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Effect of Demand Response on Transformer
Lifetime Expectation

Johannes Jargstorf, Koen Vanthournout, Tom De Rybel, Dirk Van Hertem

Abstract—Demand Response is seen as important to support
the integration of renewable energies into the grid. In Flanders,
a residential Demand Response setup is realized in the Linear
pilot. The aim is to assess the potential benefits and ways of
technical realization of residential Demand Response. In this
paper, household devices, like washing machines, are used to
offer a flexible load. These are also devices which are used in the
pilot. The effect of using flexible loads on the lifetime of a low-
voltage transformer is assessed. An IEEE transformer model is
used to calculate the lifetime. To calculate the effect of Demand
Response, aging is first calculated based on the load of a group
of customers and then based on their load being optimized by
Demand Response. In this paper, devices are scheduled based on
the transformer temperature. The temperature is optimized by
using a simulation model based on a mixed integer quadratic
programming (MIQP) scheduler. To assess the effect of Demand
Response on the transformer lifetime, aging for the improved
load curve is compared with aging for the initial load curve. To
demonstrate the impact, realistic data for household load curves
and the usage of household devices are employed. Results for
this input data show reductions in aging of up to 75 % for
transformers operating at rated load. The setup will be used to
calculate a benchmark for the setup in the Linear pilot, which
will use an on-line scheduler. It will be also used to determine
potential outcome of a business case.

Index Terms—Demand Response, Transformer Lifetime, Asset
Management.

I. INTRODUCTION

EUROPE has set a number of targets for the future growth
of renewable energy [1]. This includes photovoltaics

(PV), which inject to a large portion into the distribution
grid. Electrical vehicles, on the other hand, may add excessive
loads to the grid. Yet, the existing grids were not designed
for such a use [2]. As a result, several issues of power
quality and strain on the grid equipment arise. The classical
approach used today is to reinforce the electricity grid. Yet,
such reinforcement, for example by deploying transformers
with a higher rated power, is costly, especially as average load
factors are often rather low [3]. Demand Response or Demand
Side Management, i.e. matching consumption to generation or
requirements of the grid, is seen as a way to overcome these
problems [3], [4]. Demand Response has various applications,
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all of which should be evaluated to see if they justify a larger
scale roll-out of this type of technology. One potential benefit
is to extend the lifetime of grid equipment by using Demand
Response [5]. In this paper, the focus is on transformers since
transformers are the single most valuable asset.

Peak shaving on a load curve is commonly used in Demand
Response schemes [6], [7], [8]. Yet, for the transformer, the
actual problem is the aging that is induced by this load profile.
Ref. [9], [10], [11] name load related temperature increase the
main mechanism of transformer aging and the main limit for
loading.

In this paper, this type of aging is correlated to demand
response.

Aging models express a relation between the loading of
a transformer and its lifetime [12], [13], [14], expressed by
the aging of the insulation. The use of flexible devices is
optimized based on the aging calculated in [12]. A quadratic
programming (QP) optimizer is used to schedule the use
of devices. As a new approach, this includes the individual
household devices that are used in the Linear pilot [15]:
• Washing machines
• Tumble dryers
• Dishwashers
• Electric domestic hot water buffers

Due to the on-off nature of scheduling household devices,
this includes mixed integer programming, which makes the
problem computationally more complex and time consuming.
The result of this study is used as a benchmark for the Linear
pilot. In the following sections the different parts of the model
will be described.

II. SIMULATION SETUP

A. Transformer Model

To predict the lifetime of a transformer based on the load,
the IEEE standard C57.91 can be used [13]. Concerning
temperature, transformers have absolute limits which may not
be exceeded at any time. Below these absolute limits, lifetime
is related to temperature, which is related to active loading
and ambient temperature. Therefore, it makes sense to reduce
the highest peaks. One relation for this can be found in the
mentioned standard. It is a general guideline valid for oil
immersed, distribution as well as power transformers. Here,
an aging factor is defined as follows:

FAA = e

[
15000
383 −

15000
ΘH+273

]
(1)

where FAA is the aging acceleration factor, and ΘH is the so-
called hottest spot temperature in ◦C. This relation calculates
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an aging relative to the normal aging, which gives a lifetime of
180,000 hours or 20.55 years. Normal aging occurs at 110◦C
hottest spot temperature, or 80◦C rise of the transformers
hottest spot above an ambient temperature of 30◦C. The
equivalent life can then be calculated as:

FEQA =

∑N
n=1(FAA,n∆tn)∑N

n=1(∆tn)
(2)

where FEQA is the factor of equivalent aging, n is the index of
the respective time interval and ∆t is the time interval at which
the respective aging occurs. This gives a life consumption for
the respective time period relative to the life consumption
at 110◦C. If, for example, one year is considered and the
equivalent life consumption is two, then two years of life time
at 110◦C were spent during this time. So, if the factor remains
two for 10.275 years, then the transformer is assumed to be
at end-of-life after this period. In the model, ΘH is calculated
as:

ΘH = ΘA + ∆ΘTO + ∆ΘH (3)

where ΘA is the ambient temperature, ∆ΘTO is the rise of
the top oil temperature over ambient temperature and ∆ΘH is
the hottest spot rise over top oil temperature, all in ◦C. Now,
∆ΘH is calculated as:

∆ΘH = (∆ΘH,U −∆ΘH,i)(1− e−
t
τw ) + ∆ΘH,i (4)

∆ΘH,i is the initial temperature rise at the beginning of an
interval, t is the duration of an interval in minutes and τw is
the winding time-constant in minutes. For ∆ΘTO a similar
equation is applied. This describes the heat-up process based
on the ultimate temperature rises ∆ΘH,U and ∆ΘTO,U that
are calculated based on the load in the time interval as:

∆ΘH,U = ∆ΘH,RK
2m
U (5)

∆ΘTO,U = ∆ΘTO,R

(
K2
UR+ 1

R+ 1

)n
(6)

with KU being the ratio of ultimate load to rated load
and ∆ΘH,R and ∆ΘTO,R being the winding hottest spot
temperature rise over oil and the top oil temperature rise over
ambient at rated load. R is the ratio between no load loss and
loss at rated. The factors m and n are between 0.8 and 1.0,
depending on the transformer type.

B. Optimizer

The objective used in this paper is to increase the trans-
former life as much as possible. This shall be reached by
influencing the transformer load curve through scheduling of
flexible household devices. This scheduling is performed by
an optimal scheduler. To calculate an optimal solution, the
scheduler is assumed to have information about the future load
curve and about the future use of the flexible devices.

The scheduling then is done based on the original load
curve, the available flexibility, and the impact of load on the
aging of the transformer. It is assumed that all load profiles of
the individual households within the feeder can be summed-
up. Grid losses are not taken into account.

Now, to optimize the lifetime of the transformer, the equiv-
alent aging FEQA for the respective time period has to be
minimized. Given T identical time intervals ∆t, this means
to minimize the sum of the aging factors

∑T
t=1(FAA,t).

According to Equation 1, the aging factor is an exponential
function of the temperature ΘH . The minimization of such a
function cannot be solved by a usual solver like CPLEX [16]
that can handle linear or quadratic input. To make it a solvable
problem, it has to be linearized. This linearized function will
be used for the optimization of the load curve. Based on this,
aging is calculated with the original function. Linearization is
done by approximating the initial function by a Fourier series
until the first element as expressed in Equation 7.

FAA,linear = e

[
15000
383 −

15000
Θlin+273

]

+
15000

(Θlin + 273)2
× e

[
15000
383 −

15000
Θlin+273

]
× (ΘH −Θlin)

(7)

In this equation, Θlin is the temperature for which the equation
is linearized. To compare the result of both equations, this
temperature is chosen as the average ΘH,avg. of the respective
time period. Now, the sum of aging factors for a time period
calculated by this function can be minimized if the sum of the
temperatures for the same time period is minimized.

Because the original function is monotonic, such a lin-
earization is possible. Yet, it has to be analyzed, if the aging
calculated with the linear function is sufficiently similar to the
aging calculated with the original function. Only then are the
problems that are solved sufficiently similar.

A further adaption is made for the calculation of the
temperatures ∆ΘH,U and ∆ΘTO,U calculated according to
Equation 5 and Equation 6. In these equations the parameters
m and n express a relation between loss and temperature
rise. According to [13], these parameters should be 0.8 for
transformers without forced cooling. Again, to make it a
problem that can be solved with solvers as CPLEX, the input
has to be quadratic. For this reason, both parameters are chosen
to be 1.0. This value is only suitable for transformers with a
directed, forced cooling.

A second linear objective is introduced to penalize shifting.
Shifting consumption is related to certain costs. It creates for
instance a deviation from an original load forecast. Thus, a
penalty on shifting is needed to make sure that an efficient so-
lution is found. Efficient means a solution with as few shifting
as possible for a certain improvement in aging. This second
objective is realized as a constraint for the optimization. In
this context, this will be a limit on the amount of energy that
can be shifted per time period. This limit is based on the total
amount of energy that is shiftable.

The input for the calculation of the temperature according
to paragraph II-A is a load curve for which the element for
time step t is calculated as:

Pt = Pinitial,t +

N∑
n=0

(PAD,n,t) (8)

where Pinitial,t is the initial load curve, N is the number of
households and PAD,n,t the flexible load that is re-scheduled
for household n.
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Yet, this setup is used to define a benchmark. For the field
test and further models, an on-line scheduler is used. Such a
setup has to find a solution that is "sufficiently" optimal.

C. Input

1) Load profiles: To determine the transformer load curve,
individual residential load curves are summed. These are
generated based on information taken from [17]. In this
reference, a method to specify household characteristics, such
as household size, based on quota is presented. In this way,
more representative profiles can be generated.

For PV profiles, data from a single PV generator in Belgium
is used and rescaled to be representative for residential injec-
tion. Every fifth household is assumed to be equipped with a
PV generator. From these profiles, a load curve is build for a
hypothetical network with 20 households. For the year 2007
those profiles have a cumulated peak load of 30 kW.

A share of 50 % (10) households with flexible devices
is assumed. This small size is chosen, as this problem gets
computationally very extensive with an increasing number of
households. Yet, to have similar scales with bigger scenarios,
the rated power of the transformer is scaled-down. A 80 kVA
transformer is assumed which is further scaled-down to 20
kVA, although such transformers are not common in Belgium.
Results in this paper are also validated with a scenario with
63 households of which 31 are equipped with flexible devices.

For the ambient temperature, an hourly-based curve for
Saarbruecken was taken, derived from [18]. Concerning the
ambient temperature in Equation 3, the IEEE guide recom-
mends to use a daily average of the ambient temperature
if such data is available. Yet, other references also use the
ambient temperature in an hourly resolution [19]. This is also
used here.

For the transformer the parameters depicted in Table I are
used.

TABLE I
TRANSFORMER PARAMETERS.

initial alternative

hottest-spot rise over ambient at rated ∆ΘHA,R 80◦C 75◦C

top-oil rise over ambient at rated ∆ΘTO,R 36◦C 55◦C

load loss at rated load to no-load loss R 3 2.7

time constant winding τW 5 min 5 min

time constant oil τTO 210 min 210 min

parameters n, m 1.0 1.0

These values are taken from [13]. Though, in the reference,
these values are taken from bigger transformers, for instance
in [10] similar values for time constants and oil temperature
rise over ambient are applied. The alternative parameters are
taken from [20]. Here, the winding temperature has much less
impact on the overall temperature. The parameters n and m are
chosen to be one to have a quadratic input for the optimization
as explained in Chapter II-B.

2) Demand Response: In the Linear field test, washing
machines, tumble dryers, dishwashers and domestic hot water
(DHW) buffers are used as flexible devices. The consumption
of these devices is considered to be included in the household

TABLE II
PARAMETERS OF DEVICES.

Device Load in kW Setup

Washing Machine heating: 2.0, spin-
ning: 0.5

avg. 3.3 delayed cycles per
week and household,
avg. 450 Wh per cycle

Tumble Dryer heating: 2.0 avg. 1.5 kWh per cycle, used
for 70% of wash cycles

Dishwasher heating: 2.0 - 2.5 avg. 3.1 delayed cycles per
week and household, avg.
1.01 kWh per cycle

DHW Buffer 2.4 200 l storage, daily outtake
per person: 35.4 - 38.7 l, avg.
5.5 kWh daily consumption
per buffer

load curves. Thus, downward reserve has to be removed while
upward reserve is added. Due to the aggregation of the load
curves, this is seen as a suitable approach, even if there is no
information about the use of a device in an individual profile.

For the optimization model, two different basic models
for the devices are assumed: Fixed Program Schedule (FPS)
devices and State of Charge (SOC) devices. FPS devices
include all devices that have a fixed schedule that can be
delayed, but not interrupted, i.e., washing machines, tumble
dryers and dishwashers. These devices are started by the user
at a certain point in time. If the device is a flexible device,
the user can define a certain time period in which the device
is waiting and can be started on demand, for example, via
an interface by a price signal or by direct load control. In
this model, given that flexible devices are included in the
household load curves, they offer downward flexibility only
at the time they were initially running and upward flexibility
during the delayed start waiting period.

SOC devices include buffered devices that produce heat
from electricity, e.g. an electric domestic hot water (DHW)
buffer. In the DHW buffer, the temperature of the tapped
water has to stay between predefined comfort limits. The
energy in the buffer is reduced by outtake and by losses,
while the thermal energy can be increased by an electric
heater. Flexibility can be created by storing thermal energy
in the buffer before the energy consumption occurs, thus
temporally disconnecting production and consumption, while
respecting the user’s comfort settings, which means minimum
and maximum outlet temperature and minimum energy content
of the buffer (minimum SOC).

For the model, usage patterns and consumption models
from [21] and [22] are used to calculate the load curves. This is
done in a model that is implemented in JAVA which calculated
load curves for the individual devices, based on the input data
from the mentioned references. Most important parameters of
the devices are depicted in Table II For the delay function, it
is assumed that in 56 % of cycles the delay is ≤ 3 h, in 28 %
of cycles the delay is ≤ 6 h and for the remainder the delay is
≤ 12 h. Additionally, it is also assumed that washing machines
are delayed in 85 % of the wash cycles and dishwashers in
75 % of the cycles.

As the DHW buffer represents an important load, it is
important at which time of the day the water is heated.
According to [21], heating can be shifted to the night, or
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TABLE III
SCHEDULING OF FPS DEVICES.

t1 t2 t3 t4 t5 t6

downward -load1 -load2 -load3

upward1 load1 load2 load3

upward2 load1 load2 load3

upward3 load1 load2 load3

happens when it is needed, which means when temperature
drops below a certain limit. The latter is assumed for most of
this analysis. This means that that the DHW buffer can run
anytime of the day. It is assumed that this load is part of a
households’ daily load curve. The impact of a DHW buffer
that runs only at night is also analyzed. In the latter case, the
buffer will run either just after midnight or if the temperature
drops below a lower limit. In this model, this is the case for
the four and five-person households. Here, the buffer usually
turns on late in the evening.

3) Model FPS devices: In the model, devices are addressed
individually. For the FPS devices, it is assumed that only a
limited number of downward and upward combinations exists.
As depicted in Table III, each downward flexibility can be
shifted to certain later points in time. This time span is defined
by the user. The model input for FPS devices is a time series
for the downward power and a binary time series indicating
whether the device offers flexibility or not. These time series
are calculated by the JAVA model already mentioned. In a
matrix of the possible combinations, the downward profile, as
depicted in Table III, is added to possible upward profiles. In
this paper, a ∆t of 15 minutes is assumed. Then, a ((N ·T ), T )
matrix LP is filled with possible combinations where N is the
number of households and T the number of time steps. For
the optimization, CPLEX in combination with Yalmip [23] is
used. In Yalmip, a binary (1, (N · T )) decision vector dcv
can be defined. This vector then chooses the best possible
combinations. Thus, the contribution of FPS devices can be
expressed as:

PAD,FPS = dcv × LP (9)

PAD,FPS is a (1, T) vector that contains for every time step t
the sum of all devices

PAD,FPS,t =

N∑
n=0

T∑
k=0

(dcv(n−1)·T+k · LP(n−1)·T+k,t) (10)

As a constraint, every downward profile may be chosen only
once. To guarantee this, the chosen downward profile may not
exceed the initial load profile Pinitial:

Pinitial,n,t ≤
T∑
k=0

(dcv(n−1)·T+k · LP(n−1)·T+k,t) (11)

For these devices, it will be assumed that they have to be
balanced over a day, so no shifting from one day to another
is allowed. This is done for computational reasons. It will be
later analyzed whether there is an impact on the use of FPS
devices, if such shifting is allowed.

4) Model SOC devices: For SOC devices, the amount of
used flexible load is the difference between a calculated load
curve based on an optimized use of the device and an original
load curve. For the original load curve, it is assumed that, given
a water consumption profile WD, the heating element switches
on if a certain temperature Tmin is reached and switches off
if a Tmax is reached. For calculating the contribution to the
transformer load curve, a ((N · T ), T ) matrix LP is used,
similar to the FPS devices. This matrix consist of N (T, T )
diagonal matrices of the SOC device power for household n.
Similar to the FPS devices, this can be expressed as:

PAD,SOC = dcv × LP − Pinitial (12)

This usage of the device for influencing the load curve is
constrained by the SOC, which is the water temperature in
case of a domestic hot water (DHW) buffer. As a constraint,
the temperature has to stay within certain limits, which also
constrains the usage of the buffer for shifting:

Tmin ≤ TH(t) ≤ Tmax (13)

These limits have to be lower, respectively higher, than the
original limits to allow a delayed start or end of the heating
process. The temperature in the buffer depends on the buffer
usage, the out-take of hot water and possible losses. Based
on the usage of the buffer and an out-take curve, the water
temperature is calculated as given in [6]:

TH(t) = TH(0)e−( 1
R′C )(t)

+{GR′Tout +BR′Tin +QR′}

×
[
1− e−( 1

R′C )(t)
] (14)

where TH(t) and TH(0) is the water temperature at time t
and the initial water temperature, respectively. For 15 minutes
time steps, t is 0.25 h. Tout is the temperature outside the
tank in K, Tin is the temperature of the inflow, also in K. Q
is the energy input in W, which is the power of the heating
element. R is the tank thermal resistance, SA the surface area.
G = SA/R, WD is the water demand in l/h. Cp is the specific
heat of water, D is the density of water which is 1 kg/l. Also:

B = WDCpD (15)
C = (Vbuffer)CpD (16)
R′ = 1/(B +G) (17)

where Vbuffer is the buffer volume. Also for the buffered
devices, it is assumed that they have to be balanced over a day.
The temperature will also be reset at the end of every day to the
temperature that was originally calculated. In this way, every
day can be calculated individually. To avoid continuously
switching, it is also assumed that the heating element has to
be switched on for at least an hour if it is switched on.

5) Objective function: Given the considerations so far, the
objective function is:

minimize

T∑
t=0

(ΘH,t) (18)
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with T the number of time steps and ΘH,t the temperature in
time step t. This function is subject to the constraints (19)-
(??). Every FPS profile may be chosen only once. To achieve
this, the inversed used flexible load PAD,FPS,n,t may not exceed
the initial load curve without shifting Pinitial,FPS,n,t.

−PAD,FPS,n,t ≤ Pinitial,FPS,n,t (19)

The temperature has to stay within limits

Tmin ≤ TH(t) ≤ Tmax (20)

The sum of shifted energy may not exceed a defined limited
of shifted energy Wlim for the respective time period. This is
first translated into:

Plim = 2 · 60 min/h
timestepsize in minutes

·Wlim (21)

and then limited as:
T∑
k=0

abs(PAD,t) ≤ Plim (22)

All devices for all households also have to be balanced over
a time period, in this case every day:

N∑
n=0

T∑
k=0

(PAD,n,t) = 0 (23)

If shifting to the next day is allowed, T is adapted for the
FPS devices. A relaxation is made to the search criteria for
computational reasons. In CPLEX, it can be defined how close
a solution has to be to the optimal solution before the solver
stops looking for further solutions. This parameter is set to
5 %. This means that there might be solutions with a calculated
average aging up to 5 % better than the one found.

D. Results

As a first scenario, the network with 20 households and
an 80 kVA transformer is assumed. For these considerations,
a unity power factor is assumed. With this setup, a maxi-
mum hottest spot temperature, ΘH , of 41.6◦C is calculated.
Maximum values for the rise of oil temperature over ambient
temperature, ∆ΘTO, and the hottest spot temperature rise over
oil temperature, ∆ΘH , are 12.0◦C and 6.1◦C, respectively.

On average, based on the input data, every household
provides 6.9 kWh flexible energy per day. This is all the energy
used for water heating and the energy for those devices that
were started as flexible. On this amount the second objective
is based. The maximum of flexible energy that can be used
to improve the transformer load curve is initially set to 5 %
of the total available energy. For the scenario with 10 flexible
households, this means a maximum of 3.5 kWh (0.35 kWh
per household) per day that may be shifted.

This case is calculated for January and August. In January,
the peak load is 25.3 kW while in August it is 19.5 kW. In
January, an average 3.06 kWh are shifted per day. Of this, 2.8
kWh or around 93 % come from shifting the DHW buffers,
0.13 kWh or 4% come from washing machines and dryers
combined. For August 3.08 kWh are shifted on average of

TABLE IV
EFFECT OF LOAD SHIFTING.

Jan, Pmax = 25.3 kW,
Pmax,new = 22.9 kW

initiala

ΘH,Peak
in ◦C

change
avg.
Aging
in %

change
avg.ΘH
in %

change
avg.∆ΘTO
in %

rated 80 kVA 24.6 -0.36 -0.12 -0.07

rated 60 kVA 28.0 -0.77 -0.21 0.13

rated 40 kVA 37.7 -2.92 -0.42 -0.27

rated 20 kVA 94.2 -47.36 -1.01 -0.75

Aug, Pmax = 19.5 kW,
Pmax,new = 19.5 kW

initial
ΘH,Peak,
in ◦C

change
avg.
Aging
in %

change
avg.ΘH
in %

change
avg.∆ΘTO
in %

rated 80 kVA 38.5 -0.46 -0.10 -0.11

rated 60 kVA 38.9 -0.84 -0.18 0.19

rated 40 kVA 39.9 -1.99 -0.39 -0.41

rated 20 kVA 69.6 -11.1 -1.29 -1.36

astarting with time step 30

which 96 % come from the DHW buffers. The result of this
setup is depicted in Table IV1.

The impact on the average load curve is depicted in Figure 1
and Figure 2.
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Fig. 1. Average daily load curve January, 10 households, max. 3.5 kWh
shifted Energy.

With this limited amount of shifted energy, results indicate
a rather limited improvement by load shifting, unless the
transformer is loaded in peaks almost to or even beyond its
rated load. Yet, in this case, the improvement increases fast, as
depicted in Figure 3. Another outcome is that the peak load
is not necessarily reduced. As can be seen for August, the
absolute peak load remains unchanged. In in Table IV, it can
also be seen that the effect on aging is much bigger than the
effect on the temperature.

Concerning the temperatures, the main impact on aging
comes from a reduction in the winding-hot-spot temperature.
This is due to the short time-constant. The oil temperature
reacts much slower. On the other hand, the oil temperature is

1assuming a reduced rated load for the age calculation but based on the
load curve calculated for 80 kVA
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Fig. 2. Average daily load curve August, 10 households, max. 3.5 kWh
shifted Energy.

more affected than the winding temperature by a reduction of
the rated load of the transformer. As can be seen in Table IV,
the average improvement raises with a reduction in rated load.
This value remains constant for the winding temperature.

The impact on the load curve shows, how in January load is
mainly shifted from the afternoon peak load, while in August it
is shifted towards times with high PV injection during midday.
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Fig. 3. Improvement average aging, 10 households.

These results indicate a limited impact of load shifting
on the transformer lifetime, unless peak load is close to, or
beyond, the rated load. The main device to be shifted are the
DHW buffers.

If the limit on the shifted energy is relaxed, more energy is
shifted and the aging can be further reduced. The limitation
can be seen as a cap on the costs of shifting. In Figure 4
and Figure 5, a relation between the shifted energy and the
improvement in aging is depicted. Here, the combined use of
Demand Response for all households together was limited to
3.5 kWh per day, to 17.5 kWh per day and unlimited. It can
be seen that the aging decreases with an increased amount of
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shifted energy, but with a declining rate. It can be also seen that
for the alternative parameters according to Table I, with less
impact of the winding temperature, the improvement in aging
is reduced. Yet, for all scenarios, a significant improvement in
average aging can be achieved.

DHW buffers remain the most important flexible device if
no limit is applied. In this case, around 2.9 kWh per household
and day are shifted, for example in January, compared with
around 0.31 kWh given a limit of 0.35 kWh. As depicted in
Figure 6, around 80 % come from DHW buffers compared to
93 % in the case with a limit.

Yet, it is also important to note that the amount of flexibility
provided by the FPS devices is assumed to be smaller than the
amount provided by the buffers. Therefore, it is also important
to analyze how much of the available flexibility is used. This
is depicted in Figure 7.

The share of used flexibility rises with the relaxation of the
limit on used flexibility. Without a limit, around 50 % is used.
This share drops by around 10 percentage points, if a limit of
17.5 kWh is applied, and only FPS devices are used. If shifting
to the next day is allowed, this share raises again by around
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5 percentage points. As mentioned, it was assumed that the
FPS devices can have a higher share of shifted energy if there
are more households. For a scenario with 31 households, no
improvement for these shares can be found. There was also
no significant impact from the setup in which the buffers ran
preferably at night, as they had to run in the evening for the
4 and 5 person households.

As mentioned so far, there were simplifications made to
make this setup a solvable problem. Their impact has to
be assessed. The first one is the linearization according to
Equation 7. Comparing the aging factor calculated with the
original model with the linearized one shows a constant
difference of factor 3 between the two. However, for the
optimization, the absolute value is not important but whether
the two time series are sufficiently similar to base scheduling
on the linearized one. To estimate this, the correlation between
the original aging factor and the linearized aging factor is
calculated based on the original load curve. For January for
instance a value of 0.93 is calculated. For individual days,
the value is much higher, between 0.98 and 1. Therefore, it
can be assumed that the optimization based on the linearized

equation is sufficiently close to an optimization based on the
original equation, especially for an integer problem. It is also
important that the optimization gives a lower average aging
factor for every single day of a period. This is the case for all
results. So all solutions are valid solutions.

The impact of the parameters m and n in Equation 5 and
Equation 6, which were set to 1.0 for the optimization, can
be only assessed for calculating the aging factor based on
the optimized load curve. Using these values, has a negative
impact when the age reduction is high. The January values,
depicted in Figure 5, are for instance around 12 percentage
points lower if a value of 0.8 is used. For the cases with a
low improvement, there is no impact from using a value of
0.8. Again, it is controlled for every individual day, that the
aging factor is reduced for m and n set to 0.8 and therefore
the result of the optimization is valid.

The impact of relaxing the search criteria of the solver
can be analyzed by letting the simulation run several times
and compare results. Yet, given that there might be better
solutions, this criterion rather underestimates the impact on
the aging of the transformer. As a solution is still within 5 %
of the best solution and as this is an integer problem with only
a limited number of solutions, the impact is assumed rather
small. Repeating the simulation confirms this as the results
differ by less than 2 %.

Results show a high reduction in aging if the transformer
is loaded close to its rated load. For loading much lower than
that, the improvement in aging is very limited. From this, it
can be derived that it can be reasonable to control load on
an aged and highly loaded transformer to extend its lifetime,
while it makes less sense to control the load curve right from
the beginning. Yet, it could be seen that there is a relation with
other objectives. In this case, load was shifted to times with
high PV generation. Thus, there might be a positive effect on
the transformer, if this kind of shifting is the original objective.
Results also show the relative importance of DHW buffers for
the outcome. It could not be shown, that the share of devices
like washing machines rises with more households.

Concerning a business case, results indicate potential impact
for transformers operating at rated load.

III. CONCLUSION

In this paper, the effect of Demand Response on the lifetime
of a distribution transformer is analyzed. In a simulation, smart
household devices like washing machines or DHW buffers are
scheduled to enhance the expected lifetime of a distribution
transformer. This is done by a MIP-solver based on the
temperature of the transformer. Aging is calculated by an IEEE
model for insulation aging. Results show significant reduction
in aging for transformers loaded close to the rated load. Here,
aging could be reduced by up to 75 % For transformers loaded
much lower, reduction in aging was not significant. The main
device to be scheduled for a small number of households
are DHW buffers. They make up for 80 % to 92 % of the
shifted energy. Results also show the decreasing efficiency
of using additional flexibility. They also indicate potential
business cases.
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This setup is an initial benchmark for further work to esti-
mate the effects of Demand Response on transformer aging.
For the field test and further models, an on-line scheduler
is used. Such a setup, then, has to find a solution that is
"sufficiently" optimal, compared to the benchmark. Future
work will include:

• Parameters of real transformers and real load measure-
ments will be used to estimate the impact.

• Business cases will be calculated based on the impact of
this scheme.

• Electric vehicles will be included as they can represent
an important flexible load.

• The results will be compared with data collected in the
field test.
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