
››› ď 1 for arbitrary vector signal y. Then, from Remark238

4, N2 in (42) satisfies }N2} ď αc

2 pk ` 1q bξ. Consider the following Lyapunov function:239

Vc “ 1

2αc
W̃T
c ptqW̃c ptq (45)

By differentiating (45) along the critic weight error dynamics (42), one has240

9Vc “ ´W̃T
c ptq

˜
σ ptqσTptq

r1` σT ptqσ ptqs2 ` Λ

¸
W̃c ptq ` W̃T

c ptqN2 (46)

with241

Λ “
kÿ

i“1

σ ptiqσTptiq
p1` σT ptiqσ ptiqq2

ą 0 (47)

which is guaranteed by Condition 1. Therefore, 9Vc is negative if

›››W̃c ptq
››› ą αc pk ` 1q bξ

2λmin pΛq
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Then, the critic weight error W̃c converges to the residual set

Ωc “
"
W̃c

ˇ̌
ˇ̌
›››W̃c ptq

››› ą αc pk ` 1q bξ
2λmin pΛq

*

Therefore, the critic weight error W̃c is UUB. This completes the proof.242

Remark 5. In contrast to the stability analysis as in [37, 55] where the PE condition on the signal243

is required for the signal σptq, in this paper, only Condition 1 is required to be satisfied for the244

signal σptiq in the history stack. Note that Condition 1 is weaker than the traditional PE condition245

and is easier to be checked for online implementation.246

4.3. Actor and Disturbance Learning247

As shown in (23) and (24), the optimal control policy and disturbance depend on the optimal248

value gradient BV
˚psq
Bs . Therefore, consider the value gradient approximation with the critic weight249

Ŵc in (35), the control and disturbance policies can be determined using the critic weight as250

uc psq “ ´λ tanh
´
D̂c

¯
(48)

D̂c “ 1

2λ
R´1GTp∇φqTŴc (49)

dc psq “ 1

2γ2
KTp∇φqTŴc (50)

However, this policy improvement does not guarantee the stability of the closed-loop system [36,251

37, 47, 55]. Therefore, to ensure the closed-loop stability, the policy applied to the system is252

implemented by alternative approximators using actor and disturbance network as253

ua psq “ ´λ tanh
´
D̂u

¯
(51)

D̂u “ 1

2λ
R´1GTp∇φqTŴu (52)

da psq “ 1

2γ2
KTp∇φqTŴd (53)

where Ŵu is the actor network weight and Ŵd is the disturbance network weight. Define the weight254

estimation errors for the actor and the disturbance as,255

W̃u “W˚ ´ Ŵu, W̃d “W˚ ´ Ŵd (54)

The actor network is designed to minimize the objective function256

Eu “ 1

2
eT
uReu (55)
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where257

eu “ ua ´ uc “ λ rtanh pDcq ´ tanh pDaqs (56)

denotes the difference between the actor ua (51) applied to the system and the control input258

uc (48). Applying the actor (51) and disturbance (53) to the system (14) yields the closed-loop259

dynamics260

9s ptq “ σa ptq
“ F psq ´G psqλ tanh

´
D̂u

¯
` 1

2γ2
K psqK psqTr∇φ psqsTŴd (57)

Define261

ξ1 “
«

σaσ
T
a

p1` σT
a σaq2

`
kÿ

i“1

σaiσ
T
ai`

1` σT
aiσai

˘2

ff

ξ2 “
«

σa

p1` σT
a σaq2

`
kÿ

i“1

σai`
1` σT

aiσai
˘2

ff

ξ3 “ σaπ

p1` σT
a σaq2

`
kÿ

i“1

σaiπi`
1` σT

aiσai
˘2

ξ4 “ ´ αc
4γ2

«
σa

p1` σT
a σaq2

`
kÿ

i“1

σai`
1` σT

aiσai
˘2

ff

ψ ptq “ ∇φGλ
«

tanh

˜
D̂u

ρ

¸
´ tanh

´
D̂u

¯ff

π ptq “ WT∇φGλ
«

tanh

ˆ
Dů

ρ

˙
´ tanh

˜
D̂u

ρ

¸ff
` εJ (58)

where σai “ σaptiq and πi “ πptiq. Then, the stability and convergence of all the signals in262

the closed-loop system with the barrier-actor-disturbance learning algorithm is discussed in the263

following theorem.264

Theorem 2. Consider the dynamical system (14) with the critic (34), the actor (51), the distur-265

bance input (53) with the design parameters in (58) and the following adaptive learning rules for266

the critic weight Ŵc, actor weight Ŵu and disturbance Ŵd, respectively,267

9̂
W c “ ´ αc

σa ptq
”
U ps ptq , ua, daq ` ŴT

c σa ptq
ı

p1` σT
a ptqσa ptqq2

´αc
kÿ

i“1

σa ptiq
”
U ps ptiq , ua ptiq, da ptiqq ` ŴT

c ptqσa ptiq
ı

p1` σT
a ptiqσa ptiqq2

(59)

9̂
Wu “ ´αu

”
YuŴu `∇φGeu `∇φGtanh2

´
D̂u

¯
eu

ı
, (60)

9̂
W d “ ´αd

´
Yd1Ŵd ´ Yd2Ŵc `DdŴdξ

T
4 Ŵc

¯
(61)
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where αc P R, αu P R and αd P R are the learning rate for the critic, actor and disturbance268

networks, Yu P RNˆN , Yd1 P RNˆN and Yd2 P RNˆN are the feedback gains for the actor and269

disturbance networks. Then, the augmented state X “
”
sT W̃T

c W̃T
u W̃T

d

ıT

is UUB provided270

that the design parameters are selected such that271

q ą 0

´ξ1 ` rc
2
ξ2ξ

T
2 `

1

2rd1
I ` rd2

2
ξ4ξ

T
4 ă 0

1

2rc
ψψT ´ Yu ă 0

Yd1 `Ddξ
T
4 W

˚ ` rd1

2
Yd2Y

T
d2 `

1

2rd2
DdW

˚pW˚qTDT
d ă 0 (62)

where rc, rd1 and rd2 are positive constants to be determined.272

Proof. Consider the following Lyapunov candidate function:273

J pXq “ V ˚ psq ` Vc
´
W̃c

¯
` Vu

´
W̃u

¯
` Vd

´
W̃d

¯
(63)

where V ˚ p¨q is the optimal value function satisfying the HJI equation and274

Vc psq “ 1

2
W̃T
c α

´1
c W̃c, Vu psq “ 1

2
W̃T
u α

´1
u W̃u, Vd psq “ 1

2
W̃T
d α

´1
d W̃d

The derivative of the Lyapunov function (63) is given by275

9J “ 9V ˚ ` 9Vc ` 9Vu ` 9Vd (64)

For the first term of (64), one has276

9V ˚ “
”
pW˚qT∇φ` p∇εqT

ı
rF psq `G psqua `K psq das

“ pW˚qT∇φF ´ pW˚qT∇φGλ tanh
´
D̂u

¯
` 1

2γ2
pW˚qTDdŴd ` ε0 (65)

with Dd is defined in (33) and277

ε0 “ p∇εqTσa
σa “ F psq ´G psqλ tanh

´
D̂u

¯
` 1

2γ2
K psqK psqTr∇φ psqsTŴd (66)

Based on Assumptions 1 and 3 and Remark 4, ε0 can be upper bounded as278

ε0 ď bdεbf }s} ` bdεbgλ` 1

2γ2
bdεb

2
kbdφb˚ ´

1

2γ2
p∇εqTK psqKpsqTr∇φ psqsTW̃d (67)

From (25) and (32), one has279

pW˚qT∇φF “ ´Q psq ´Θ p´λ tanh pDůqq ` pW˚qT∇φGλ tanh pDůq
´ 1

4γ2
pW˚qTDdW

˚ ` ζ
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with280

Θ p´λ tanh pDůqq “ pW˚qT∇φGλ tanh pDůq ` λ2R̄ ln
`
1´ tanh2 pDůq

˘
(68)

where Du has been defined as in (33). Inserting pW˚qT∇φF and (68) into (65) yields281

9V ˚ “ ´Q psq ´Θ p´λ tanh pDůqq ` pW˚qT∇φGλ tanh pDůq
´ 1

4γ2
pW˚qTDdW

˚ ´ pW˚qT∇φGλ tanh
´
D̂u

¯
` 1

2γ2
pW˚qTDdW

˚

´ 1

2γ2
pW˚qTDdW̃d ` ζ ` ε0 (69)

Since Qp¨q and Θp¨q are positive definite functions, then, there exists a positive constant q ą 0 such282

that283

sTqs ď Qpsq ď Qpsq `Θ p´λ tanh pDůqq (70)

The third term in (69) can be upper bounded by284

pW˚qT∇φ pxqGλ tanh pDůq ď λbgbdφb˚ (71)

Considering W˚ “Wu ` W̃u, then, the forth term in (69) can be rewritten as285

´pW˚qT∇φGλ tanh
´
D̂u

¯

“ ´W̃T
u ∇φGλ tanh

´
D̂u

¯
´ ŴT

u ∇φGλ tanh
´
D̂u

¯

ď ´W̃T
u ∇φGλ tanh

´
D̂u

¯
(72)

where the above inequality results from the fact that ŴT
u ∇φGλ tanh

´
D̂u

¯
“ 2λ2R̄

”
D̂u tanh

´
D̂u

¯ı
286

and xT tanh pxq ě 0, for arbitrary vector signal x. Considering now the facts (67), (69), (70), (71)287

and (72), 9V ˚ further satisfies288

9V ˚ ď ´W̃T
u ∇φGλ tanh

´
D̂u

¯
´ sTqs` bdεbf }s}

`λbgbdφb˚ ` 1

4γ2
b2˚b2dφb2k ` bζ ` λbdεbg `

1

2γ2
bdεb

2
kbdφb˚

´ 1

2γ2
p∇εqTK psqKpsqTr∇φ psqsTW̃d ´ 1

2γ2
pW˚qTDdW̃d

“ ´W̃T
u ∇φGλ tanh

´
D̂u

¯
´ sTqs`Ms }s} `Ns `Md1W̃d (73)

where289

Ms “ bdεbf

Ns “ λbgbdφb˚ ` 1

4γ2
b2˚b2dφb2k ` bζ ` λbdεbg `

1

2γ2
bdεb

2
kbdφb˚

Md1 “ ´ 1

2γ2

!
p∇εqTK psqKpsqTr∇φ psqsT ` pW˚qTDd

)
(74)
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Second, for the critic weight error W̃c, from (41) one has290

9̃W c ptq “ αc
σa

p1` σT
a σaq2

ec ptq ` αc
kÿ

i“1

σai`
1` σT

aiσai
˘2 ec pti, tq (75)

where σa has been defined in (66) and σai “ σa ptiq. Differentiating Vc along with (75), one has291

9Vc “ W̃T
c α

´1
c

9̃W c

“ W̃T
c

«
σa

p1` σT
a σaq2

ec ptq `
kÿ

i“1

σai`
1` σT

aiσai
˘2 ec pti, tq

ff
(76)

From (32), one has292

´Q psq ´Θ p´λ tanh pDůqq ´ pW˚qTσ ` 1

4γ2
pW˚qTDdW

˚ ` ζ “ 0. (77)

Therefore, one can obtain293

ec “ Q psq `Θ
´
´λ tanh

´
D̂u

¯¯
` ŴT

c σa ´
1

4γ2
ŴT
d DdŴd

“ Q psq `Θ
´
´λ tanh

´
D̂u

¯¯
` ŴT

c σa ´
1

4γ2
ŴT
d DdŴd

´Q psq ´Θ p´λ tanh pDůqq ´ pW˚qTσ ` 1

4γ2
pW˚qTDdW

˚ ` ζ

Adding and subtracting pW˚qTσa to ec yields294

ec “ Θ
´
´λ tanh

´
D̂u

¯¯
´Θ p´λ tanh pDůqq ´ W̃T

c σa ` pW˚qT pσa ´ σq

´ 1

4γ2
ŴT
d DdŴd ` 1

4γ2
pW˚qTDdW

˚ ` ζ (78)

Moreover, note that295

Θ
´
´λ tanh

´
D̂u

¯¯
´Θ p´λ tanh pDůqq

“ λŴT
a ∇φG tanh

´
D̂u

¯
` λ2R̄ ln

´
1´ tanh2

´
D̂u

¯¯

´λWT∇φG tanh pDůq ´ λ2R̄ ln
`
1´ tanh2 pDůq

˘
(79)

Note that the term λ2R̄ ln
`
1´ tanh2 pDůq

˘
in (79) can be rewritten as296

λ2R̄ ln
`
1´ tanh2 pDůq

˘ “ λ2R̄
”
ln 4´ 2Dů ´ 2 ln

´
1` e´2D˚

u

¯ı
, (80)

where ´2 ln
´

1` e´2D˚
u

¯
can be approximated using Lemma 1 as297

´2 ln
´

1` e´2D˚
u

¯
“ 2Dů ´ 2Důsgn pDůq ` εDů

, (81)
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where
››εDů

›› ď ln 4. Then, inserting (81) into (80) yields298

λ2R ln
`
1´ tanh2 pDůq

˘ “ λ2R̄
“
ln 4´ 2Důsgn pDůq ` εDů

‰
. (82)

Similarly,299

λ2R̄ ln
´

1´ tanh2
´
D̂u

¯¯
“ λ2R

”
ln 4´ 2D̂usgn

´
D̂u

¯
` εD̂u

ı
, (83)

where
›››εD̂u

››› ď ln 4. Consider (79), (82) and (83), one has300

Θ
´
´λ tanh

´
D̂u

¯¯
´Θ p´λ tanh pDůqq

“ λŴT
a ∇φG tanh

´
D̂u

¯
´ λWT∇φG tanh pDůq

`λ2R̄
”
2Důsgn pDůq ´ 2D̂usgn

´
D̂u

¯
` εD̂u

´ εDů

ı
(84)

The nonsmooth function sgnp¨q in (84) can be approximated by the function tanhp¨q by using301

Lemma 2. Then, based on (84), one has302

λ2R̄
´

2Důsgn pDůq ´ 2D̂usgn
´
D̂u

¯¯

“ pW˚qT∇φGλ tanh

ˆ
Dů

ρ

˙
´ ŴT

u ∇φGλ tanh

˜
D̂u

ρ

¸
` λ2R̄ερ (85)

with approximation error satisfying 0 ď ερ ď 2κρ where κ “ 0.2785 is defined in Lemma 2. Based303

on (84) and (85), adding and substracting pW˚qT∇φGλ tanh
´
D̂u

¯
, one has304

ec “ ´W̃T
c σa ` W̃T

u ∇φGλ
«

tanh

˜
D̂u

ρ

¸
´ tanh

´
D̂u

¯ff

`pW˚qT∇φGλ
«

tanh

ˆ
Dů

ρ

˙
´ tanh

˜
D̂u

ρ

¸ff
` ζ ` λ2R̄

´
εD̂u

´ εDů
` ερ

¯
` εc (86)

where εc “ ´ 1
4γ2 Ŵ

T
d DdŴd ` 1

2γ2 pW˚qTDdŴd ´ 1
4γ2 pW˚qTDdW

˚, which can be further rewritten305

as306

εc “ ´ 1

4γ2
ŴT
d DdŴd ´ 1

4γ2
pW˚qTDdW

˚ ` 1

4γ2
pW˚qTDdŴd ` 1

4γ2
pW˚qTDdŴd

“ 1

4γ2
W̃T
d DdŴd ´ 1

4γ2
pW˚qTDdW̃d

“ ´ 1

4γ2
W̃T
d DdW̃d (87)

Denote εJ “ λ2R
´
εD̂u

´ εDů
` ερ

¯
` ζ, one has307

ec ptq “ ´W̃T
c ptqσa ptq ` W̃T

a ptqψ ptq ` π ptq ´
1

4γ2
W̃T
d ptqDdW̃d ptq (88)
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where ψ and π is defined in (58). Similarly,308

ec pti, tq “ ´W̃T
c ptqσa ptiq ` W̃T

a ptqψ ptq ` π ptiq ´
1

4γ2
W̃T
d ptqDdW̃d ptq (89)

where Based on Assumptions 1 and 3, both ψ and π are bounded. Substituting (88) and (89) into309

(75) yields,310

9̃W c “ ´αc
«

σaσ
T
a

p1` σT
a σaq2

`
kÿ

i“1

σaiσ
T
ai`

1` σT
aiσai

˘2

ff
W̃c

`αc
«

σa

p1` σT
a σaq2

`
kÿ

i“1

σai`
1` σT

aiσai
˘2

ff
ψTW̃a

`αc
«

σaπ

p1` σT
a σaq2

`
kÿ

i“1

σaiπi`
1` σT

aiσai
˘2

ff

´ αc
4γ2

«
σa

p1` σT
a σaq2

`
kÿ

i“1

σai`
1` σT

aiσai
˘2

ff
W̃T
d DdW̃d (90)

Substituting (90) into (76), one has311

9Vc “ W̃T
c α

´1
c

9̃W c

“ ´W̃T
c ξ1W̃c ` W̃T

c ξ2ψ
TW̃u ` W̃T

c ξ3 ` W̃T
c ξ4W̃

T
d DdW̃d

ď ´W̃T
c ξ1W̃c ` rc

2
W̃T
c ξ2ξ

T
2 W̃c ` 1

2rc
W̃T
u ψψ

TW̃u ` W̃T
c ξ3 ` W̃T

c ξ4W̃
T
d DdW̃d

“ W̃T
c

”
´ξ1 ` rc

2
ξ2ξ

T
2

ı
W̃c ` 1

2rc
W̃T
u ψψ

TW̃u ` W̃T
c ξ3 ` W̃T

c ξ4W̃
T
d DdW̃d (91)

where ξi for i “ 1, 2, 3, 4 has been defined in (58).312

Next, we give the upper bound of 9Vu. Based on (60), differentiating Va yields313

9Vu “ W̃T
u α

´1
u

9̃Wu

“ ´W̃T
u

”
∇φGeu `∇φGtanh2

´
D̂u

¯
eu ` YuŴu

ı

“ ´W̃T
u YuW̃u ` W̃T

u ∇φGλ tanh
´
D̂u

¯
` W̃T

uMu

ď ´W̃T
u YuW̃u ` W̃T

u ∇φGλ tanh
´
D̂u

¯
`Mu

TW̃u (92)

where Mu “
”
´∇φGλ tanh

´
D̂c

¯
`∇φGtanh2

´
D̂u

¯
eu ` YuW˚

ı
314

Based on Assumption 1 - 3 and the definition of the actor learning error eu in (56), Mu is also315

bounded.316
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For the derivative of Vd, according to (61) one has317

9Vd “ ´W̃T
d Yd1W

˚ ` W̃T
d Yd1W̃d ` W̃T

d Yd2W
˚ ´ W̃T

d Yd2W̃c

´W̃T
d DdW

˚ξT
4 W

˚ ` W̃T
d DdW̃dξ

T
4 W

˚ ` W̃T
d DdW

˚ξT
4 W̃c ´ W̃T

d DdW̃dξ
T
4 W̃c

“ W̃T
d Yd1W̃d ` W̃T

d DdW̃dξ
T
4 W

˚ ´ W̃T
d Yd1W

˚ ´ W̃T
d DdW

˚ξT
4 W

˚ ` W̃T
d Yd2W

˚

´W̃T
d Yd2W̃c ` W̃T

d DdW
˚ξT

4 W̃c ´ W̃T
d DdW̃dξ

T
4 W̃c (93)

Using Young’s inequality to (93) yields318

9Vd ď W̃T
d

`
Yd1 `Ddξ

T
4 W

˚˘ W̃d ` W̃T
d

“
Yd2W

˚ ´ Yd1W
˚ ´DdW

˚ξT
4 W

˚‰

`rd1

2
W̃T
d Yd2Y

T
d2W̃d ` 1

2rd1

›››W̃c

›››
2 ` 1

2rd2
W̃T
d DdW

˚pW˚qTDT
d W̃d ` rd2

2
W̃T
c ξ4ξ

T
4 W̃c

´W̃T
d DdW̃dξ

T
4 W̃c

“ 1

2rd1

›››W̃c

›››
2 ` rd2

2
W̃T
c ξ4ξ

T
4 W̃c ´ W̃T

d QdW̃d `MT
d2W̃d ´ W̃T

d DdW̃dξ
T
4 W̃c (94)

where319

Qd “ ´
„
Yd1 `Ddξ

T
4 W

˚ ` rd1

2
Yd2Y

T
d2 `

1

2rd2
DdW

˚pW˚qTDT
d



Md2 “ Yd2W
˚ ´ Yd1W

˚ ´DdW
˚ξT

4 W
˚ (95)

Finally, collecting the results in (73), (91), (92) and (94), one has320

9J ď ´sTQss`Ms }s} `Ns ´ W̃T
c QcW̃c ` W̃T

c ξ3

´W̃T
u QuW̃u `MT

u W̃u ´ W̃T
d QdW̃d `

`
Md1 `MT

d2

˘
W̃d

ď ´λmin pQsq }s}2 ` }Ms} }s} ` }Ns} ´ λmin pQcq
›››W̃c

›››
2 ` }ξ3}

›››W̃c

›››

´λmin pQuq
›››W̃u

›››
2 ` }Mu}

›››W̃u

›››´ λmin pQdq
›››W̃d

›››
2 ` ››Md1 `MT

d2

››
›››W̃d

››› (96)

where321

Qs “ qI

Qc “ ξ1 ´ rc
2
ξ2ξ

T
2 ´

1

2rd1
I ´ rd2

2
ξ4ξ

T
4

Qu “ ´ 1

2rc
ψψT ` Yu

Based on Assumptions 1 and 3, Ms, Mu, Md1, Md2 and Ns are bounded. Note that the parameters322
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design in (62) guarantees that Qs ą 0, Qc ą 0, Qu ą 0 and Qd ą 0. Therefore, 9J ă 0 if323

}s} ą }s}
2λmin pQsq `

d
}Ms}2

4λ2
min pQsq

` }Ns}
λmin pQsq

›››W̃c

››› ą
›››W̃c

›››
2λmin pQcq `

d
}Mc}2

4λ2
min pQcq

›››W̃u

››› ą
›››W̃u

›››
2λmin pQuq `

d
}Mu}2

4λ2
min pQuq

›››W̃d

››› ą
›››W̃d

›››
2λmin pQdq `

d
}Md}2

4λ2
min pQdq

(97)

Then, the augmented state X “
”
sT W̃T

c W̃T
u W̃T

d

ıT

converges to the residual set ΩX324

defined as325

ΩX “ tX| }s} ă }s}
2λmin pQsq `

d
}Ms}2

4λ2
min pQsq

` }Ns}
λmin pQsq ,

›››W̃c

››› ă
›››W̃c

›››
2λmin pQcq `

d
}Mc}2

4λ2
min pQcq

,
›››W̃u

››› ă
›››W̃u

›››
2λmin pQuq `

d
}Mu}2

4λ2
min pQuq

,

›››W̃d

››› ă
›››W̃d

›››
2λmin pQdq `

d
}Md}2

4λ2
min pQdq

,
.
- (98)

This completes the proof.326

5. Simulation Study327

To verify the effectiveness of the presented online safe RL algorithm with the actor-critic-barrier328

structure, we consider the following nonlinear systems of a single link robot arm329

:θ ptq “ ´Mgl

G̃
sin pθ ptqq ´ D̃

G̃
9θ ptq ` 1

G̃
u ptq ` kd ptq (99)

where θ is the angle position, 9θ is the angle velocity, M is the mass of the payload, g is the330

acceleration of gravity, l is the length of the arm, D̃ is the viscous friction and G̃ is the moment of331

inertia. In this experiment, M “ 10kg, g “ 9.81m{s2, l “ 0.5m, D̃ “ 2N and G̃ “ 10kgm2 . Let332

x1“θ, x2 “ 9θ and x “
”
x1 x2

ıT

, then the dynamics of x can be written as333

»
– 9x1

9x2

fi
fl “

»
– x2

f pxq

fi
fl`

»
– 0

g pxq

fi
flu`

»
– 0

k pxq

fi
fl d (100)
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where334

f pxq “ ´Mgl

G̃
sin px1q ´ D̃

G̃
x2

g pxq “ 1

G̃
, k pxq “ k

For Problem 1, the performance output is selected as L px, uq “ xTHx ` uTRu with H “ 50I,335

R “ 10I. In addition, the following safety constraints are considered336

xi P pai, Aiq ,@i P t1, 2u (101)

where a1 “ ´1.6, A1 “ 3, a2 “ ´4 and A2 “ 3. By using the classical actor-critic reinforcement337

learning algorithm, the state evolution with respect to time can be shown in Figure 3. The phase338

portrait of the state evolution in the state space is shown in Figure 5. As can be seen from Figure 3,339

the full-state constraints cannot be guaranteed by the classical actor-critic reinforcement learning340

algorithm. The evolution of the actor-critic-disturbance is shown in Figure 4.341

To deal with the full-state constraints, the barrier-function-based system transformation (10)342

is employed. With the barrier function, one can obtain the transformed system as 9s “ F psq `343

G psqu`K psq d with344

F psq “

»
—–

a2A2

´
e
s2
2 ´e´ s2

2

¯

a2e
s2
2 ´A2e

´ s2
2

A2
1e

´s1´2a1A1`a21es1
A1a21´a1A2

1

f
`
B´1 psq˘ A2

2e
´s2´2a2A2`a22es2
A2a22´a2A2

2

fi
ffifl

G psq “
»
– 0

1
G̃

A2
2e

´s2´2a2A2`a22es2
A2a22´a2A2

2

fi
fl

K psq “
»
– 0

k
A2

2e
´s2´2a2A2`a22es2
A2a22´a2A2

2

fi
fl (102)

with the initial condition345

s0 “
”
s0 p1q s0 p2q

ıT

s0 p1q “ b px0 p1q ; a1, A1q , s0 p2q “ b px0 p2q ; a2, A2q

Based on the actor-critic-barrier online learning algorithm, the state evolution of state sptq in

system (102) is given in Figure 6. One can observe that the state sptq of system (102) converges

to the origin asymptotically. Based on the state evolution of sptq, by using the barrier function

inverse mapping (10), one can obtain the state xptq as

x1 ptq “ b´1 ps1 ptq ; a1, A1q , x2 ptq “ b´1 ps2 ptq ; a2, A2q

25

                  



0 10 20 30 40 50 60 70 80 90 100

Time (s)

-2

-1

0

1

2

3

x 1
(t

)

Actor-Critic
Barrier-Actor-Critic
State-Constraint Boundary

0 10 20 30 40 50 60 70 80 90 100

Time (s)

-4

-2

0

2

4

x 2
(t

)

Actor-Critic
Barrier-Actor-Critic
State-Constraint Boundary

2 2.5 3

-1.8
-1.6
-1.4
-1.2

2.8 3 3.2 3.4 3.6 3.8
2

2.5

3

Figure 3: Evolution of the state xptq by using the presented actor-critic-barrier learning and classical actor-critic

learning. The dashed line represents the boundary of the safe region.
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Figure 4: Evolution of the actor and critic weights using classical actor-critic learning.
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Figure 6: Evolution of the state sptq by using the presented actor-critic-barrier learning and classical actor-critic

learning.

Then, the evolution of the state xptq is shown in Figure 3. The phase portrait of the state evolution346

rx1ptq x2ptqs is provided in Figure 5. The black box represents the full-state constraints. One can347

observe that with the barrier-actor-critic learning algorithm, the state evolution does not exceed the348

boundary of the prescribed region and full-state constraints can be guaranteed. That is, the state349

xptq converges to the origin asymptotically while satisfying the safety constraints (101). Finally,350

the learning process of the barrier-actor-critic networks is shown in Figure 7.351

6. Conclusions352

In this paper, the disturbance attenuation problem with both full-state constraints and input353

saturation is considered. An adaptive optimal controller design with the barrier-actor-critic al-354

gorithm is developed. First, a novel barrier function is defined to deal with full-state saturation.355

Based on this barrier function, a novel system transformation is applied to the original system356

to obtain the transformed system. Second, the barrier-function-based system transformation is357

then combined with the actor-critic online algorithm to learn the optimal control policy and the358

worst-case disturbance. To obviate the requirement of PE condition for online critic learning, the359

experience replay technique is employed to utilize the online and history data concurrently. The360

stability of the closed-loop system and the convergence of the actor-critic parameters to the op-361

timal condition are discussed in the framework of Lyapunov analysis. The input saturation and362
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Figure 7: Evolution of the actor and critic weights using barrier-actor-critic learning.
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full-state constraints are guaranteed to be satisfied during the learning phase. Finally, simulation363

studies are conducted to verify the efficacy of the presented barrier-actor-critic online learning.364
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