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1. Introduction

In recent years, there have been significant advances in battery
and hybrid-electric power technologies which coupled with energy
security requirements, financial and, environmental concerns and
the rising costs of petroleum, make plug in hybrid electrical vehi-
cles (PHEVs) a strong alternative to conventional vehicle [1,2]. It
is envisioned that most vehicles manufactured in the future will
have a plug-in option for recharging their batteries and, by the year
2030, PHEV penetration will be nearly 25% [3]. PHEVs can be
charged from various locations, such as a house-hold’s electrical
connection, a charging station as well as from the car park during
the day. Various researchers have come forward to find out the
optimal placements of PHEV’s charging station and parking [4–8].
With PHEVs come the opportunities to design bidirectional charger
as active filter for HVDC networks.

V2G operation can be explained in a number of ways as PHEVs
can serve grids as regulators, spinning reserves, storage for renew-
able energy sources and reactive power compensators to provide
improvement in power quality.

Ideas for using PHEV charging station as a spinning reserve [9],
for load leveling [10], and external storage for renewable energy
[11], have been studied, and a PHEV for improving the quality of
wind power has been reported in [12]. Another study has demon-
strated that a PHEV battery can serve as a STATCOM [13]. Dynamic
voltage restorers (DVRs) have been designed using PHEV in [14]
and virtual UPFC model is developed in [15]. Effective pricing mod-
els of the buying and selling of electricity from a PHEV using vari-
able price curves are reported in [16,17].

The use of an active filter in an HVDC network was first demon-
strated in 1993 at Skagerrak3 HVDC Intertie and then at Baltic
Cable HVDC Link in 1994 and Chandrapur-Padghe HVDC Power
transmission in 1998 [18]. The main aim of an active filter is to re-
duce harmonics and to compensate reactive power at the same
time.

To reduce risk in an integrated vehicle health maintenance sys-
tem a fuzzy multi-sensor data fusion Kalman filter model is used in
[19] and the filtering capability of a single vehicle has been utilized
in photovoltaic and wind power systems in [20,21] respectively.
However previous studies have not dealt with the possibility of a
fleet of such vehicles being parked in a charging station or the use-
fulness in bulk amounts in an HVDC transmission network. This
paper presents a way of analyzing the filtering and reactive power
transaction capabilities of the V2G mode of operation for PHEVs.

A simple structure of an HVDC network can be described as a
transmission system with a set of rectifier and inverter for interfac-
ing a DC line with an AC network. A future smart grid consisting of
an HVDC system has been anticipated since the late eighties and
early nineties [22]. However its drawback has been the high cost
of power electronics based converters and inverters and their con-
trol. For the last few years, a great deal of effort has been made to
reduce these costs and improve HVDC technology [23–27]. As a re-
sult, American, several European countries and some Asian coun-
tries and Australia currently have HVDC power networks. An
HVDC network has some important niche applications compared
with other systems or devices. The main application of HVDC
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network is to transmit electric power over long distances and sub-
marine connections.

Harmonics are created from the nonlinear operation of HVDC
converters on both the AC and DC side of the link which can be
identified as characteristic or no characteristic. Although under
ideal conditions characteristic harmonics are related to the pulse
number of the converter, in fact, in a real system these ideal condi-
tions are not achievable. Therefore, no characteristic harmonics are
usually present in an HVDC network.

As the harmonics in power system create power loss and can
sometimes cause operational failures of electronic components,
their reduction is essential for installed equipment [28–30]. In an
HVDC network, capacitor based active filters which are a combina-
tion of electronics converters, capacitors and switching controller,
are used to reduce harmonics [18]. The most expensive compo-
nents for the constitution of FACTS or filter devices are their capac-
itors [31]. In this paper, the capacitors are replaced by a PHEV
parking station and the PHEV’s bidirectional charger is used as
the converter. The p–q theory [28] is used to design a controller
and the possibility of employing PHEVs as a virtual active filter
in an HVDC network to achieve a low cost filter solution is investi-
gated, with the following two case studies introduced to verify its
performance:

� Case1: virtual active filter for the rectifier side of the HVDC
link.

� Case2: virtual active filter for both the rectifier and inverter
sides of the HVDC link.

The rest of the paper is organized as follows: Section 2 describes the
HVDC test system; PHEV battery modeling and network interfacing are
presented in Section 3; Section 4 presents the controller design; and
Section 5 contains the simulation results. Finally, Section 6 provides
brief remarks and suggestions for future work.

2. HVDC test system

The CIGRE benchmark model [32–34] is taken as the base sys-
tem for addressing harmonics problems which exhibits complex
operational characteristics. The system shown in Fig. 1 is a 12-
pulse 500 kV HVDC link rated at 1000 MW in which the T-section
represents the DC-line. The control model at the rectifier is con-
stant current control and at the inverter it is constant extinction
angle (c) control. The converters (rectifier and inverter) are mod-
eled using six-pulse Graetz bridge block. The block consists of an
internal phase locked oscillator (PLO), firing angle measurements
and firing and valve blocking controls. Each thyristor has a
built-in RC snubber circuit. Both inverter and converter sides have
similar model of the converter’s transformer. A combination of a
three-phase two winding transformer, one with a grounded
Wye–Wye connection and the other a grounded Wye–Delta con-
nection are used. Saturation characteristics are modeled with a
tap setting arrangement and smoothing reactors are inserted on
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Fig. 1. Single-line diagram of CIGRE
both sides with an equivalent T-network to model the DC line.
Three phase AC voltage sources are used to represent the supply
voltages on both converter sides and tuned filters and reactive
power supports are provided at both the rectifier and the inverter
AC sides, as shown in Fig. 1.

The aim of this research is to replace the tuned filter and reac-
tive power support from both the converter’s sides using PHEV as a
virtual active filter to obtain a low cost filter and to demonstrate
that the HVDC terminal is a suitable connection place for PHEV
parks, as shown in Figs. 2 and 3.
3. PHEV battery modeling and network interfacing

PHEVs are able to compensate reactive power to utility grid, as
reported in [13]. In this work, they are considered as bidirectional
converters connected dynamic batteries [35]. The bidirectional
converters are designed with a rated current 70 A and the PHEV’s
power capabilities are within the range of ±20 kW active and
±20 kV A reactive. Virtual filters are considered for ±20 MW of
power transaction in the grid that is a park with around 1000 vehi-
cles which is quite a reasonable assumption for city car parks. Here
the ‘‘+’’ sign indicates that the PHEV is in the V2G mode of opera-
tion and ‘‘�’’ that it is in the G2 V mode. The P–Q capability of a
realistic PHEV battery varies ±138 kW and between ±126 kV A as
shown in Fig 4 [13,36].

A dynamic model of a rechargeable battery [37], the operation of
which depends on the electrolyte temperature (h), state of charge
(SOC) and im is an integral part of the total current (idc) as shown
in the battery equivalent network in Fig. 5 is used. Another part
of the total current passes through the parasitic branch the reaction
of which is a continuous process, but not participating in the main
reaction. The voltage across this parasitic branch is nearly equal to
the voltage at the main reaction branch and the power dissipated in
real part of impedances Zm and Zp is converted into heat. The imped-
ance of the main reaction branch increases with charge and, as a re-
sult, the terminal voltage of the parasitic branch rises as does the
current Ip. At the full state of battery charge, this impedance ap-
proaches infinity [37–39]. This battery model can be represented
as an RLC network as shown in Fig. 6, in which the number of RLC
blocks, can be kept limited as the specific speed of evolution of elec-
tric quantities change very rapidly for a PHEV [37].

The third-order battery dynamic model is designed considering
the current, electrolyte temperature and SOC and its dynamic
equations are [37–40]:
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Fig. 2. Modified CIGRE benchmark HVDC system with virtual filter on rectifier side.
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where Ve represents the hysteresis phenomenon for the battery
during charge and discharge cycles. The voltage (Vdc) increases
when the battery is charging and decreases when it’s discharging.
The polarization voltage (Vp) depends on the sign of im as

Vpðqe; imÞ ¼
RpimþKpqe

SOC if im < 0 ðdischargeÞ
Rpim

qeþ0:1þ
Kpqe
SOC if im < 0 ðchargeÞ

8<
:

The equations for Em, R0, R1, and R2 are

Em ¼ Em0 � Keð273þ hÞð1� SOCÞ ð5Þ
R0 ¼ R00½1þ A0ð1� SOCÞ� ð6Þ
R1 ¼ �R10 lnðDOCÞ ð7Þ

R2 ¼ R20
exp½A21ð1� SOCÞ�
1þ exp A22Im=I�ð Þ ð8Þ
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Fig. 6. PQ capability of a vehicle battery [23].
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The SOC and depth of charge (DOC) can be expressed as

SOC ¼ Q n � Q e

Q n
¼ 1� qe ð9Þ

DOC ¼ 1� Q e

CðIavg;hÞ
ð10Þ

where Ch and Ps are the battery’s thermal capacity and power respec-
tively, R0 is the thermal resistance and Rp is the polarization resis-
tance, ha is the ambient temperature, I* is the reference current (a
good choice of I* is a current that flows in the battery for typical
use), xr is the Thevenin equivalent reactance, be is the exponential
capacity coefficient, Qe is the extracted capacity in Ah, Qn is the rated
battery capacity in Ah and Em, Ke, Kp, A0, A21 and A22 are constant for a
particular battery. The details battery parameters are available in
[13,14], and few important parameters are shown in Appendix A.

The behavior of the parasitic branch is strongly nonlinear and
its current is given as

Ip ¼ VpGp exp
Vp

Vp0
þ Ap 1� h

hf

� �� �
ð11Þ

The heat produce by the parasitic reaction can be calculated by
means of the Joule law, as given in the following equation

Ps ¼ RpI2
p ð12Þ

where hf is the electrolytic freezing temperature and Vpo, Gp, and Ap

are constants.

4. Controller design

4.1. General control principle

The target of the controller design is to control the switching of
the PHEV’s converter in such way that the PHEV Park can be used
as a filter and to compensate the reactive power consumed by the
HVDC link.

The virtual active filter controller is divided into three func-
tional control blocks:

1. Instantaneous-power calculation,
2. Power-compensating,
3. DC-voltage regulation and current control.

The instantaneous power of the nonlinear load is calculated by
the first block while the second controls the behavior of the virtual
active filter which determines the parts of the real power and
imaginary power of the nonlinear load that need to be compen-
sated. The third block represents the DC voltage regulator which
calculates an extra amount of real power (PL) to maintain the volt-
age around a fixed reference value. PL is added to the compensating
real power and passed to the current-reference calculation block
together with the compensating imaginary power. Then this block
determines the instantaneous compensating current references
from the compensating power and voltages as shown in Fig. 7.
4.2. Instantaneous power calculation

An instantaneous power calculation method is presented in [41]
to design active power filters for EV charging, where, instantaneous
values are transformed into a DQ-frame converting a nonlinear
instantaneous power relationship into a linear one, and a detailed
closed-loop model is developed for stability analysis using the DQ
theory. In general DQ theory is the projection of the phase quanti-
ties onto a rotating reference frame, on the other hand PQ theory
can be thought of as the projection of the phase quantities onto a
stationary two-axis reference frame [28]. PQ Theory has become
a very attractive tool not only for the active power filter control,
but also for analysis and identification of power properties of
three-phase systems with nonsinusoidal voltages and currents
[42].

In this work the pq theory is used for the instantaneous power
calculation without considering the neutral wire [28]. This theory
consists of an algebraic transformation (Clarke transformation) of
the three-phase voltages and currents in the abc coordinates to
ab. The equations for the current in the ab coordinates can be ex-
pressed as [28,43]:
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� �
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The equation for p, q is

p

q

� �
¼

va vb

vb �va

� �
ia
ib

� �
ð15Þ

The complete system with the controller is shown in Fig. 7. In the
first part of the controller, the instantaneous value of real and imag-
inary power are calculated and to generate the reference value of p
and q, they pass through a selection block, where the power has
been calculated which need to be compensated as shown in
Fig. 8. Then the error current signal used to switch the inverter is
available, as shown in Fig. 9.

The HVDC link converter behaves like a nonlinear load [44]. A
nonlinear load draws a fundamental or average and a harmonic
or oscillating current component from the power system. A
shunt active filter can compensate both oscillating and average
current [28]. The real and imaginary power can be defined as
the combination of average and oscillating components. The
undesirable oscillating real and reactive power are produced by
the harmonics components in the load current. The compensat-
ing currents in ab reference can be calculated for this oscillating
power. Then, the Clarke inverse transformation is used to calcu-
late the amount of current to be injected by the virtual active fil-
ter. To generate the current for the controller, Eq. (15) can be
written as

ia
ib

� �
¼ 1

v2
a þ v2

b

va vb

vb �va

� �
p

q

� �
ð16Þ
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4.3. Power compensation section

It is convenient to separate p and q into their average and oscil-
lating parts as

p ¼ �pþ ~p ð17Þ
q ¼ �qþ ~q ð18Þ

where �p and ~p are the average parts of real and imaginary power
respectively, and �q and ~q are the oscillating parts of real and imag-
inary power respectively.

From Eq. (16), it is possible to write

ia
ib

� �
¼ 1

v2
a þ v2

b

va vb

vb �va

� �
p

0

� �
þ 1

v2
a þ v2

b

va vb

vb �va

� �
0
q

� �
ð19Þ
D
iap

ibp

� �
þ

iaq

ibq

� �
ð20Þ

where the instantaneous active and reactive current in ab axis are
denoted by iap, ibp and iaq, ibq respectively. The reactive power is de-
fined as a component of the instantaneous power, as shown in Eq.
(21). The instantaneous power in the ab axis are pa and pb which
are combinations of the instantaneous active and reactive power
in the a axis (pap and paq) and b axis (pbp and pbq) respectively. In
the p–q theory, the imaginary power means the sum of products
of the instantaneous three phase voltages and currents. In this study
q represents the imaginary power.

Therefore the instantaneous power (p) in the ab axis can be ex-
pressed as

p ¼ vaiap þ vbibp þ vaiaq þ vbibq

¼ v2
a

v2
a þ v2

b

pþ
v2

b

v2
a þ v2

b
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b

q

¼ pap þ pbp þ paq þ pbq ¼ pa þ pb ð21Þ

As the sum of the third and fourth terms on the right hand side
in Eq. (21) is always zero, this is why they were named as instan-
taneous reactive power while the instantaneous imaginary power
(q) is a quantity that gives the magnitudes of the power paq and
pbq. If the ab variables of the instantaneous real power (p) and
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imaginary power (q) defined in Eq. (15) are replaced by their
equivalent expressions referred to the abc axis using Eq. (13) and
similarly for the current, the following relationship can be found:

p ¼ vaia þ vbib

¼ 1
3
fðva � vbÞ � ðvc � vaÞgia þ fðvb � vcÞ � ðva � vbÞgib½

þfðvc � vaÞ � ðvb � vcÞgic�

¼ 1
3
ðvab � vcaÞia þ ðvbc � vabÞib þ ðvca � vbcÞic½ � ð22Þ

and

q ¼ vbia þ vaib ¼
1ffiffiffi
3
p ½ðva � vbÞic þ ðvb � vcÞia þ ðvc � vaÞib�

¼ 1ffiffiffi
3
p ðvabic þ vbcia þ vcaibÞ ð23Þ

In order to draw a constant instantaneous power from the
source, the shunt virtual active filter should be installed as close
as possible to the nonlinear load. In this case we have considered
that the average real power �p will be supplied by the grid. The
power PL from the voltage regulator contributes to maintaining
Vdc around their reference value (300 V). In fact, a small amount
of average real power PL, must be drawn continuously to supply
switching and Ohmic losses in the converters. The oscillating real
power ~p, the power PL and the total instantaneous reactive power
(q ¼ �qþ ~q) will be compensated by the virtual filter. Therefore the
compensating current will be

icoma

icomb

� �
¼ 1

v2
a þ v2

b

va vb

vb �va

� � �~pþ PL

�q

� �
ð24Þ

where ~p can be calculated using p ¼ ~p in Eqs. (19) and (20). The use
of a PHEV park as a source of energy has the advantage of compen-
sating the real power (p) which implies an oscillating flow of en-
ergy, protect from experiencing large voltage variations. If the
amplitude of the AC voltage is higher than the DC voltage the
PWM controller loses its controllability, in this case the rating of
DC capacitor need to be large. However using a PHEV park as stor-
age this problem can be eliminated.

4.4. DC voltage regulator and current controller

In this paper the hysteresis current controller is used because it
offers excellent dynamic performance and also very simple to
implement in real time [45]. A dynamic offset (e) is created from
the measurement of Vdc and the DC reference voltage in such
way that the band limits of the hysteresis current controller will
be:

Upper hysteresis band limit ¼ iðref Þ þ Dð1þ �Þ

Lower hysteresis band limit ¼ iðref Þ � Dð1þ �Þ

where iref = iaref, ibref, icref and D is a fixed half hysteresis band. An-
other slower feedback loop generates the power PL from the voltage
regulator to keep the voltage around a fixed reference point, as
shown in Fig. 10. It brings the energy balance and also useful for
compensating the error which occur during the transient state.

The switching logic for the hysteresis current controller is for-
mulated as:

� if iBa < (iaref � D(1 + e)) Sh 1 on and Sh 4 off
� if iBa < (iaref + D(1 + e)) Sh 1 off and Sh 4 on
� if iBb < (ibref � D(1 + e)) Sh 3 on and Sh 6 off
� if iBb < (ibref + D(1 + e)) Sh 3 off and Sh 6 on
� if iBc < (icref � D(1 + e)) Sh 5 on and Sh 2 off
� if iBc < (icref + D(1 + e)) Sh 5 off and Sh 2 on

5. Simulation results

The 12 pulse converter of an HVDC network is a major source of
harmonics in power systems. In order to realize the performance of
virtual active filter two different case studies are introduced:

1. A virtual active filter on the rectifier side, and
2. A virtual active filter on each of the rectifier and inverter sides.

5.1. Case1: virtual filter on rectifier side

In this study, a virtual active filter is connected on the rectifier
side and a fixed tuned filter on the inverter side. Three different
analyses have been carried out to identify the performances of
the virtual active filter in the HVDC link. A real time harmonics cur-
rent spectrum is analyzed and it is determined that its different or-
ders have the maximum and minimum levels of 0.21% and 0.01%
magnitude respectively as shown in Fig. 11. These harmonic cur-
rents are periodic at a period twice of the system frequency for
p–q theory [28]. The THDs of the current for the virtual filter are
also investigated and found to be 4.16% for the transient condition
and 0.3% for the steady state as shown in Fig. 12. According to IEEE
standard 519 [46], these THD levels for current are within the
acceptable limits. To recognize the individual harmonics spectra
another analysis is carried out. As a 12 pulse converter does not
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Fig. 11. Harmonics currents of load (one cycle) with virtual filter (case1).
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Fig. 12. THD with virtual filter (case1).
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Fig. 13. Compensating current and reactive power outputs from virtual filter.

Fig. 14. Harmonics spectrum of source current with virtual filter.

Fig. 15. Harmonics spectrum of load current with virtual filter.
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Fig. 16. Harmonics currents of inverter side (one cycle) with virtual filter (case2).
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Fig. 17. THD with virtual filter (case2).

Fig. 18. Harmonics spectrum of load current with virtual filter (case2).
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produce significant 5th and 7th order harmonics and the major
contributor is 11th order harmonics [47], therefore 11th order
harmonics magnitude are observed for both the source and load
current using virtual filter as shown in Figs. 14 and 15 respectively
and are 0.058% and 0.011% respectively. To realize the characteris-
tics of the compensating current and instantaneous reactive power
the wave form is shown in Fig. 13 in which the PHEV park’s capa-
bility to filter is justified.
5.2. Case2: virtual filter on both converter side

To justify the performance of the PHEV base virtual filter, virtual
active filters are used at both sides of the HVDC link and, in these
analyses; all the simulation results are taken from the inverter
side. To determine this virtual active filter’s real-time harmonics
current spectrum, Fig. 16 shows it has a maximum harmonics cur-
rent level of 0.32% and a minimum of 0.013%. The THDs of its cur-
rents are 4.3% for the transient condition and 4% for the steady
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state, as shown in Fig. 17. An individual spectrum analysis of the
virtual active filter’s harmonics load currents also shows that the
magnitude of its 11th order harmonics current is 0.02918, as
shown in Fig. 18. These analyses show that, as the performances
of the virtual active filter can satisfy the requirements of IEEE Std
519-1992, it could be used as an economical solution for the HVDC
link.

6. Conclusions

The goal achieved through this study is the successful demon-
stration of the filtering and reactive power compensation using
PHEVs as active filters in an HVDC network. We investigated the
converters and system harmonics currents using a virtual active
filter in the system for two different cases. The simulation results
obtained showed that the harmonics reduction performance of
an HVDC network with PHEV used as an active filter is within
the acceptable range. The implementation of PHEVs as virtual
active filters in HVDC networks provide the opportunities to use
active filter in a cost effective way and ensure connecting points
of a PHEV park at HVDC converter terminals. It has been concluded
that the application of the bidirectional converters of PHEVs of a
PHEV park in a power system offers great opportunities for the fu-
ture but also number of challenges. A great deal of research into
the implementation of V2G technology in an HVDC network is
essential. Several issues, such as using a better control technique
and PHEVs as a source, could be interesting topics for future work.

Appendix A

A.1. Battery parameters

The parameters used for the Battery are as follows:
Parameters referring to the battery capacity:

I� ¼ 49 A; Kp ¼ 1:18; C1 ¼ 261:9 A h; hf ¼ �40 �C

Parameters referring to the main branch of the electric
equivalent:

Ts ¼ 28;800 s; Em0 ¼ 2:135 V; Ke ¼ 0:580 e�3 V=�C;
A0 ¼ �0:30; R00 ¼ 2:0 m X; R10 ¼ 0:4 m X

Parameters referring to the parasitic reaction branch:

Vpo ¼ 0:1 V; Ap ¼ 2:0; Gpo ¼ 2pS

Parameters referring to the battery thermal model:

Ch ¼ 15 Wh=�C; Rh ¼ 0:2 �C=W
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