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Event-based Near Optimal Sampling and Tracking Control of Nonlinear
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Abstract— This paper presents a near optimal event-based
tracking control scheme for nonlinear continuous time systems.
In order to simultaneously design the event-based sampling
intervals and the control policy, the problem of designing
the event-triggering mechanism and the feedback controller is
posed as a min-max optimization problem. Using the resultant
saddle point solution, the feedback control policy and the
threshold for the event-based sampling condition is designed.
The proposed control scheme is realized by approximating the
solution to the associated Hamilton-Jacobi-Issac (HJI) equation
using event-based neural networks (NN). The NN weights
are updated using an impulsive update scheme. Extension of
Lyapunov stability analysis for the impulsive hybrid dynamical
system is utilized to prove the local ultimate boundedness of
the tracking and NN weight estimation errors. Furthermore,
Zeno free behavior of the event-triggering mechanism is guar-
anteed along with the numerical simulation to corroborate the
analytical design.

I. INTRODUCTION

Event-based sampling and control [1] - [5] provides an
unified approach for implementing controllers on digital
platform. In the event-based control schemes, the sampling
intervals are determined on a “as needed” basis. This typi-
cally depends on the stability and performance requirements
while trying to save computational and network resources.
Recently, various event-triggered control schemes are pre-
sented in the literature for both state regulation [1] and
tracking control [2]- [3] problems. The main idea behind the
emulation based event-triggered control design is the design
of triggering condition to determine the sampling instants
such that the event-based implementation of the controller
guarantees stability.

Optimal control [6]- [14] approaches, on the other hand,
are employed to optimize the cumulative performance cost
in addition to the basic requirement of stability. To design
an optimal control for nonlinear continuous time systems,
it is required to solve the Hamilton-Jacobi-Bellman (HJB)
equation [7]. Adaptive dynamic programming (ADP) and
reinforcement learning (RL) [7], [9] techniques are used to
obtain an approximate solution for the HIB equation due to
the difficulty in obtaining a closed-form solution [8], [9].
A great deal of research results on ADP/RL based optimal
control for both regulation [10] and tracking [11]- [12]
problems are presented in the literature. These traditional
ADP/RL schemes use continuous/periodic state feedback for
execution and are computational intensive.

Furthermore, the optimal control problems using ADP/RL
are also studied in the context of event-based sampling due to
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its efficacy in the networked control architectures. In general,
the optimal control problem in an event-based framework is
required to address two optimization challenges: optimiza-
tion of the control policy and optimization of triggering
instants. However, the recent works on event-based optimal
state regulation [4]- [5] and tracking [3] schemes considered
the optimization of control policy only. A triggering condi-
tion is designed to retain stability. In our recent work, [13],
the co-optimization of sampling interval and control policy
is presented for regulation of linear systems.

In summary, a co-optimization for tracking control of non-
linear systems is not attempted in the literature. Therefore,
in this paper, an event-based co-optimal trajectory tracking
control is presented for nonlinear continuous-time systems.
The closest works in the literature are by the authors in [11]
and [3]. However, the work [11] uses continuous feedback
to solve the time-invariant HJB equation whereas in [3]
the event-based optimal tracking design only optimizes the
control policy by solving the corresponding HIB equation
of the discounted cost function. In this work, we propose
a novel performance index for the co-optimization problem
which leads to the Hamilton-Jacobi-Issac (HJI) equation and
a completely different problem.

The event-based tracking error system is formulated by
incorporating the error between the continuous and the event-
based control policy, referred to as sampled error policy,
in addition to the tracking error. A system transformation,
similar to [11], but, in an event-based formalism, is proposed
to avoid the difficulties in the time-varying nature of the
value function. The optimization problem is formulated as
a min-max problem by introducing a novel time-invariant
performance index. The saddle point solution for this prob-
lem [14] leads to the maximization of the event-based
sampling intervals and minimization of the control policy,
simultaneously. Approximate solution to the HJI equation is
obtained using a single critic neural network (NN).

The main contributions of the paper include: 1) a novel
optimal event-based tracking control scheme to simultane-
ously optimize the sampling intervals and control policy with
the help of a novel performance index; 2) development of
an event-based sampling condition with worst case sampled
error as threshold with Zeno free behavior; 3) development
of the impulsive on-line NN learning scheme; 4) stability
analysis of the closed-loop system using extension for im-
pulsive hybrid system.

The remaining of the paper is organized as follows. Sec-
tion II presents a brief background on the traditional tracking
control problem and formulates the problem. In Section
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III, a solution to the simultaneous optimization problem is
presented. An approximate solution using ADP is presented
in Section IV followed by the simulation results in Section
V and conclusions in Section VI.

II. BACKGROUND AND PROBLEM STATEMENT
A. Background

Consider a nonlinear continuous time system in an input
affine form given by

#(t) = f(z() + g(x®)u(t), =(0) =z (D)

where z(t) € Q, C R™ and u(t) € R™ are, respectively,
the state and the control input; €2, is a compact set in the
n-dimensional Euclidean space. The nonlinear functions f :
Q. — R™ and g : Q, — R™ ™ are the internal dynamics
and the input gain, respectively, with f(0) = 0.

The control objective for the system state x(¢) is to track
a desired state trajectory z4(t) € R™. The trajectory is
generated by a reference system given by

ta(t) = ((wa(t)), xa(0) =za0 (2)

where ¢ : Q,, — R™ is the internal dynamics, z4(t) € R"
is the desired state with (0) = 0.

Assumption 1: The system (1) is stabilizable and the
system states are available for measurement. The func-
tions f(x(t)) and g(x(t)) are Lipschitz continuous in €2,.
The function ¢(x(t)) is full column rank and satisfies
l9@(®)]| < gar for some gar > 0 and g(za)g*(za) = I
where gt = (g7g)"'g".

Assumption 2: The reference trajectory x4(t) is bounded
such that ||zq(t)] < b, € R.

To ensure that the trajectory tracking objective is tractable,
define the tracking error e,.(t) = x(t) — x4(t). The dynamics
of the tracking error, from (1) and (2), can be written as

ér(t) = fler +2a) + gles +a)u—C(ag) ()

The function argument t is dropped for brevity and made
explicit only when it is necessary. For example, z(t) is
represented as x. The steady-state feedback control policy
[11] can be expressed as

ug = g (za)(((xa)) — f(er + x4)) 4)

where w4 is the expected control policy corresponding to the
desired trajectory.

Define an augmented tracking error system state z =
[el' 2117 € R?*". The dynamics of the augmented system

can be represented as
2=F(z)+G(z)w (5)

where the nonlinear functions F' : R?™ — R?" is given by
F(Z) A f(er + md) + g(er + xd)ud - C(xd) G - R2?
((za) ’

R27n>™ given by G(2) £ {g(er(—)i—xd)} , and the mismatch

control policy w £ u—wu,4 € R™. Note that f(0) = 0 implies
the augmented F'(0) = 0.

Define the cost functional subject to the dynamical con-
straint in (5) as

(2 w) = /O T () + w(r) T Ru()dr (©)

where Q £ [ Q@ Onxn

Oan 0n><n
is a positive definite and R € R™*"™ is symmetric positive

definite matrix. The matrices 0,,x,, are matrices with all ele-
ments zero. Since the augmented dynamics in (5) transfered
the time-varying problem to a time-invariant problem [11],
the cost functional is finite for any admissible control policy.

An approximate solution of the optimal tracking control
problem can be obtained by approximating the solution of the
corresponding HIB equation using NN approximation [11]
with continuous/periodic availability of the state feedback
information. The optimal tracking control problem for event-
based control is formulated next.

€ R?"X2% where ) € R™*"

B. Problem Definition

In an event-triggered control formalism the system state is
sampled aperiodically. Define the aperiodic sampling instants
as a sequence {tp}reqony € {t}, such that 0 = to < t; <
---. The system states are sampled and the control policies
are updated at the instant tx, k =0,1,---.

Define the piecewise constant event-sampled state at the
controller as x4(t) = x(tx), Vt € [tk, tx+1). With the event-
based availability of the state information z(t), the control
policy us(t)is held at the actuator using a zero-order hold
till the next update and a piecewise constant function.

The nonlinear system given by (1) with event-based con-
trol policy us(t) can be expressed as

&= f(z) + g(x)us. 7

The error between the continuous control input «(¢) and the
event-sampled control input wug(t), referred to as sampled
error policy, e,(t) € R™, is given by

e (t) = us(t) — u(t) (8)
Using (8), the system in (7) can be represented as
&= f(z) +g(@)u+ g(z)eq. ©)

The tracking error dynamics, with the event-triggered system
(9) and the desired state trajectory (2) can be expressed as

ér(t) = f(er + xd) + g(er + xd)u + g(er + xd)eu - C(xd)
(10)
Then, the augmented system can be represented as

2=F(z)+G(z)w+ G(2)ey. (11)

The problem in hand is to design the threshold for the
event-triggering mechanism, which will maximize a perfor-
mance index, and the control policy, to minimize a per-
formance index. Therefore, the time-invariant performance
index in (6) needs to be redefined to account for the threshold
for the sampled error policy. A solution to the above problem
is presented next.
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III. PERFORMANCE INDEX AND CO-OPTIMIZATION

In this section, a min-max optimization problem is pro-
posed and the saddle-point solution to the min-max co-
optimization problem is obtained.

Define the event-based augmented state available at the
controller as

Zs(t) = Z(tk), Vit € [tk>tk+1)

where z(ty) = [el(ty),x (t;)]". The error between the
continuous augmented state z(¢) and the sampled augmented
state z,(t), referred to as state sampling error, is given by

es(t) = zs(t) — 2(t),

The sampling intervals in the event-based control scheme
can be maximized by allowing the sampled error policy (8)
to increase to its limiting value (maximum threshold value)
without compromising the system stability before the next
sampling.

To obtain the worst case threshold of the sampled error
policy, we redefine the cost functional (6) as

(12)

Vt € [tk,tk+1). (13)

J(z,w,é,) = /OOO[ZT(T)QZ(T) + w(7)T Rw(7)

AN

(14)

where v > ~* represents the attenuation constant [14] and
é,, 1s the threshold for sampled error policy e,,.

The optimization problem is posed as a minimax problem
where the mismatch control policy, w, is the minimizing
player and the threshold for sampled error policy, é,, is
the maximizing player. The objective is the find the optimal
mismatch control policy, w*, and worst case threshold, e}, for
sampled error policy e, such that the saddle-point solution
muén maz J(z,w,é,) = max mum J(z,w,é,) is reached.

€y éu J

The saddle-point optimal value function, V* : R?" — R
can be expressed as

Vi(2(t) =

min mazx

X J(z,w, é,).
w(T)|[TER>y &4 (7)|TERS,

5)

The Hamiltonian, with the admissible control policy and
state constraint (11), is defined as
H(z,w,é,) = 27 Qz +wl Rw — ~?¢le,
+ VT IF 4 Gw + Ge,]
where Vf = 0V*/0z, V*(z) is the optimal value defined in

(15). The optimal mismatch control policy in a closed form,

by using W =0, is given by

w*(2) = —(1/2)R1GT (2)V (2).

(16)

a7

Similarly, the worst-case threshold vale for the sampled error

policy in a closed form, with %}:’é“) =0, is given by
en(2) = (/)G (2)VZ (2). (18)
The optimal control policy, v*, is given by
1
ut = =g RTGT (VI (2) + 97 (2a) (C(2a) = f(2a))- (19)

The event-sampled optimal control policy u} is given by

ut = RGOV 40t () (Cas) — f(2as))- 20

where V) = ava*z(z) |:=2.. The HJI equation with optimal

mismatch policies (17) and (18) is given by

H* = 21Qz + wT Rw* — y2exTer + VT F+
Guw* +Ge] =0

21

for all z with V*(0) = 0. The existence of the solution
of the HJI equation (21), i.e., the optimal value function, is
guaranteed for a reachable and zero-state observable system
with v > ~*, where v* is the H, gain [14].

As the closed-form solution to the HJI equation is almost
impossible to compute analytically [8], an approximate so-
lution is presented next.

IV. APPROXIMATION OF THE OPTIMAL SOLUTION

In this section, the optimal value function, which is the
solution of the HJI equation is approximated using NN to
design the optimal control policy and sampling condition.

Assuming that the solution to the HJI equation, i.e., the
optimal value function V* R?™ — Rsq, exists and
continuously differentiable the value function using a NN
can be represented as

V*(2) = WTo(z) +e(2) (22)

where W € Rlo is the unknown constant target weight
vector, ¢ : R2" — Rle is the smooth activation function
satisfying ¢(0) = 0 with [, hidden layer neurons. The func-
tion € : R?” — R is the reconstruction error. The following
standard assumption for the NN is used for analysis.

Assumption 3: The unknown target weight vector W €
R’ is bounded above and given by ||[W| < Wy, where
Wi € R is a positive constant. The activation function
¢ is bounded, continuously differentiable with bound given
by ||¢(z)]] < ¢nr. Further, the NN reconstruction error is
bounded such that ||e(2)|| < epr and [|Ve(z)|| < Epr where
Ve(z) = 22

With the NN approximation of the optimal value function,
the optimal mismatch policy can be computed as

w(2) = —(1/2)R7IGT(2)(VoT ()W + Ve(2)), (23)
and the worst case threshold of sampled error policy is

el (2) = —(1/291)GT (2) (VT ()W + Ve(2)), (24)

where V¢(z) = %. Based on (22), the NN approximation
with estimated NN weights is given by

V(z) = WEh(zs), V€ [tr tosr). (25)

where W € Rl NN estimated weights and ¢(z,) € Rl is
the event-sampled activation function which uses the sampled
augmented state as input. Then, estimated mismatch control
policy

w(z) = —(1/2)R7'GT (2)(VoT (z5)W), (26)
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and the estimated control input can be expressed as

f(za))-
(27)
From (27), the event-sampled control input applied to the
system (1) with event-based state z; and (4) can be expressed
as

_ —%R—lc;T(z)wT(zs)W + 9" (za)(((za) —

= —(1/2)R'GT (2)VPT (2 )W
+ 91 (as) (C(as) — f2as)), Yt € [ty thy).

The estimated threshold of sampled error policy with the
approximated value function is given by

= (1/29%)GT (2) Vo™ (25)W

In an event-based sampling framework, applying Bellman
principle of optimality [8], event-based Bellman equation can
be expressed as

(28)

(29)

tet1 _
V* (trr) =V (k) = / (@ —u R

+vy%ele,) dr.
The Bellman equation (30), by inserting the NN represen-
tation of the value function (22), yields

WA + Aclmi) = I (7 Qz —wTRuw )
+726Téu)d7'
where Ad(7) = ¢(2(tk+1)) — d(2(tk)) and Ae(ry) =

e(2(tk+1)) —e(z(tr))-
With the approximated solution of the value function in
(25), the Bellman error is given as.

= ftt:“ (2TQz + wT Rw — ~%¢T¢é,)dr
+V(thr) = V(tk) = [ (2 TQZ
+wT Rw — ~2eTe,)dr + WT Ap(ry)

where dy41 is the Bellman residual error or temporal differ-
ence error calculated at the occurrence of k + 1 event.

The value function weights are updated to minimize the
Bellman residual error. Since the augmented system states
are available only at the triggering instants, impulsive weight
update laws are selected with both jump and flow dynamics,
respectively, given as

2 A¢(Tk—1)

Okt1
(32)

Wt=W-—a T t=t
*(1+ Ap(r—1)TAG(75-1))2 " "
Ad(T-1) 9
H Tk—1
W=—-a 6Tt e (t,t
T Aglme ) TAgm R b L€ U bee)
(34)
wPere aj, g > 0 are learning gains, J; =

o (2 2TQz + wl Rw — ~?%¢ eu)dT +  WTAG(Tr_1).
Note that the integration ft -)dr and the difference
A¢(7i) uses the state 1nformat10n at two consecutive
sampling instants ¢, and {51 which are available at k and,
hence, Jj, is in a computable form.

Remark 1: The rationale behind the impulsive parameter
update is twofold. First, the availability of the state infor-
mation aperiodically at the triggering instants leads to a

combination of the continuous and discrete dynamics for
the closed-loop event-triggered system. Therefore, the NN
weights are updated as a jump in the weight with the
new state feedback information at the triggering instants
tr, Vk € {0,N}. Second, the inter-sample times or the flow
periods is utilized to update the NN weights with the state
information received at the previous triggering instants for
a faster convergence, which is motivated by the traditional
iteration based techniques ADP schemes [7].

Define the NN weight estimation error as W=w-—W.
Then, subtracting (32) from (31), the Bellman error, with a
event-step backward, can be represented as

op = —WTAP(1_1) — Ae(Tp_1).

Note that, Bellman error (35) is expressed as a function of
NN weight estimation error and in a unmeasurable form.
This is used for demonstrating the stability.

The event-based sampling condition which determines the
sampling instants of the closed-loop event-triggered system
with the estimated threshold é,, in (29) can be defined as

(35)

thpr = inf{t > t5 | ele, = max( —WT

xw(zs)GGT(z)w (z)W )}
(36)
The event-sampled augmented tracking error system, by
defining a concatenated state vector & = [T, WT]T ¢
R27+o can be expressed as a nonlinear impulsive dynamical
system as

F(z) + G(z)w + G(2)ey

A¢(TE—1)
N T A (Te—1) T Ad(T1-1))2

(5T‘| ,E€el, te (tk,tk+1)

37
z
§+: ~ Ap(Tr—1) ) felD t:tk
Wt o Rt et ) Ok
(38)

where (37) is the dynamics of the system during the
inter-sample time, referred to as flow dynamics, and (38)
is the dynamics at the sampling instants referred to as
jump dynamics. The sets C = {¢ € Rt | ele, <
max(r?, ﬁWTVMZ)GGT(z)VT(ﬁ(z)W)} and D =
{¢ € R+ | eneu =
max(r2, #WTV(b(Z)GGT(Z)VT(b(Z)W)} are  the
flow and jump sets, respectively.

Theorem 1: Consider the event-sampled augmented track-
ing error system (11) along with the performance index (14),
event-based control policy (28) and NN weight update rule
(33) and (34), represented as an nonlinear impulsive hybrid
dynamical system (37) and (38) . Suppose the Assumptions
1-3 hold, the NN initial weights W/ (0) initialized in a
compact set {2y and the initial control policy be admissible.
Then, there exists an integer N > 0 such that the tracking
error and the NN weight estimation error are locally ulti-
mately bounded for all sampling instants k£ > N, provided
event-based sampling instants are obtained using (36), the
regressor vector satisfies persistency of excitation condition,
and the weight tuning gains are selected as 0 < oy < 1 and
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0 < as < 3@min. Further, |[V* — V| and [jus — u|| are
also ultimately bounded.

Proof: (sketch) The proof is competed using a common
Lypunov candidate function L : R?"*lo x R — R for both
flow and jump dynamics. The Lyapunov candidate function
for flow dynamics is given by L({,t) = v,L, + Ly where
L. = Vi(e,t) and Ly = JWIW with v, = £z
where ¢.,;n» > 0 is a constant since the regressor vector
is persistently exciting [15].

The first derivative during the flow interval L(&,t) be-
comes

L(f,t) = Usz + LW < *Uz)\mm(Q)HGT”Q

= (39)
—Pmin(o1 — D)W 4 w3

where w3 is a constantcomputed from the constant bounds,
and learning gain 0 < a3 < 1. Define wy =
min(v; Apmin (@), @min(c@1 — 1)). From (39), the Lyapunov
first derivative during the flow period L(E ,t) <0 as long as
l€ll > /s /s 2 Be,.

The first differences at the jump instants can be expressed
as
(40)

AL < —a2(3@min — @) |W|? + @5

where w5 is a constant, computed from the constant bounds,
and the learning gain 0 < as < %gomm. From (40), the first
difference of the Lyapunov function is negative as long as
€1l > o~ = Be,.

a2 (5 Pmin—a)

From bothgthe flow interval in Case I and jump instants in
Case 11, the tracking error e, and the NN weight estimation
error W remains bounded both during the flow and at the
jump instants and converges a set B, for all k > N. Further,
[V* — V| and ||us — u?]|| are ultimately bounded since e,
and W converge to the ultimate bound.

Remark 2: Note that the constant 7 in the triggering con-
dition (36) enforces the minimum inter-event time. Further
The bounds are obtained in Theorem 1 as a function of
the NN reconstruction error. As the number of hidden layer
neurons increase, the reconstruction error converges close to
Zero.

To show the Zeno free behavior, we will use a conser-
vative triggering condition presented in the next theorem.
Before proceeding further, the following assumption and the
technical lemma is necessary.

Assumption 4: The optimal policies «*(¢) and e} (t) are
locally Lipschitz continuous with respect to z € €2, and satis-
fies [lug — u*[| = [lew|] < Lu [les]| and [lef(2) — €5 (zs)[| <
L., |les|| where L, > 0 is the Lipschitz constant.

Lemma 1: The inequality

ele, < (1/474)‘7Z€G(2)GT(Z)VZS. 41)
holds if the inequality given by
Lullesll < (1/49)[1G7 (25)V, (42)

holds.
Proof: The proof is the result of the Lipschitz continuity
control policy in Assumption 4.

Assumption 5: For an optimal mismatched policy w*, the
following inequality holds ||F + Guw*|| < ¢ where ¢ € Rs,.

The assumption is trivial since the continuous time optimal
control policy is asymptotically stabilizing [6].

Theorem 2: Let the Assumption 1-5 hold. With the event-
based sampling condition

. 1 N
ter1 = inf{t >t | Ly|les|| = max{r, 4—ry2|\GT(25)‘QSH}}

the tracking error and the NN weight estimation error of
event-triggered augmented tracking error system (11), with
event-based control policy (28) and NN weight update rule
(33) and (34), are ultimately bounded. Further, The minimum

inter- le ti = inf = inf (tg41—t
inter-sample time 7, kel{%’N}(Tk) kel{I(l)’N}( k1 — t) >
0 where 7 is given by

T = tes1 — te > (1/gar) In ((gnr/807%) + 1) .

Proof: The proof is omitted due to space limitation. Next,
the numerical simulation results and presented.

(43)

V. SIMULATION RESULTS

A two link robot manipulator is considered for the nu-
merical simulation. The dynamics of the robot are given by
[11]

&= f(z) + g(x)u

where * = [q1, q2, 1, ¢2)7 is the state VectoTr,

! = [I3, xg, (M~ Y=V, — Fy) [iﬂ Fs)T} ,

g = [f0, 07 [0, 07, (M~1)T]",

M _ {Pl +2p3ca p2 + psce v _
' P2 +}?302 D2

[;Z:;‘ZZ? _p332(81+‘I2) . Fy = diag[53, 11],

p1 = 3473, py = 0.196,p3 = 0.242,¢co = sin(qgs), and
s2 = sin(qgz).

N

5 1 *

0

&States o

2
States

X, = =xd 0\_

| 1]

10 (a)15 20 25 0 5 10 15 20 25

o

0 5

N
-

States
o
States
L o

- - X, == w=xd
2 X, xdaw 2 4 4
0 5 10 (c) 15 20 25 0 5 10 (d) 15 20 25
Time (sec) Time (sec)
Fig. 1. System state and desired trajectories

The reference trajectory considered for tracking is given
by 24 = [0.5cos(2t), 0.33cos(3t), —sin(2t), — sin(3t)]T
with ((24) = 43, Tas, — 4Tq1, — 9r42]". The penalty
matrices of performance index (14) were selected as @ =
diagl|0.1, 1, 5, 5], R = diag[0.1, 0.2], v = 2.5. The NN
weights are initialized randomly from a uniform distribution
in the interval [0, 2]. The learning gains are selected as
a1 = 0.004, and oy = 0.26. A polynomial regression vector
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as in [11] is used for approximating the solution of the
HIJI equation. A normally distributed probing noise in the
interval [0,1] is added to the regressor vector to ensure the
convergence of the NN weights. The simulation is run for
25 secs with initial states xo = [0.3, 1.6,0,0]7.

The time history of the robot states and the desired
reference trajectory is shown in Fig. 1. The system states
track the desired trajectory and the tracking error converges
close to zero as shown in Fig. 2 (a). Further, the Bellman
error also converges close to zeros and shown in Fig. 2. (b).
This implies the NN approximation of the value function
converge to the neighborhood of the optimal value. From the

N

T T
e e €, m—C

N == :

4

Tracking error
o

1

(=]
5]

25

I
o

Bellman error
o
n o
|

5 10 (b) 15

Time (sec)
Fig. 2. Convergence of (a) Tracking error (b) event-based integral Bellman
error.

o

o

25

event-triggered control perspective, as shown in Fig. 3(a) and
3(b), the event-sampling condition is computed using (36)
with » = 0.001. It is observed that the control is executed
8138 times for a v = 2.5 during the simulation time of
25 sec. This shows a reduction of feedback communication.
Note that different value of v will result in different number
of sampling as the penalizing factor for sampled error policy

is changed.
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Fig. 4. Convergence of NN weight estimates
The convergence of the estimated NN weights are shown
in Fig. 4. Since the target NN weights are unknown, it
is not possible to show the convergence of the weight
60

estimates. However, the NN weights become constant after
the initial learning which implies the convergence to a close
neighborhood of the target values.

VI. CONCLUSIONS

An event-based approximate optimal sampling and trajec-
tory tracking control is presented. An approximate solution
is obtained using NN based approximation and impulsive
learning of the NN weights. The impulsive weight update
scheme improved the NN weight convergence and main-
tained the boundedness of the system during inter-sample
times. The triggering condition is designed based on the
novel performance index which optimizes the sampling in-
terval along with the control policy. The analytical design
is also verified with numerical simulation. The proposed
design ensured the convergence of the tracking error and
the NN weight estimation error to the ultimate bound. The
communication imperfections are not included in the paper
for analysis and will be included in our future research.
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