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A B S T R A C T

Power electronics is seeing an increase in the use of sophisticated self-learning controllers as single board com-
puters and microcontrollers progress faster. Traditional controllers, such as PI controllers, suffer from transient
instability difficulties. The duty cycle and output voltage of a DC/DC converter are not linear. Due to this non-
linearity, the PI controller generates variable levels of voltage fluctuations depending on the operating region
of the converter. In some cases, non-linear controllers outperform PI controllers. The non-linear model of a non-
linear controller is determined by data availability. So, a self-calibrating controller that collects data and opti-
mizes itself as the operation goes on is necessary. Iteration and oscillation can be minimized with a well-trained
reinforcement learning model utilizing a non-linear policy. A boost converter's output power supply capacity
changes with a change in load, due to which the maximum duty cycle limit of a converter also changes. A support
vector calibrated by reinforcement learning can dynamically change the duty cycle limit of a converter under
variable load. This research highlights how reinforcement learning-based non-linear controllers can improve
control and efficiency over standard controllers. The proposed concept is based on a microgrid system. Simulation
and experimental analysis have been conducted on how reinforcement learning-based controller works for DC-DC
boost converter.
1. Introduction

In recent years, the adoption of renewable energy resources and
power electronic technologies have been increased massively because of
the concept of clean energy and the flexibility of the power electronic
technologies, which also increase the viability of the DC microgrid sys-
tem [1, 2]. A DC microgrid consists of distributed energy resources that
contribute power to the grid. A microgrid faces many problems related to
power quality and system dynamics and becomes unstable mainly due to
load fluctuations and uncertain power generation which lead to bus
voltage fluctuation [3, 4, 5]. The DC/DC converters are the backbone of a
DC microgrid, since the power generators are connected to the grid via
DC/DC converters. In the AC grids, DC-AC inverters are used to connect
the power generators to the grid. However, due to variable levels of
voltage generated by these power generators, the DC/DC converters have
to be used to provide constant input voltage for the inverter [6], which
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makes DC/DC converters a vital part of renewable energy sources-based
power systems. The problem of regulating the output voltage of these
converters has been of great interest for many years. These converters can
be categorized mainly into three categories: buck converters, boost
converters, and buck boost converters [6, 7, 8, 9]. Uncertain power
generation, consumption, and non-linearity of the system make it chal-
lenging for the controllers and converters to maintain constant voltage in
conditions in the normal operation of the system as well as in contin-
gencies [10, 11]. In order to achieve the proper voltage regulation in a DC
microgrid, the controllers like PID controllers, model predictive con-
trollers, sliding mode controllers, fuzzy logic-based controllers, and
neural network-based controllers can be used [3, 12].

In a DC/DC boost converter, the semiconductor switches are the most
important components; the output of a boost converter is controlled by
controlling the duty cycle of the switching pulse supplied to the semi-
conductor switch, and the duty cycle of the supplied pulse is controlled
sn.no (A. Shrestha).
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by a controller [4]. The main task of the controller is to maintain the
stable transient and steady-state response in the output of the converter
by controlling the pulse width and frequency of control signals fed to the
semiconductor switch [13, 14]. The PID controllers are the most common
type of controller used for voltage regulation of DC/DC converters, which
are most popular due to their compatibility and flexibility to implement
specific characteristics of energy systems [6]. PI controllers can have a
fast response time and a good steady-state response, but transient voltage
stability is compromised with response time. A dynamic and complex
system that requires high stability has demanded these types of con-
trollers, hence, there is a need for a robust controller which can adapt
itself to control specific systems [13, 15].

Over the few past decades, several new control systems like sliding
mode controllers, fuzzy logic controllers, neural network-based control-
lers, fuzzy neural controllers, and deep reinforcement learning-based
controllers have been introduced. The most highlighted feature of the
sliding mode controller is its inherent variable structure and the most
negative point is the variable switching frequency [6, 16]. Fuzzy
logic-based controllers lack formal analysis and are not considered reli-
able controllers, hence, the adaptive fuzzy and model predictive con-
trollers have been studied as a replacement for the fuzzy logic controller.
The model predictive controller is a suitable controller for nonlinear
systems, but its performance is highly dependent on the system model
[13], which means that the system has to be manually modeled before
implementing the controller. On the other side, neural network-based
controllers are highly dependent on training data provided to them
[17]. Depending upon the area of application the input supply charac-
teristics (like input voltage range and power supply capacity) and output
load characteristics may vary. In these conditions the conventional
controllers need to be re-calibrated for optimal performance [3, 15]
Using reinforcement learning enables the controller to self-model the
system it is being applied to and use the system model to control it
without outside intervention which makes the system more robust.
Reinforcement learning based controllers are more versatile than tradi-
tional controllers due to their self-calibration capabilities [12]. The deep
reinforcement learning model interacts with the environment and tries to
develop the best policy; depending on what action a controller took and
what response it got from the environment, the controller gets the data
about the system it is controlling [3, 4]. This data and the neural network
are used by the controller to develop a policy function. However, the
neural network is a complex system that uses large computing power and
can be complex to replicate the policy on other controllers with similar
specifications. An alternative to this can be a regression-based model to
determine the optimal policy, which can generate policies in the form of
simple formulas with a lesser number of variables [3, 18, 19, 20].
Because of this, controllers can be easily replicated compared to neural
networks-based functions.

This paper presents a robust control method to control the DC/DC
boost converter output. A reinforcement learning-based controller, uti-
lizing a non-linear predictive model as a policy has been proposed in this
paper.

Unlike conventional reinforcement learning models utilizing deep
neural networks, this work purposes a simpler regression-based optimi-
zationmethod that requires comparatively low computing power and can
even be implemented in a microcontroller for DC-DC converters' control
purposes. This study also proposes reinforcement learning based fault
detection system for the DC-DC boost converter for efficient operation of
the converter. The controller uses non-linear regression to optimize the
policy function. Simulation and experimental analysis of a proposed
controller have been conducted to verify the performance. The response
of the proposed controller has been compared with the response of
traditional controllers to verify the results.

The proposed controller can also be applied to other power elec-
tronics converters like buck and buck-converters to provide better sta-
bility. Though described in detail following are the main contributions of
this paper:
2

a. A robust non-linear controller based on reinforcement learning that
uses a regression-based optimization algorithm has been proposed to
reduce the transient oscillation and settling time of the DC/DC boost
converter during load fluctuations. After conducting the results, the
performance of the controller is found to be improved over the
standard controller.

b. A hybrid model has been proposed that combines a non-linear model
and an integral controller to improve the transient and steady-state
stability in comparison to the classic PI controller.

c. The proposed model has been tested under both simulation and
laboratory-based environments. A hardware prototype has been
developed in the laboratory to check the performance of the model,
and compare the results with the simulated results. The validity of the
proposed controller is verified in both simulation and hardware.

The overall structure of this paper is organized as follows: Section 1
presents the general overview of the DC/DC converters with their issues
and potential improvements. Section 2 gives the theoretical backgrounds
of the technologies. The adopted methodology is described in Section 3.
The simulation and experimental results are discussed in Section 4. The
conclusion of this study is presented in Section 5.
2. Theoretical background

2.1. DC/DC boost converter

A general circuit of a boost converter is shown in Figure 1. The boost
converter consists of a high-frequency power switch that charges and
discharges the inductor L and capacitor C, through two power electronics
switches: a controllable switch Q and a diode D. In this model, the diode
on-time resistance, the equivalent series resistance of the capacitor, and
switch on-time resistance are ignored. The output voltage of the con-
verter is controlled by controlling the duty cycle of high-frequency input
pulses; higher the frequency of the PWM pulses lowers will be the size of
the inductor required. The maximum and minimum duty cycle that is
required by a boost converter is given by Eq. (1). The power electronic
switch quickly charges the inductor to high voltages, and then the
inductor will in turn charge the capacitor. The inductor can charge the
capacitor to the required voltage level within the ripple voltage limit, as
long as the load connected to the output draws the current in such a way
that the required output voltage level draws lesser output power than the
input power supplied. Theoretically, input power supplied should be
equal to output power drawn, but due to switching and magnetic losses
output power is always lesser than the input power.

Dmax ¼1� Vinmin*η
Vout

(1)

The minimum inductor size required to achieve the required output
voltage Vout for an input voltage of Vin is given by Eq. (2), and the
inductor ripple current ΔIl is given by Eq. (3) [4].

L¼Vin*ðVout � VinÞ
ΔI1*f*Vout

(2)

ΔI1 ¼ð0:2 to 0:4Þ*Ioutmax*
Vout
Vin

(3)

In Eq. (2), ΔIl is the inductor ripple current and f is the switching
frequency of the converter. The minimum size of the output capacitor
required in order to achieve the ripple voltage of ΔVout is given by Eq. (4)
[4].

Coutmin ¼ Ioutmax*D
f*ΔVout

(4)

A boost converter has a non-linear relation between the duty cycle
and output voltage due to the non-linear characteristics of the inductor.



Figure 1. Boost converter circuit.
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When an inductor changes, the voltage drops across it decreased expo-
nentially and the current through it increases exponentially. The inductor
current and voltage have an exponential relation with charging time. The
exponential charging characteristics of a boost converter can be seen in
Eqs. (5) and (6). In a boost converter, the output capacitor charging
voltage can be given by Eq. (7) [4].

Vl ¼Vin* e�
Rt
L (5)

Il ¼Vin

R
*
��

1� e
�Rt
L

��
(6)

Capacitor charging voltage¼Vin þ Vl (7)

It can be seen from Eqs. (5) and (6) that the charging time of the
inductor is exponentially related to the inductor voltage V l and inductor
current Il. The output voltage of a boost converter is directly proportional
Figure 2. Boost converter duty cycle vs
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to the voltage dropped across the inductor. For a fixed operating fre-
quency, the duty cycle and output voltage are also going to be related
exponentially. This also creates non-linearity between the output voltage
and PWM duty cycle in a boost converter.

When the duty cycle is increased for a boost converter the output
voltage increases up to a certain point and beyond that point, it starts to
decrease. This duty cycle vs voltage curve varies according to the load
connected to the converter [21, 22]. In order to run the converter with
maximum efficiency, it should be run on the left side of the peak voltage
region. Figure 2 shows how the duty cycle affects the voltage output of a
converter for different loads. As it can be seen from Figure 2, the oper-
ating region of a boost converter can be separated into two regions,
positive and negative gain regions [21]. A converter should be run in a
positive gain region for efficient operation. For variable loads positive
and negative gain regions can be separated by a support vector. In this
experiment, a non-linear regression is used to determine this
output voltage for different loads.
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support-vector. This vector can be used to determine whether the con-
verter should be operated in the given region [22, 23].

2.2. Reinforcement learning

Reinforcement learning is a self-learning intelligent method in which
an agent interacts with the environment to map certain state spaces to
corresponding action spaces. For a completely observable environment,
reinforcement learning can be described by the Markov decision process
under the Markovian characteristic of the environment. The Marconian
decision-making process is described by five tuples (S, A, P, R, Y), where
S is the state space, A is the action space, P:S*A*S is state transition
provability, R:S*A is the reward function, and Y is the discount function.
The target of interacting with the environment is to maximize the cu-
mulative reward over the period of training [3, 15]. When the destination
can be reached with a single step from every state, the optimal expected
action-value function can be determined by Eq. (8). Here, γ is the dis-
count factor and Rtkþ1 is the reward given for reaching the state S

0
from S

by taking action A [3].

Gt ¼
Xn

k¼0

γk*Rtkþ1 (8)

The main goal of a reinforcement learning model is to map the correct
state-action pairs. To do this, an optimal action-value matrix also calledQ
matrix is created and the value of this matrix is updated while the al-
gorithm expl

ores the environment. The optimal expected action-value function of
a state S and action A is given by the bellman optimality Equation as
given by Eq. (9) [3]. Here (S’, A’) are the next possible state-action pair
that will give the maximum state action value for state S’; if policy π is
followed while updatingQmatrix, Eq. (9) is used to update the value ofQ
(S, A). Eq. (9) only takes the future and present rewards into consider-
ation but not the past, hence, there is a need for a factor that tells how
many past rewards to keep and how many future rewards should affect
the current decision. The learning rate α is introduced to provide infor-
mation on the factor. Similarly, to limit the effect of future rewards, the
discount rate γ is used. After considering these parameters, the
action-value function is given by Eq. (10) [3].

Q*ðS;AÞ¼ E½ Rtþ1 þ γ* maxπQðS0 þA
0 Þ� (9)

Q*ðS;AÞ¼ ð1� αÞ þ αðRtþ1 þ γ* maxπQðS0 þA
0 ÞÞ (10)

In a reinforcement learning model, an agent interacts with the
environment via action and gets a reward for that specific state-action
pair. To take suitable action for an encountered state, the reinforce-
ment learning model should have interacted and trained itself with the
environment for that specific state. For an environment where
infinite states are possible, the model cannot work, hence, there is a
need for a policy. In this paper, the authors use non-linear regression
Figure 3. Reinforceme
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and optimal values from the Q table to determine the suitable
policy. The logic behind the reinforcement learning model is given in
Figure 3.

A boost converter has nonlinear relation between the duty cycle and
output voltage for a given load as shown in Figure 2. A PI controller will
give various levels of voltage fluctuation depending upon its operating
region. It will perform optimally only for the particular region where the
controller is calibrated. While considering a nonlinear model-based
controller will give optimal performance for every operating region
and using reinforcement learning to model the non-linearity between
duty cycle and output voltage for a given load will eliminate the need to
calibrate the controller by the user, which would not be possible using
the conventional controllers.

2.3. Regression

Regression can be used in power electronics converters to identify a
relationship between input and output variables, and the main goal of
implementing regression in power electronics converters is to predict the
value of the input signal to achieve the target output [24]. Depending
upon the nature of converters, the relation between input and output
variables varies. Some relations might be solved with linear regression,
while some may require non-linear regression. Linear regression requires
fewer steps and lower computing power to solve than non-linear
regression. When all terms in a model are either a constant or a param-
eter multiplied by an independent variable, the regression model is
supposed to be linear. When the relation can be mapped by a polynomial
or simple exponential function, the linear regression method is the best
way to solve it. A polynomial with degree n can be represented by Eq.
(11) [19]. These data can be represented in matrix-vector form as given
in Eq. (12) [18, 19].

Y ¼C1xn þ C2xn�1 þ C3xn�2 þ…………::………::þ Cn (11)

2
664

x1n x1n�1

x2n x2n�1

x1n�2
… 1

x2n�3 ⋯ 1

⋮ ⋮

xmn xmn�1

⋮ ⋱ ⋮

xmn�2 ⋯ 1

3
775

2
64

C1
C2
⋮

Cm

3
75¼

2
64

Y1

Y2

⋮

YM

3
75 (12)

Here Eq. (12) can be represented as ½A�½C� ¼ ½Y �, where the values of C
can be calculated through Eq. (13) [25].

½C� ¼ ½Y � ½A�T�½A� ½A�T� (13)

If a regression model does not fulfill the criteria of a linear regression
model then it has to be linearized first and then solved using a non-linear
regression model. While solving for functions that cannot be represented
directly in the linearized form, the function has to be linearized first and
then solved. An example of a function that needs a non-linear regression
method to be solved is shown by Eq. (14) [18].
nt learning model.



A. Marahatta et al. Heliyon 8 (2022) e11416
y¼ f ðx;C1;C2Þ¼C1ebC2 (14)
For m number of data, Eq. (14) can be re-written as Eq. (15). Where R
is the difference between the actual value and the predicted value. After
partial differentiation of Eq. (15) with respect to C1 and C2; this relation
can be written as Eq. (16) and can be solved via Eq. (17) [20, 25, 26].

Ri ¼ yi � f ðxi;C1;C2Þ (15)

x1 →

x2 →

⋮

xm

→

→

2
6666666666664

df
dC1

df
dC1

df
dC1

df
dC1

⋮ ⋮

df
dC1

df
dC1

3
7777777777775

2
64

ΔC1

ΔC2

⋮

ΔCm

3
75¼

2
64

Y1

Y2

⋮

YM

3
75 (16)

Here Eq. (16) can be represented as ½A�½C� ¼ ½Y �, and can be solved by the
matrix-vector multiplication method as given in Eq. (17).

½ΔC� ¼ ½Y�AT�½A�½A�T� (17)

While deep reinforcement-based controllers perform well in com-
puters with good processing powers, the same method cannot be applied
to end devices like microcontrollers due to their limited computing
power. So, a simpler Q-table-based method along with a regression-based
optimization technique, which can easily be applied with the low
computing power of a microcontroller has been used in this study.

3. Method

This paper proposes a reinforcement learning-based control system
that uses regression to determine the best policy for the controller. In this
study, the reinforcement learning model has been used to map the boost
converter duty cycle and load impedance connected to the converter and
to determine the support vector separating the positive gain region and
the negative gain region as shown in Figure 2. The relation between duty
cycle and load impedance is not linear. Hence, the model uses a second-
order exponential equation as the policy to generate the required PWM
signal. Similarly, a third-order non-linear equation is used as a policy
function to separate positive gain and negative gain regions. The system
uses nonlinear regression-based optimization to optimize the policy
function. The reinforcement learningmodel optimizes the policy by using
the data from the Q table with the help of non-linear regression as dis-
cussed in section 2. The model uses the impedance of the output load as
the state and the duty cycle of the PWM signal as the action. The model
consists of an instantaneous load impedance tracking loop and a voltage
tracking loop. In order to track the load impedance, shunt voltage drop
and overall output voltage of the converter are used. The instantaneous
load impedance tracking loop measures the load connected to the con-
verter by using the shunt load voltage drop and overall output voltage.
Initially, the controller will not be able to generate PWM signal as
required due to a lack of data in the Q table, so an integral controller-
based compensator is used to compensate for the error generated by
the reinforcement model. As the model trains itself over the large-no-
states, the policy will be optimized and the response of the controller
will become faster and the compensator will have less and less contri-
bution to the PWM signal generated by the controller. However, the
controller cannot be mapped perfectly due to an infinite number of po-
tential states and other practical limitations. Hence, there will be some
errors in the PWM signal generated by the policy function, which can be
eliminated by the compensator.

The controller uses the impedance of the load connected to the con-
verter as the state and PWM as the action to the given state. The input-
output relation is mapped between the output load impedance con-
5

nected to the converter and the input PWM signal. Figure 4 shows how
the controller is implemented in this paper. The reinforcement learning
model interacts with the boost converter using the policy function. The
converter calculates the load impedance by using Eq. (18). The experi-
mental setup used is shown in Figure 5.

R1 ¼V0 � Vs

Vs
*R2 (18)

Algorithm 1 shows how the proposed controller is implemented in
this experiment. First, a reward matrix is defined which will be used to
store rewards for respective state-action-pair. A tentative policy function
is defined; the controller will try to optimize it. Then the program reads
the data from the Q table and determines if the reward for a new state-
action-pair is inserted: if yes then the program will iterate by using
regression and try to optimize the policy function. The load impedance is
taken and appropriate PWM is generated by the policy function which
will be compensated by the I controller and written to the output of the
microcontroller.

Algorithm 1. Operation of the control system

1 Start
2 define Q matrix
3 define a policy function
4 while true
5 read data from Q table
6 if n (S, A) > np (S, A)
7 for (i ¼ 0; i < 50; iþþ)
8 Iterate for the best policy
9 np (S, A) ¼ n (S, A)

10 read the load impedance
11 calculate PWM
12 write PWM
13 Update Q table
14 End

Algorithm 2 shows how the reinforcement learning model is imple-
mented to update the Q table. The algorithm checks if the current action
is better than the previous action for the given state: if true then it logs
the reward for the current state-action-pair. For any state, the controller
is capable of achieving the required output by taking only one action. Due
to this, we do not need to consider the possible future reward and past
rewards while rewarding any state-action pair.

Algorithm 2. Q table updating algorithm

1 Start
2 Read the voltage and PWM
3 if (voltage >23.6 && voltage <24.4)
4 Read maximum reward ðSRmaxÞ for the current state
5 New reward ðSnRÞ ¼ |voltage – 24|
6 If SRmax < ðSnRÞ
7 Update reward with ðSnRÞ
8 End

A PI controller generates the required PWM signal based on the
magnitude of the error and accumulated total error during the run pro-
cess. The duty cycle of the PWM signal generated by a PI controller can be
shown in Eq. (19). The duty cycle of the PWM signal generated by the
proposed controller is given by Eq. (20).

D¼ΔV*Kp þ KI

Xt

0

ΔV (19)

D¼ FðRLÞ þ KI

Xt

0

ΔV (20)



Figure 4. Block diagram of the control system.

Figure 5. Experimental setup.
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In Eq. (19), ΔV*Kp calculates the approximate value of the required
duty cycle for the given condition, and KI

Pt
0ΔV generates the required

compensation signal to generate the required duty cycle. In a system
consisting of a PI controller, the effect of the P and I controller on the
control signal is continuous. A P controller generates linear PWM with
respect to output voltage error and the integrator compensates. However,
the relation between the errors in output voltage and the duty cycle is not
linear. Because of this, the I controller behaves differently in the non-
linear region than in the linear region. I controller generates higher
overshoots in the non-linear region due to large accumulated errors.
Eq. (20) uses a non-linear function approximated by the reinforcement
model and compensated by the integral controller. Since the function is
approximated by mapping the input and output of that specific device,
theoretically function should be able to generate perfect output signals.
However, due to imperfection in mapping and a finite number of state-
6

action-pair used to approximate the function, the signal generated may
not be perfect, hence, the integral controller is used to generate the
compensation signals. The output signal generated cannot be perfect; an
integral controller is paired with the model predictive controller to
compensate for the steady-state errors. In Eq. (19), the integral controller
has a varying effect on the outcome depending upon the connected load
to the output. However, in Eq. (20), FðRLÞ is a non-linear function rep-
resenting the relation between input and output, and the effect of the
integral controller in output is very little and uniform over the varying
load conditions. Hence, the overshoot and oscillation can be minimized
by implementing the proposed controller. The proposed controller uses
load impedance as feedback instead of voltage because load fluctuation is
the cause of transient instability in a boost converter and voltage fluc-
tuation is the response of the converter to the load fluctuation. Also, A
boost converter consists of a capacitor in output to filter the high-



Table 1. Specifications of the converter.

Parameter Value

Inductor 40 μH
Output capacitor 4000 μF
Switching frequency 10 kHz

Sampling frequency 1 kHz

Output voltage 24 V

A. Marahatta et al. Heliyon 8 (2022) e11416
frequency ac voltage. Due to this capacitive component, there is a lag in
voltage change to the load change. The load impedance change can be
measured accurately faster than output voltage change, hence, the ac-
tions can be taken faster and more accurately by implementing the pro-
posed controller than the traditional controllers. In this model, the state
of the system is taken as the load connected to the output of the con-
verter, action is duty cycle fed to the gate of the MOSFET, and error is
determined concerning output voltage generated by any state-action
pair. The transfer function of the proposed controller is given by Eq.
(21), where R is the load connected to the boost converter.

D¼ aebR1 þ ceDR1 þ KI

Xt

0

ΔV (21)

Similarly, a reinforcement learning model is used to separate the
positive gain region and the negative gain region of the converter. A
third-order equation is used to separate the two regions. This equation is
adjusted by the regression model as the converter is introduced to
different load and duty cycle conditions. After the line separates the
positive and negative gain regions, it determines the converter that will
operate on positive gain area while avoiding the negative gain area
which helps to run the converter with high efficiency. If the duty cycle is
in the negative gain region, and the converter is maintaining the output
voltage, then the converter is running with lower efficiency and supplies
the same amount of power to the load with greater efficiency if operated
in the positive gain region, if the converter is not maintaining required
output voltage level then the converter shuts off. This feature can help to
extend the life cycle of the converter as it prevents the converter from
operating in the negative gain region. Further, the converter operates in
the negative gain region, the less efficient it becomes and triggers the risk
of damaging the MOSFET.
Figure 6. Policy developed at d
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The benefit of using a regression model to determine the optimal
policy function in comparison to a neural network is that the policy
function generated is simpler than the neural network and it also requires
less time to train because of its lower complexity. Once an optimal policy
function is determined it is easier to replicate the controller for the
converters with the same specifications.

4. Result and discussion

In order to determine the relationship between the duty cycle and the
connected load, the reinforcement learning model is implemented and
analyzed. To teach the model, the best policy data is required, for which
the programmable load is used. The specifications used for the boost
converter are shown in Table 1. First, simulation is performed in
MATLAB-Simulink and texted in a hardware-based experiment. The
detail of the conducted experiments is discussed in two sub-sections.

4.1. Simulation outcomes

First, a random second-order exponential function is defined as the
policy, and the policy function is paired with an integral compensator.
The PWM data from the controller is fed to the boost converter. The loads
connected to the output of the converter are programmed to switch in
predefined time intervals. As the converter is connected to different
levels of load, the policy function starts to optimize and the contribution
of the compensator to the PWM signal starts to decrease. Figure 6 shows
the policy function generated at the different levels of training stages.

Here in Figure 6, the steps (i.e., 1 to 5) represent the policy function at
different stages of the training. In the future, if any new load condition
arrives then the main policy function will change by a newly optimized
policy. The policy function is generated by the controller in simulation as
well as in hardware that maps the relation between load connected to the
converter and duty cycle as given by Eq. (22).

FðRLÞ¼ aebRL þ cedRL (22)

Where, a ¼ 6.568, b ¼ -0.5434, c ¼ 0.3144, d ¼ -0.03235. The boost
converter used in this experiment is designed to give a maximum output
current of 4 A with an inductor size of 43 uH and an output capacitor of
4000 uF. After the training, the policy is implemented without a
compensator to observe the response with the policy alone as the
ifferent stages (Simulation).



Figure 7. Simulation response of the converter from the non-linear model.

Figure 8. Simulation response of the proposed controller.
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Figure 9. Simulation response of PI controller.

Figure 10. Policy function at different levels of training (Hardware).
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controller. The response of the converter with the policy function as a
controller is shown in Figure 7.

As it can be seen from Figure 7, the output has a very low transient
error, however, there is a steady-state error due to imperfections during
input-output mapping and a limited number of data used to determine
the policy function. The policy function generates the response instantly
with minimum transient voltage fluctuation, but it might generate a
9

small steady-state error due to imperfections in mapping and approxi-
mation. This steady-state error is eliminated by using an integral
compensator. After adding the compensator, the response of the
controller can be seen in Figure 8. The response of the proposed
controller is compared with the response of a PI controller, and the
response generated by the PI controller in the same converter can be seen
in Figure 9.



Figure 11. Response of the controller with policy function as a controller.

Figure 12. Response of the controller after policy function is paired with compensator.
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As can be seen from Figures 8 and 9, the proposed controller gives
better transient stability than a PI controller when it is implemented to
control the boost converter. Further analysis of hardware has been done to
analyze the response of the controller when implemented on hardware.

4.2. Experimental outcomes

A boost converter with an inductor of 40 uH, switching MOSFET
operating at 10 kHz and an output capacitor of 4000 uF is used in this
experiment. An esp32 based controller is used to run the control algo-
rithm with a sampling time of 1 ms. Load switching is obtained by using
10
the relays for every 5 s to train the policy function. A non-linear
regression algorithm is coded on the controller to optimize the policy
function based on the data gathered at the Q table at different stages of
the training. Figure 10 shows how the policy function optimizes over
different stages of training, and the final policy function derived is given
by Eq. (23).

FðRLÞ¼ aebRL þ cedRL (23)

Where, a¼ 642, b¼ -0.03442, c¼ 231.4, d¼ -0.000678. Figure 10 shows
the policy function at different levels of training from Step 1 to Step 8. As



Figure 13. Response of the PI controller.

Figure 14. Duty cycle vs voltage for the boost converter used in this experiment.
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the training progresses, the controller switches load at the converter
output, because of which, the number of state-action-pair available for
policy function optimization increases so that the policy function be-
comes better and better with each step. The policy function is then used
by the controller to generate the required PWM for a given load condi-
tion. The experimental response of the controller based on policy func-
tion alone can be seen in Figure 11.

As can be seen in Figure 11, there is a constant steady-state error of
about 0.5 V and transient fluctuation of about 1 V. The transient voltage
fluctuation is less than the transient fluctuation generated by the PI
controller which is about 3.5 V as shown in Figure 13. Although the
transient voltage fluctuation is reduced compared to PI controller there is
11
still some steady-state error that needs to be eliminated. To eliminate the
error, a compensator is paired with the policy function. The response of
the controller after the policy function is paired with a compensator can
be seen in Figure 12. In Figures 11, 12, and 13, the voltage is measured at
5 V per division and the current at 1 V per division. The current is
measured concerning the voltage drop across a shunt resistor of 0.47 Ω.
Each division of the graph represents 2.12 A of current. The time scale is
represented in terms of 50 ms per division, and the sampling time is 1 ms.
It can be seen from Figures 12 and 13, that the peak transient voltage
fluctuations of the proposed controller are about 1.5 V and of the PI
controller is about 4 V similarly settling time is about 30 ms for the
proposed controller and about 50 ms for PI controller. Hence, both



Figure 15. Converter running with different efficiency for the same load on positive and negative gain region.
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transient fluctuations and settling time are reduced by the proposed
controller at a similar sampling frequency.

It can be seen that the response signal generated by the proposed
controller is faster and has less transient voltage fluctuation than the
traditional PI controller. It also helps in reducing transient instability.
The response of the converter controlled by the proposed model in
simulation and hardware can be seen in Figures 10, 11, and 12. It is clear
from Figures 8, 9, 12, and 13 that the response time and transient sta-
bility of the proposed controller are better than that of a conventional PI
controller.

For the dynamic duty cycle limiter, a support vector is determined to
separate positive and negative gain regions. While running a converter,
in order to maximize efficiency and avoid damaging the converter, the
converter should be run in a positive voltage gain region. To determine
the support vector separating the positive gain region and negative gain
region, a non-linear regression is used in this experiment. Figure 14
shows how the positive and negative gain point is separated for different
load condition for the converter used in this experiment.

Duty limit ¼ -0.001R2 þ 0.010R þ 0.545 (24)

Using a support vector to separate positive and negative gain regions
and using this support vector to run the converter, helps to run the
converter efficiently. Figure 15 shows a condition in which a converter
can output similar voltage in both positive and negative gain regions, but
with different operating efficiency, and Eq. (15) represents the second
order equation separating positive and negative gain regions. The con-
verter is maintaining 24 V constant output in both positive and negative
gain regions, but in the positive gain region, it has much higher efficiency
than that of the negative gain region. By using the support vector method
combined with regression-based optimization, the controller easily
avoids the negative gain region and helps run with maximum efficiency.

5. Conclusion

In this study, a robust controller for the DC/DC boost converter has
been proposed and verified experimentally. As it can be seen from the
simulation and experimental-based outcomes, the proposed controller
significantly improves the transient and steady-state stability of the
converter as compared to traditional controllers like PI controllers. The
proposed controller combines a non-linear model and an integral
12
controller to form a hybrid controller. The reinforcement learning model
maps the non-linearity of the converter and uses the mapped model as a
policy to generate control signals. The same reinforcement learning
model can also be used to dynamically assign duty cycle limits depending
upon the load. A dynamic duty cycle limitation method has been
implemented using reinforcement learning. In future works, the pro-
posed controller can be improved andmade further robust by considering
more variables like input voltage in the policy function. The proposed
hybrid controller can be integrated with other DC/DC converters and
inverters for voltage and frequency regulation.
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