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)is paper focuses on the fault-tolerant control (FTC) problem for an electric power steering (EPS) system subjected to stochastic
sensor failures, and a novel fault-tolerant controller is proposed based on the genetic algorithm (GA). A mathematical model of
the EPS system with sensor failures is first established, and the state feedback control law is solved by using linear quadratic
regulator techniques to stabilize the closed-loop control system. )en, the dynamic response errors of the EPS system with and
without sensor faults are chosen as the optimization objective function. Furthermore, the appropriate weighting matrices are
evaluated to obtain the optimal fault control law by using GA. Finally, simulation results are presented to illustrate the ef-
fectiveness of the proposed control strategy.

1. Introduction

In recent years, electric power steering (EPS) system has
been widely equipped in vehicle chassis for improving
handling stability and riding comfort, and its control
strategy has been proved to be an important approach to
enhance vehicle performance [1]. However, the control
logics of EPS system are getting much too complicated with
increasing requirements and installation of more sensors [2].
Generally, EPS system is subjected to some catastrophic
faults such as intermittent sensor connection, complete
sensor outage etc., which usually results in severe conse-
quences [3]. For example, complete sensor outage may lead
to steering failures and adversely affect vehicle drivability
and life span.)erefore, the development of effective control
system against sensor failures is a potential research topic
from both academic and industrial perspectives.

To this end, a number of researchers have devoted their
efforts to conduct various studies in this field on the basis of
hardware or analytical redundancy. For instance, Andersson
[4] derived an algorithm using three sensors to generate
residuals, which serves as a fault detection and isolation

module for a quadrotor-unmanned-aerial-vehicle. Isermann
et al. [5] also presented several FTC strategies with re-
dundant sensors for the EPS system. Nevertheless, these
methods usually lead to a high cost and difficulties in
practical application, while the use of analytical redundancy
can avoid these limitations.

)e analytical fault-tolerant operation can be achieved
either passively by employing a control law designed to be
insensitive to some known faults, or actively by a fault
detection and isolation mechanism, and the redesign of
a new control law. For instance, Ghimire et al. [6] developed
a fault detection and diagnosis module in an EPS system, but
the fault-tolerant control strategy is not considered. To
better solve the problem, Lawson and Chen [7] developed an
active fault-tolerant controller based on Luenberger ob-
server. If the residual exceeds a threshold with the voltage
loss signal, the estimated signal replaces the faulty torque
sensor as a command to the steering assist motor. Besides,
Cholakkal and Chen [8] developed a robust observer con-
sidering the model uncertainties and nonlinear complexities
to perform fault-tolerant control strategy. However, a pre-
cise and real-time diagnose scheme of statistic failures is still
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a significant challenge in fault-tolerant controller design.
Consequently, a number of passive FTC methods are pro-
posed to keep system stability. Wang et al. [9], Tohidi et al.
[10], and Zhang et al. [11] designed the robust fault-tolerant
controllers against the actuator faults or the sensor faults,
whereby the state feedback control laws are obtained by
using Lyapunov inequality to keep system stable with faults.
But neither of them guaranteed the prescriptive control
performance. As for the EPS system, Wang et al. [12] de-
scribed a fault-tolerant controller based on the linear qua-
dratic regulator (LQR) technique through Riccati equation.
)e cosimulation and road test are then carried out [13].
Since the selection of LQR weighting matrices for this
controller design depended on a trial and error procedure,
the global stability-guaranteed FTC design may not be
achieved when encountering multisensor faults.

To overcome the limitations of selecting weighting
matrices by empirical rules, genetic algorithm (GA) ap-
proach is adopted to determine the gain matrix of LQR
controller [14–17]. Moreover, to our best knowledge, there
only exist few studies on the design of LQR-based fault-
tolerant controller for the EPS system, which provides the
aspiration and motivates this study.

)e purpose of this paper is to develop a new fault-
tolerant controller design based on LQR technique for an
EPS system using GA approach, which is useful in pro-
moting the commercialization of various vehicles. To design
the controller, an optimization objective function is derived
from the dynamic response errors of the EPS system with
and without sensor faults. )en, the appropriate weighting
matricesQ and R are quickly evaluated to obtain the optimal
fault control law by using GA. Finally, simulation results
validate the effectiveness of the proposed FTC method. )e
remainder of this paper is organized as follows. )e EPS
system modeling is formulated in Section 2. Section 3
contains the design of EPS fault-tolerant controller in detail.
Simulation comparisons between the normal system and
sensor fault system are provided in Section 4, and Section 5
contains the conclusions and future works.

Notations Rn and Rm×n denote the n-dimensional Eu-
clidean space and the space of m× n real matrices, re-
spectively. P> 0 (respectively, P≥ 0) means that P is positive
definite (respectively, positive semidefinite). AT denotes the
transpose of a matrix A. )e spectral norm of a matrix A is
denoted as ||A||.

2. System Modeling and Problem Formulation

)e model of EPS system is shown in Figure 1. When a car
begins to turn, a sensor detects the steering torque Tc. )en,
the measured torque Tc is used as an approximation to
determine the amount of assist torque Ta provided by the
electric motor. )e amount of assist torque Ta is typically
calculated from the tunable torque boost based on the ve-
hicle’s speed v and the steering torque Tc. Finally, Ta
combined with the driver’s torque Th consist of Tc. It can be
concluded that the EPS system establishes a relationship
between the steering mechanism, the motor’s electrical
dynamics, and the resistant force from the road [18].

Moreover, the key components of EPS system include
steering column, reduction gear, output shaft, pinion-rack,
motor, and electric control unit (ECU).

According to [19, 20], the dynamic equations of the
steering column dynamics, output shaft dynamics, and
pinion-rack dynamics for the EPS system are described as
follows:

Is€α + Cs _α � Th −Ks(α− δ),

Ie
€δ + Ce

_δ � Ks(α− δ) + NTa −Tw,

Mr€xr + Cr _xr + Krxr �
Tw

rp −FR
.

(1)

Typically, the motor used in EPS is a DC motor, and the
dynamics of the motor are given by

Im
€θ + Cm

_θ � Tm −Ta, (2)

Tm �
Ka

R
u−Kb

_θ􏼐 􏼑. (3)

)emotor shaft is mechanically coupled with the pinion
shaft via a reduction gear with ration N, which eventually
results in the assist torque as

Ta � Km(θ−Nδ). (4)

Also, the resistance term can be concluded as [21]

FTR � Krxr + FR. (5)

Note that the resistance force on the rack is mainly Krxr,
and FR is the road disturbances.

Depending on the angular deformation, Tc acted on the
steering column can be detected by sensor as

Tc � Ks(α− δ). (6)

)e pinion and output shaft are connected by constant
velocity joints, thus xr � δ · rp.
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Figure 1: Electric power steering model.
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Correspondingly, the state-space equation of the EPS
system is expressed as

_X � AX + BU,

Y � CX + DU,

⎧⎨

⎩ (7)

where X � α δ θ _α _δ θ􏽨 􏽩
T
and U � Th FR u􏼂 􏼃

T. Note
that the velocity signal v is linear with themotor voltage u via
a tunable boost curve, and the assist motor torque and the
column torque are considered as the outputs of the system
such that Y � Ta Tc􏼂 􏼃

T. A, B, C, and D are the known
matrices with appropriate dimensions (Appendix).

It is observed from (7) that the pair (A,B) is completely
controllable and the pair (A,C) is observable. A state
feedback control scheme can be employed, and the full-state
feedback controller can be defined as

U � r−KX, (8)

where r is the reference input. Since the complete sensor
outage is considered as the worst case in the EPS system, the
sensor faults function matrices are described as
M � diag f1, f2, . . . , f6􏼈 􏼉, wherein M is a 6× 6 identity
matrix if all sensors are in good working condition. A failure
in the ith sensor is modeled by setting the ith diagonal ele-
ment in M to zero, that is, fi � 0. By denoting Uf as the
controller with possible sensor failure, we have

Uf � r−KMX. (9)

By further derivation, the system with possible sensor
failures can be given by

_Xf � (A−BKM)Xf + Br,

Yf � CXf,

⎧⎨

⎩ (10)

whereXf is the state vector andYf is the output vector when
the sensor failures occur. To fulfill the complete fault-
tolerant control for (10), we need to find out an optimal
gain matrix K such that the closed-loop system (10) with
controller (9) can keep stability with possible sensor failures.

3. Optimal Design of Fault-Tolerant Controller

3.1. EPS Fault-Tolerant Controller Design. In this section,
a fault-tolerant controller is designed to make the EPS
system robust against sensor failures. To design this con-
troller, the following linear quadratic performance index for
(10) is defined based on LQR technique [22]:

J∞ � 􏽚
∞

0
e
2λt XT

fQXf + UT
fRUf􏼐 􏼑 dt, (11)

where the attenuation λ> 0 and Uf is the control input
vector, respectively, and Q≥ 0 and R> 0 are parameter
matrices to be designed. )e performance index J∞
weighted by Q and R establishes a trade-off between the
control speed and the energy used. )e objective for this
controller design is to find out an appropriate control input
Uf with sensors being ineffective and minimize J∞. To fulfill
the controller design, thus the following lemma and theo-
rems are introduced.

Lemma 1 [23]. 6e linear autonomous system is exponen-
tially stable if and only if there exists X � XT such that X> 0
and ATX + XA< 0.

Theorem 1. Consider the closed-loop system given in (10); Q
and R are the weighting matrices used in the linear quadratic
performance index. If Q, R, and the positive define matrix P
satisfy

Mi − In( 􏼁PBR−1BTP + PBR−1BTPMi + Q> 0. (12)

)e gain matrix K � R−1BTP for the fault-tolerant
controller in (9) can guarantee the stability of the system
with possible sensor failure, which means

Re λ A−BKMi( 􏼁􏼈 􏼉<−α. (13)

Proof. Based on [24, 25], the performance index of (11) is
minimized with

K � R−1BTP, (14)

where P is the solution of the following algebraic Riccati
equation:

A + αIn( 􏼁
TP + P A + αIn( 􏼁−PBR−1BTP + Q � 0. (15)

Substituting (14) in (13) yields

Re λ A + αIn −BR
−1BTPMi􏼐 􏼑􏽮 􏽯< 0. (16)

According to Lemma 1, (16) is equivalent to

A + αIn −BR
−1BTPMi􏼐 􏼑

T
P + P A + αIn −BR

−1BTPMi􏼐 􏼑< 0.

(17)

Inequality (17) can be written as

A + αIn( 􏼁
TP + P A + αIn( 􏼁

− PBR−1BTPMi + MiPBR
−1BTP􏼐 􏼑< 0.

(18)

Similarly, Equation (15) can be rewritten as

A + αIn( 􏼁
TP + P A + αIn( 􏼁 � PBR−1BTP−Q. (19)

Substituting (19) in (18), we can easily obtain (12), which
completes the proof.

According to )eorem 1, it is possible for the EPS
system to have fault-tolerant features with a set of known
faults or failures by choosing appropriate Q, R. Normally,
the designer performs searching of Q and R by trial and
error, which is oriented by experience and easier found to
be a local optimal solution. Due to the advantages in
searching optimal design parameters and obtaining glob-
ally optimal solution, the GA is adopted to find the
weighting matrix.

3.2. GA-Based Optimal Design of EPS Fault-Tolerant
Controller. To evaluate the optimal Q and R and then
ultimately obtain the optimal control gain for the EPS
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fault-tolerant controller, we use the GA approach to min-
imize J∞. )e flowchart of GA is shown in Figure 2.

In Figure 2, the key point of GA is to seek an optimized
objective function that ranks the performance of each indi-
vidual by calculating the fitness value. Here, dynamic re-
sponse errors of EPS system with and without sensor failures
are adopted as the optimized function through Lyapunov
equation.

Considering the normal system and fault system,
a composite system is formulated as

_X � AX + Br,

Z � CX,

⎧⎨

⎩ (20)

where X � XT XT
f􏽨 􏽩

T ∈ R2n is the state vector and
Z � Y−Yf is the output vector considering the output
errors of EPS system with and without sensor failures, we
have

A �
A 0

0 A−BKM
􏼢 􏼣,

B �
B

B
􏼢 􏼣,

C � C −C􏼂 􏼃.

(21)

It is assumed that the initial state of the EPS system is
zero with the step input, and the optimized function is
defined as

J � 􏽚
∞

0
Z2

(t) dt � 􏽚
∞

0
Y(t)−Yf(t)􏼂 􏼃

2
dt. (22)

Theorem 2. If there exists appropriate weighting matricesQ,
R and control law K such that the Lyapunov Equation (23)
holds with the positive definite solution P

ATP + PA + Q1 � 0, (23)

where

Q1 �
CTC −CTC

−CTC CTC
⎡⎣ ⎤⎦, (24)

with satisfying the following equation:
CA−1B � 0. (25)

When the optimized function ‖J‖ reaches its minimum
value,

J � −BT AT
􏼒 􏼓

−1
PA−1B− 2BTPA−2B. (26)

)e control law defined by (14) can guarantee the as-
ymptotic stability of the fault EPS system with a minimum
output error.

Proof. Equation (22) can be written as

J � 􏽚
t

0
Z2

(τ) dτ. (27)

Define the Lyapunov function

V(t) � [X(t)]
TPX(t), (28)

where P is the positive definite solution of the Riccati
Equation (15).

Substituting (23) and (24) into (27) yields

J � 􏽚
t

0
[X(τ)]

TQ1X(τ) dτ. (29)

Deriving along (28) and using (20) gives
_V(t) � −[X(t)]

TQ1X(t) + 2BTPX(t). (30)

Integrating Equation (30), we have

V(t) � −J(t) + 2BTP􏽚
t

0
X(τ) dτ. (31)

Since the step response with zero-state unit is

X(t) � 􏽚
t

0
e
AτBdτ � A−1 e

At − I2n􏼒 􏼓B. (32)

)us, we have

􏽚
t

0
X(τ)dτ � A−2eAtB−A−2B−A−1Bt. (33)

Substituting (33) and (29) into (31) results in

J � −BT AT
􏼒 􏼓

−1
PA−1B− 2BTPA−2B−Ht + G,

H � BT AT
􏼒 􏼓

−1
P + PA−1􏼢 􏼣B,

G(t) � 2BTPA−2eAtB + 2BT
e
At AT

􏼒 􏼓
−1

· PA−1B−BT
e
At AT

􏼒 􏼓
−1
PA−1eAtB.

(34)

Start

Decode

End

Output optimal
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Initialize population

Calculate fitness value
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Mutation

New generation

Popsize, chromlength,
crossover, and mutation

probability

Terminative condition?

GA operation

Figure 2: )e flowchart of genetic algorithm.
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According to (25), we have

BT AT
􏼒 􏼓

−1
CTCA−1B � 0. (35)

Equation (35) can be written as

BT AT
􏼒 􏼓

−1
ATP + PA􏼔 􏼕A−1B � 0. (36)

It is equivalent to

BT AT
􏼒 􏼓

−1
P + PA−1􏼢 􏼣B � 0. (37)

)us, we get H � 0 in terms of (34).
It is obvious that the EPS system is stable if the following

equation holds

lim
t⟶∞

e
At

� 0. (38)

)at means G(∞) � 0, and the proof is completed
according to (34), (37), and (38).

According to )eorem 1, )eorem 2, and GA algorithm
in Figure 2, the main processes of GA-based weighting matrix
selection for the controller design are described as follows:

Step 1. Initialize population. )e population size affects both
the ultimate performance and the efficiency of GAs. A large
population is more likely to contain representatives from
a large number of hyperplanes [26]. Hence the GA can
perform a more informed search. On the other hand, a large
population requires more evaluations per generation, pos-
sibly resulting in an unacceptably slow rate of convergence.
In this paper, the Q and R matrices are assumed to be di-
agonal, such that Q � mIn and R � tIn, and the ranges are
taken as 0<m< 50, 0< t< 2000, which are based on our
previous work and research [27].)e coefficientsm and t are
set as individual [m · t] to be optimized. In the current
experiment, the population size is set to be 50.

Step 2. Calculate fitness value. For each individual, theQ and
R matrices are applied in )eorem 2 to obtain the perfor-
mance index ‖J‖ as the fitness value.

Step 3. Terminate condition. )e maximum generation is set
as 150. )e algorithm is over when the GA exceeds the
maximum number of generations and satisfies the constraints

in )eorem 1 and )eorem 2. If not, it goes on for the GA
operation until it meets the requirements.

Step 4. GA operation. )e GA operation includes the se-
lection, crossover, and mutation. )e fitness-weight roulette
game, which means that the fittest individuals have a greater
chance of survival than weaker ones, is chosen as the se-
lection strategy. )e crossover rate controls the frequency
with which the crossover operator is applied. )e higher the
crossover rate, the more quickly new structures are in-
troduced into the population. Mutation is a secondary
search operator which increases the variability of the pop-
ulation. A low level of mutation serves to prevent any given
bit position from remaining converged to a single value in
the entire population. A high level of mutation rate causes an
essentially random search. In this paper, the crossover rate
and the mutation rate are set as 0.8, 0.1, respectively. In every
generation, the fittest individuals are randomly selected and
are recombined and randomly mutated to form a new
generation which goes to the step 2.

In order to improve the optimal weight coefficients of the
Q and R matrices, the corresponding weight coefficients are
calculated as m� 4.54, t� 10.22 by GA when the iteration of
generation arrives 150 with the constraint satisfied.)us, the
matrix K is obtained.

Note that the proposed control design method can ensure
the global sensor fault system’s dynamic output to be as close
as the normal system’s output. )e block diagram of the GA-
based EPS fault-tolerant controller is shown in Figure 3.

Remark 1. )e system matrix of reference normal system
can be changed as A−BK0. K0 is derived from LQR
technique to minimize the performance index J∞, which can
optimize the performance of the normal EPS system.

4. Simulation and Analysis

In order to verify the effectiveness and applicability of the
proposed fault-tolerant controller, a numerical case is in-
vestigated in this section. )e EPS system’s parameters and
variables used for the simulation are shown in Table 1.

According to the above parameters, by evaluating the
GA-based EPS fault-tolerant controller, the gain matrix K is
obtained as follows:

K �

−6.2843 68.4608 −2.27e− 05 0.1152 0.0526 −3.17e− 08

0.2095 −1.0061 −1.95e− 08 −4.23e− 04 −0.0014 1.91e− 10

−8.69e− 05 −7.7e− 05 0.1390 −5.29e− 08 −3.94e− 08 0.5842

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (39)

)e step and bump responses of Th to Ta with one sensor
failure are shown in Figures 4 and 5, respectively. It is noted
that the comparisons of Ta for the normal EPS system and
the fault one with every sensor failure are provided in both of
these two figures.

It can be seen from Figures 4 and 5 that there is a smaller
persistent deviation for the output response of the EPS
system in the presence of failure in sensor 1, sensor 3, or
sensor 5, respectively, compared with the normal EPS sys-
tem. Note that the fault EPS system can reach stability after
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0.03 seconds and the output response is still in an acceptable
range when occurring sensor fault. Besides, the output

responses of the normal and fault EPS system are nearly
identical to each other in the presence of failure in sensor 2,
sensor 4, or sensor 6, respectively, which illustrates the
proposed fault-tolerant controller has some positive effects
on the fault EPS system.

To verify the effectiveness of this controller, the step and
bump responses of Th to Ta with two sensors failures at the
same time are shown in Figures 6 and 7, respectively. It is
observed from Figure 6 that the output performance of the

EPS dynamic model

EPS controller

Input Output
+
–

r(t)

KXf

Uf Xf

GA iteration LQR
technique

Optimal
GA-based

FTC

Sensor fault mode

Figure 3: )e design of fault-tolerant controller.

Table 1: )e parameters of EPS.

Parameter Value
Is (kg·m2) 0.0012
Cs (N-m-s/rad) 0.261
Ks (N-m/rad) 184.33
Im (kg-m2) 0.00018
Cm (N-m-s/rad) 0.00339
Mr (kg) 0.89
Kr (N/m) 91061.4
N (—) 16.5
Ie (kg-m2) 0.001
Ce (N-m-s/rad) 0.031
rp (m) 0.007
R (Ω) 0.67
Km (N-m/rad) 125
Ka (N-m/A) 0.04
Kb (V/rad-s−1) 0.057

Time (sec)

Step response of Th to Ta
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Figure 4: )e step response of EPS system with a sensor failure.
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Figure 5: )e bump response of EPS system with a sensor failure.
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Figure 6: )e step response of EPS system with two sensor failure.
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EPS system is deteriorated with the failures of sensor 1 and 4,
sensor 2 and 5, and sensor 3 and 6, respectively, while it is
still in an acceptable stability region compared with the
normal EPS system. In Figure 7, the EPS system with two
sensor failures can reach stability within 0.04 s under
a sudden bump road disturbance, which validates the re-
liability and effectiveness of the proposed optimal fault-
tolerant controller.

To examine the advantages over the existing control
method for the EPS system, Figure 8 shows the comparison
between the step response of Th to Ta by using the control
scheme in the literature [12] and our proposed GA-based
fault-tolerant controller with one sensor failure, typically
sensor 6. Note that the output performance of the normal
EPS system is also included. It is obvious that the method
in [12] has oscillations in time domain, while the proposed

Time (sec)

–150

–100

–50

0

50

To
rq

ue
 (N

·m
)

Normal
Sensor 1 and 4 fault

Sensor 2 and 5 fault
Sensor 3 and 6 fault

0 0.01 0.02 0.03 0.04 0.05

1 2 3 4 5
×10–3

–140

–120

–100
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Figure 7: )e impulse response of EPS system with two sensor failure.
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–0.6
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0
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Literature [12]
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Figure 8: )e step response of EPS system with the failure of sensor 6.
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GA-based fault-tolerant controller works well and can
closely track with the normal system.

5. Conclusion

In this article, an optimal design method of fault-tolerant
controller was proposed for an electric power steering
system with possible sensor failures based on GA ap-
proach. LQR technique is used to construct fault-tolerant
control law for the system. )en, the appropriate
weighting matrices Q and R used in LQR technique are
evaluated to obtain the optimal fault control law by using
GA, which guarantee the output of sensor fault system

closely tracking the normal reference system. Further-
more, the simulation shows that the proposed method can
obtain better disturbance attenuation performance when
encountering with different sensor fault mode. Since the
external disturbances and model uncertainty are in-
evitable in practical EPS system, future work will focus on
investigating the robustness of the GA-based LQR control
scheme.

Appendix

)e coefficient matrices of A, B, C, D for Equation (7) are
expressed as [28]

A �

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−
Ks

Is

Ks

Is
0 −

Cs

Is
0 0

Ks

MRr2p
−

1
MRrp

Krrp +
Ks

rp
+ N

2
Km/rp􏼠 􏼡

NKm

MRr2p
0 −

CR

MR
0

0
KmN

Im
−

Km

Im
0 0 −

CmR + KaKb

ImR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �

0 0 0

0 0 0

0 0 0

1
Ih

0 0

0
1

2rpMr
−

1
2Ie

0

0 0
ka

ImR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C �
0 −N2Km NKm 0 0 0

Ks −Ks 0 0 0 0
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

D �
0 0 0

0 0 0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(40)

here, MR � (Mr + Ie/r2p) and CR � ((Cr + Ce)/r2p).
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Nomenclature

α: Steering wheel angle
δ: Steering pinion angle
θ: Motor angle
Ce: Output shaft viscous damping
Cm: Motor viscous damping
Cr: Viscous damping of the pinion-rack
Cs: Steering column viscous damping
FTR: Steering resistance force
Ie: Output shaft moment of inertia
Im: Motor moment of inertia
Is: Steering column moment of inertia
Ka: Electromagnetic torque coefficient
Kb: Back electromotive force constant
Km: Motor rigidity coefficient
Kr: Tie rod equivalent spring coefficient
Ks: Steering column stiffness
Mr: Mass of the pinion-rack
N: Motor gear ratio
R: Motor resistance
rp: Pinion radius
Ta: Motor assist torque
Tc: Steering torque
Th: Driver torque
Tm: Motor electromagnetic torque
Tw: Output shaft reaction torque
u: Motor voltage
xr: Steering rack displacement.
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